
Metaheuristics in Nature-Inspired Algorithms

Michael A. Lones
School of Mathematical and Computer Sciences

Heriot-Watt University, Edinburgh, UK
m.lones@hw.ac.uk

ABSTRACT
To many people, the terms nature-inspired algorithm and
metaheuristic are interchangeable. However, this contem-
porary usage is not consistent with the original meaning of
the term metaheuristic, which referred to something closer
to a design pattern than to an algorithm. In this paper, it is
argued that the loss of focus on true metaheuristics is a pri-
mary reason behind the explosion of “novel” nature-inspired
algorithms and the issues this has raised. To address this,
this paper attempts to explicitly identify the metaheuristics
that are used in conventional optimisation algorithms, dis-
cuss whether more recent nature-inspired algorithms have
delivered any fundamental new knowledge to the field of
metaheuristics, and suggest some guidelines for future re-
search in this field.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search

General Terms
Theory

Keywords
Metaheuristics, design patterns

1. INTRODUCTION
Metaheuristic is a widely used, but under-appreciated,

term. In common usage, it is often used as a synonym for
a search or optimisation algorithm. However, this was not
the intention of the term’s originator, who used it to refer to
general ideas of how to carry out search, rather than specific
implementations. A true metaheuristic is like a design pat-
tern, in that it encapsulates knowledge that may be applied
to the design of a range of specific optimisation algorithms.
Likewise, there is no reason why a particular algorithm can

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO’14, July 12–16, 2014, Vancouver, BC, Canada.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2881-4/14/07 ...$15.00.
http://dx.doi.org/10.1145/2598394.2609841.

not implement multiple metaheuristics, making use of com-
plementary ideas of how to search for optima within solution
landscapes.

Over the last decade, there has been an explosion in the
development of new nature-inspired optimisation algorithms
[6], a practice which has received significant criticism [5].
Even if we ignore the more superfluous of these, we are still
left with a seemingly diverse group of nature-inspired algo-
rithms in common use. Add in more traditional derivative-
free optimisation algorithms [1, 3] and the range of options
may seem overwhelming for a practitioner trying to solve
a particular problem. It is perhaps no wonder that peo-
ple from outside the field of metaheuristics sometimes use
algorithms which do not seem optimal for the task at hand.

It is arguable that the main problem is not the runaway
invention of new algorithms, but rather the way in which
new algorithms are presented. Close inspection reveals that
many of these algorithms do introduce new ideas. However,
by focusing on the modeling of the domain processes by
which they are inspired, their authors often fail to identify
the more general metaheuristics upon which these processes
are based, and as a consequence, rarely relate this knowl-
edge back to our wider understanding of how to carry out
search. Hence, we get a proliferation of new algorithms, but
no proliferation of new knowledge.

The main aim of this paper is to identify metaheuristics
underlying nature-inspired optimisation algorithms. This is
done by identifying the implicit metaheuristics used by these
algorithms and, through reference to these metaheuristics,
highlighting the relationships between different optimisation
algorithms. The hope is that this will contribute to our
wider understanding of metaheuristics and offer some guid-
ance to practitioners overwhelmed by the expansive litera-
ture. It is also hoped that this paper will cast some light
on recent developments in nature-inspired algorithms, and
offer guidelines for future developments.

The paper is organised as follows1: beginning with a re-
view of local search metaheuristics, this is followed by dis-
cussion of the most commonly used nature-inspired optimi-
sation algorithms: evolutionary algorithms, particle swarm
optimisation and ant colony optimisation. After this, some
recent nature-inspired algorithms are reviewed, and related
to the metaheuristics we identified in previous sections. The
paper concludes by offering some guidelines for those looking
to develop new nature-inspired optimisation methods.

1Note, due to limited space, some citations are made to
collections and review papers rather than primary sources.

1419

Neighbourhood Search

Intent: Find new solutions by exploring those that are
a step change—a move—away from the current one. A
move could be anything from flipping a single bit to
randomly replacing the entire solution.

Motivation: To explore variants of a known solution.

Applicability: Whenever a suitable neighbourhood
can be defined.

Examples: Particular heuristics can be generated by
considering different neighbourhoods, and by sampling
these neighbourhoods in different ways.

Hill Climbing

Intent: Follow a sequence of local improvements in
order to find a locally optimal solution. A single move
is performed at each step. If this leads to a better solu-
tion, the algorithm then moves on to explore a variant
of this new solution, otherwise it remains at the original
point and considers a different move.

Motivation: To improve upon an existing solution.

Applicability: Whenever neighbourhood search can
be performed and where solutions can be assigned an
objective value.

Accepting Negative Moves

Intent: Allow moves to worse solutions.

Motivation: To prevent convergence to local optima
when carrying out hill climbing.

Examples: Implementations include threshold ac-
cepting and simulated annealing [1]. The latter re-
duces the probability of accepting negative moves as
the search process approaches the global optimum.

Multi-Start

Intent: Restart the search process in a different region
once it has converged at a local optimum. After this
has been repeated a number of times, the best local
optimum seen is returned.

Motivation: To explore the search space more widely.

Applicability: May not be suitable for large search
spaces with sparse optima.

Examples: Restart points may be random. An alter-
native approach, used by iterated local search [1], is
to estimate the distance between neighbouring optima
and apply a move of this magnitude from the current
local optimum.

Adaptive Memory Programming

Intent: Use memory of past search experience to guide
future search.

Motivation: The original motivation was to prevent
cyclic patterns of search when attempting to escape
local optima.

Applicability: Requires memory. May not be ap-
plicable in highly dynamic search landscapes, where
memory of previous search may be misleading.

Examples: Adaptive memory programming is a gen-
eralisation of ideas developed in tabu search. The sim-
plest forms of tabu search maintain a short fixed-length
FIFO list, which stores recent moves or types of moves.
These moves are then prohibited until they leave the
list. There are many variants of this idea, including
the use of long term memory, and the use of aspiration
criteria to revoke tabus [1]. Many nature-inspired al-
gorithms, including evolutionary algorithms, also carry
out a form of adaptive memory programming, using a
population of search points as their memory.

Figure 1: Local search metaheuristics

2. LOCAL SEARCH ALGORITHMS
Before considering nature-inspired algorithms, it is first

instructive to review some of the common metaheuristics
used by more traditional optimisation algorithms (see Fig.
1). Most of these are local search algorithms, which con-
sider a single search point at a time during the search pro-
cess. Fundamental to all these algorithms is the neigh-
bourhood search metaheuristic. Many local search al-
gorithms are concerned with finding trajectories that lead
towards local optima. A general metaheuristic for achiev-
ing this is hill climbing. However, in most cases the local
optimum will not be the global optimum. To address this,
there are a number of metaheuristics that can be used to en-
courage wider exploration of the search space. Two simple,
and widely used, ones are accepting negative moves and
multi-start. Another popular method, and the originator
of the term metaheuristic, is tabu search. This is now often
referred to using the more general term adaptive memory
programming.

3. EVOLUTIONARY ALGORITHMS
Evolutionary algorithms (EAs) [1, 4] are an abstract model

of biological evolution, in which a population of candidate
solutions is iteratively exposed to analogues of natural selec-
tion and genetic variation. The basic procedure is as follows:
the initial population is a random sample of search points, a
selection mechanism then discards search points with poor
objective value, and variation operators derive new search
points from those that remain. This new population then
replaces the previous population, and the process of selec-
tion and variation is repeated until an optimal solution is
found, or some other termination criterion is met.

Interestingly, EAs use all the metaheuristics described in
the previous section. Mutation carries out a neighbour-
hood search, elitism supports hill climbing, stochastic
selection means that the algorithm can accept negative
moves, the use of many starting points resembles multi-
start, and the population uses previous search points to
guide future search, making it a form of adaptive mem-

1420

Population-Based Search

Intent: Multiple, cooperating search processes that
are typically executed in parallel.

Motivation: The sharing of information at interme-
diate stages of search helps guide convergence to global
optima.

Applicability: Usually less efficient than local search
when applied to relatively easy problems.

Examples: In an EA, sharing is implemented indi-
rectly through the selection mechanism, which spreads
information about relative fitness, and directly through
the recombination operator. Whilst EAs popularised
this metaheuristic, it is also also used by other optimi-
sation algorithms—such as scatter search [1]—which
are not modelled upon natural processes.

Intermediate Search

Intent: Explore the region between two or more pre-
viously visited search points, each of which is known to
have a relatively high objective value.

Motivation: To explore solutions with properties de-
rived from more than one good solution. Originally
motivated by genetic crossover in biology.

Applicability: Particular implementations may not
be suitable for particular search spaces.

Examples: Recombination, or crossover, is the best
known example of this metaheuristic. A related ap-
proach, termed path relinking [1], has more recently
been introduced to tabu search and scatter search.
This is to some extent a generalisation of crossover that
involves finding new (relinked) paths between known
solutions and exploring the neighbourhood of this path.

Figure 2: EA metaheuristics

ory programming. However, EAs are also notable for in-
troducing a new metaheuristic: population-based search
(Fig. 2). The use of recombination in EAs is also distinc-
tive, and has likewise promoted interest in a more general
metaheuristic, the idea of intermediate search (Fig. 2).

4. PARTICLE SWARM OPTIMISATION
Particle swarm optimisation (PSO) [4] models group for-

aging. As for an EA, an initial population of search points
is randomly sampled. Unlike an EA, each search point is
explicitly associated with a search process, which also has a
velocity and a memory of the best point it has seen so far.
For each iteration, each search process updates its velocity
so that its path veers slightly towards the best solutions seen
by a subset of the search processes. It then applies this ve-
locity to its current search point in order to derive a new
search point. This method of exploring new search points
continues until a termination criterion is met.

PSO has significant commonalities with EAs, including
the use of population-based search and intermediate
search. However, arguably the most distinctive feature of
PSO is the use of directional search (Fig. 3). A further
distinctive aspect of PSO is how it extends directional search

Directional Search

Intent: Identify productive directions within the
search space, and then carry out moves accordingly.

Motivation: For PSO, animal foraging behaviours.

Applicability: PSO requires a metric space. Gradient
methods require a differentiable objective function.

Examples: In PSO, productive search directions are
estimated from the locations of good solutions (also re-
sembling intermediate search). Directional search may
also be guided by other sources of knowledge. For ex-
ample, gradient ascent uses derivatives of the objec-
tive function to identify productive search directions.
Where the objective function is not known, estimates
of its derivatives can be used. An example of this is
the CMA-ES algorithm [4], an evolution strategy that
estimates second derivatives, using this knowledge to
bias the mutation operator.

Variable Neighbourhood Search

Intent: Search different neighbourhoods around the
location of a known local optimum.

Motivation: The local optimum in one neighbour-
hood may not be the local optimum in another.

Applicability: Requires multiple neighbourhoods.

Examples: The variable neighbourhood search algo-
rithm [1] does this by iteratively increasing the neigh-
bourhood size, exploring moves of increasing magni-
tude from the current local optimum. Although PSO
takes a less structured approach, different particles ap-
proaching the current best known search point will tend
to have different velocities, in effect exploring neigh-
bourhoods of different magnitude around this point.

Figure 3: PSO metaheuristics

with the notion of search velocity. In the original PSO pa-
per, this is described as a means of promoting exploration
over exploitation when carrying out directed search, primar-
ily by allowing a particle to overshoot its target. However, it
can also be seen as a combination of directional search with
another metaheuristic that has recently developed some pop-
ularity, variable neighbourhood search (Fig. 3).

5. ANT COLONY OPTIMISATION
Ant colony optimisation (ACO) [1] is motivated by the

way in which ants share their foraging experience. The idea
is that search processes mark paths through the search space
that lead to regions of high objective value. Marking up is
done using an analogue of pheremone concentration, typi-
cally in three ways: the path that leads to the best solution
is reinforced to promote followers, paths traversed by search
processes are decayed to promote diversity, and all paths
decay through evaporation to allow forgetting.

ACO revisits a number of the metaheuristics already dis-
cussed, notably population-based search and directional
search. However, the idea of marking up the search space
(often referred to as stigmergy) is distinctive. Whilst it could
be described as adaptive memory programming, it also

1421

Search Space Mapping

Intent: Construct a map to guide search processes
that are traversing the search space.

Motivation: For ACO, ant foraging behaviour.

Applicability: Standard ACO is only applicable to
discrete optimisation, though generalisations do exist.

Examples: In the case of ACO, the map takes the
form of a probabilistic overlay that points towards re-
gions of productive search. An overlay approach is also
used in guided local search [1], where it modifies the
underlying objective values, pointing search away from
solutions with features considered undesirable. An-
other approach to mapping, used by branch-and-bound
methods such as DIRECT [3], is to divide the search
space into partitions, directing search towards parti-
tions known to contain fit solutions.

Figure 4: ACO metaheuristic

represents a more specific metaheuristic principle concerned
with search space mapping (Fig. 4).

6. EMERGING ALGORITHMS
EAs, PSO, ACO, and their variants, still dominate the

field of nature-inspired optimisation. However, many recent
nature-inspired algorithms have developed a substantial fol-
lowing. Some of the most popular include:

The artificial bee colony algorithm (ABC) [6] (>1000
citations) models honey bee foraging. It explores a fixed
number of regions within the search space at any one time.
The number of search processes in each region is determined
by relative fitness. Search continues in a region whilst fitter
solutions continue to be found; otherwise, a new region is
randomly sampled.

Bacterial foraging optimization (BFO) [2] (>1000 ci-
tations) models E. coli colonies. Like PSO, it uses a pop-
ulation of search processes. Each performs a random walk
composed of straight segments followed by random direction
changes. Segment length is proportion to search gradient,
so bigger steps are taken in productive directions. Objec-
tive values are overlaid by a crowding term, whose effect is
to draw the random walks towards one another. A dispersal
routine randomly reallocates a subset of search points.

Firefly algorithm (FA) [6] (>500 citations) is similar to
PSO, and loosely motivated by the grouping behaviour of
fireflies. Compared to PSO, the main differences are the lack
of search velocities and the use of an inverse-square law to
guide interactions between all search processes. This leads
to more localised interactions and a consequent tendency to
form multiple regions of search.

Cuckoo search (CS) [6] (>500 citations) uses a small pop-
ulation of solutions. At each step, a poor solution is re-
placed either randomly or by using a ‘Lévy flight’ applied
to another, randomly selected, solution. Lévy flights are a
kind of random walk with step sizes generated from a heavy-
tailed probability distribution that has been shown optimal
for exploring sparse foraging environments.

Each of these algorithms carries out a population-based

search. ABC and CS make explicit use of hill climbing
and multi-start strategies, and are the only algorithms not
to use intermediate search or directional search meta-
heuristics. BFO carries out both a variable neighbour-
hood search and search space mapping. Random walks
are used in both BFO and CS, and could be considered as
a novel metaheuristic. FA, on the other hand, has little to
distinguish it from PSO, with the inverse-square law having
a similar effect to crowding and fitness sharing in EAs, and
the use of multi-swarms in PSO. However, there is scope
for recognising this general group of search balancing mech-
anisms as a metaheuristic, since they are often central to
solving multimodal problems.

7. DISCUSSION
Arguably the main contribution of recent nature-inspired

algorithms has not been to develop new metaheuristics, but
rather to investigate new ways of combining metaheuristics
that we already know about. However, this is typically done
in an ad hoc fashion, with no explicit identification of the
metaheuristics being used, and little understanding of why
they are being combined. To address this issue, we might
suggest the following considerations for the future:

Explicitly identifying metaheuristics would help spread
knowledge, bring cohesion to the field, and make algorithmic
descriptions more accessible. This paper is a small step in
this direction, but more work is required to identify and ex-
press the metaheuristics in current use and the relationships
between them.

When to combine metaheuristics is currently unclear.
It is likely that different combinations are suitable for dif-
ferent problems. However, there is limited theoretical un-
derstanding, and experimental studies are generally done at
the algorithmic level. Again, explicit identification of meta-
heuristics would help to develop this knowledge.

Hyper-metaheuristics could build upon the success of hy-
perheuristics [1], automatically evaluating different combi-
nations of metaheuristics to produce new general-purpose
algorithms, and addressing the ad hoc manner in which com-
binations are currently explored.

Design patterns, whilst distinct from metaheuristics, help
to formalise implementations and mechanisms for combining
metaheuristics [4](ch. 29), promoting thinking at the meta-
heuristic level. The documentation conventions of design
patterns could also be adapted to metaheuristics, providing
a method for standardisation and expressing ontologies.

8. REFERENCES
[1] M. Gendreau and J. Y. Potvin. Handbook of

Metaheuristics. Springer, 2nd edition, 2010.

[2] K. M. Passino. Biomimicry of bacterial foraging for
distributed optimization and control. Control Systems,
IEEE, 22(3):52–67, June 2002.

[3] L. Rios and N. Sahinidis. Derivative-free optimization.
Journal of Global Optimization, 56(3):1247–1293, 2013.

[4] G. Rozenberg, T. Bäck, and J. N. Kok. Handbook of
Natural Computing. Springer, Berlin, Heidelberg, 2012.

[5] K. Sörensen. Metaheuristics—the metaphor exposed.
Intl. Trans. in Op. Res., Feb. 2013. online version.

[6] X. S. Yang. Nature-Inspired Metaheuristic Algorithms.
Luniver Press, 2nd edition, 2010.

1422

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move down by 23.83 points
 Normalise (advanced option): 'original'

 32

 D:20140524092651
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352
 Fixed
 Down
 23.8320
 0.0000

 Both
 10
 AllDoc
 10

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 3
 4
 3
 4

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move left by 7.20 points
 Normalise (advanced option): 'original'

 32

 D:20140524092651
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352

 Fixed
 Left
 7.2000
 0.0000

 Both
 10
 AllDoc
 10

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 3
 4
 3
 4

 1

 HistoryList_V1
 qi2base

