
A Template for Designing Single-Solution Hybrid
Metaheuristics

Manuel López-Ibáñez
IRIDIA, CoDE,

Université Libre de Bruxelles
Brussels, Belgium

manuel.lopez-ibanez@ulb.ac.be

Franco Mascia
IRIDIA, CoDE,

Université Libre de Bruxelles
Brussels, Belgium

fmascia@ulb.ac.be

Marie-Éléonore Marmion
LIFL, Université Lille 1

Lille, France
marie-

eleonore.marmion@inria.fr

Thomas Stützle
IRIDIA, CoDE,

Université Libre de Bruxelles
Brussels, Belgium

stuetzle@ulb.ac.be

ABSTRACT
Single-solution metaheuristics are among the earliest and
most successful metaheuristics, with many variants appear-
ing in the literature. Even among the most popular variants,
there is a large degree of overlap in terms of actual behavior.
Moreover, in the case of hybrids of different metaheuristics,
traditional names do not actually reflect how the hybrids are
composed. In this paper, we discuss a template for single-
solution hybrid metaheuristics. Our template builds upon
the Paradiseo-MO framework, but restricts itself to a pre-
defined structure based on iterated local search (ILS). The
flexibility is given by generalizing the components of ILS
(perturbation, local search and acceptance criterion) in or-
der to incorporate components from other metaheuristics.
We give precise definitions of these components within the
context of our proposed template. The template proposed is
flexible enough to reproduce many classical single-solution
metaheuristics and hybrids thereof, while at the same time
being sufficiently concrete to generate code from a grammar
description in order to support automatic design of algo-
rithms. We give examples of three IG-VNS hybrids that
can be instantiated from the proposed template.

Categories and Subject Descriptors
I.2.8 [Computing Methodologies]: Artificial Intelligence—
Problem Solving, Control Methods, and Search

General Terms
Algorithms

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO’14, July 12–16, 2014, Vancouver, BC, Canada.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2881-4/14/07 ...$15.00.
http://dx.doi.org/10.1145/2598394.2609846 .

Keywords
Automatic Algorithm Configuration, Automatic Algorithm
Design, Local Search, Metaheuristics

1. PROBLEM STATEMENT
Single-solution metaheuristics are those metaheuristics that

consider a single solution at each step instead of a popula-
tion of solutions [3]. These include classical local search
algorithms, such as iterated local search (ILS) [7], simulated
annealing (SA) [6], variable neighborhood search (VNS) [2],
among others; and also classical evolution strategies such as
(1+1)-ES and (1,1)-ES [1].

Given the large number of single-solution metaheuristics
proposed in the literature, it is not surprising that very sim-
ilar proposals are discussed under different names. For ex-
ample, iterated greedy (IG) [10] is fundamentally equivalent
to ruin-and-recreate (RR) [11] and large-neighborhood search
(LNS) [9]. This duplication is problematic for two reasons:
(1) it artificially divides the research concerning these algo-
rithms leading to a lack knowledge sharing and a duplication
of efforts, and (2) it makes more difficult for practitioners
to understand the state-of-the-art and identify the best al-
gorithm for their particular problem.

A related but different problem arises when well-known
algorithms are slightly modified or hybridized with other
metaheuristics. For instance, ILS could be augmented with
the Metropolis acceptance criterion typical of SA. In such
a case, depending on the point of view, it could be consid-
ered either a hybrid of ILS and SA or an SA with a large
neighborhood and a local search intensification. Both views
basically describe the same algorithm.

We believe that previous approaches suffer from an ex-
cessive flexibility [4, 14]. They attempt to instantiate al-
most any possible algorithm, which leads to a high degree
of flexibility, but allows defining the same algorithm in mul-
tiple equivalent ways. Nonetheless, our proposal is not a
radical departure from existing approaches, since our goal
is to synthesize the accumulated knowledge about which
single-solution metaheuristics, and which of their compo-
nents, have been shown to work well on various problems.

1423

In particular, we build directly on top of the Paradiseo-
MO C++ framework [4] by reusing many of its underly-
ing components, although other underlying frameworks and
programming languages may be used to implement the tem-
plate described here.

2. SOLUTION
Our proposal sacrifices some of the flexibility of Paradiseo-

MO for simplicity by pre-defining an algorithmic structure
based on ILS (Fig. 1). A classical ILS algorithm is com-
posed of a perturbation, a local search, an acceptance crite-
rion and a termination criterion. However, in our template,
these components are much more general than those found
in classical ILS algorithms. Moreover, the components may
influence each other by updating a common state, which
may represent a strength parameter in the case of perturba-
tion, a temperature in the case of the Metropolis acceptance
criterion, a history of previous solutions, a tabu list, etc.1

We define a perturbation as a stochastic move within a
particular neighborhood. A perturbation is often defined in
terms of a strength parameter, which may be dynamically
adjusted. The neighborhood of the perturbation may also be
the solutions that can be reached in a certain number of con-
secutive moves. In that case, the strength parameter defines
the number of moves for each perturbation. The class of per-
turbations includes not only classical random swap moves,
but also the complex destruction-reconstruction moves typ-
ical of IG (and by extension, RR and LNS). The key feature
of a perturbation is that it is stochastic, that is, applying the
same perturbation twice with the same strength to the same
solution is likely to produce different solutions. Moreover,
perturbations may react to a new solution being accepted
as the current one by adjusting the strength.

An acceptance criterion is defined as a procedure that
takes the current solution and a new solution and returns
either one of them or a previously found one. The solu-
tion returned then becomes the current solution. Examples
of acceptance criteria are: accept always the new solution,
which is typical of restart mechanism; accept only if im-
proving, which is typical of ILS and VNS, and Metropolis
acceptance, which is the acceptance criterion used in the
classical SA. Some of these acceptance criteria, such as the
Metropolis one, have internal parameters.

A local search, in our template, is defined as any classical
iterative improvement plus the ILS itself. Iterative improve-
ment algorithms are not based on stochastic perturbations
as defined above, but on a systematic search within a neigh-
borhood. Therefore, they are not part of the algorithms
that can be instantiated from our ILS template. Moreover,
iterative improvement algorithms are often problem-specific
in order to make use of particular speed-ups when system-
atically exploring a neighborhood. Since the ILS contains
a local search, and the local search can be an ILS, this re-
cursive definition allows hybridizing different types of single-
solution metaheuristics within a single algorithm. The idea
of defining hybrid ILS algorithms by means of a recursive
definition has already been explored in the literature in the
context of the traditional ILS definition [5]. More generally,
the idea that a template for local search should have a re-

1In the case of Paradiseo-MO, this state is not passed ex-
plicitly between functions as in Fig. 1, but implemented in
terms of relationships between different objects.

ILS Algorithm
1: s0 := Initialization()
2: s∗ := ILS(s0)
3: return s∗

Function ILS(s0)
Require: Perturbation, LS,

Acceptance, Termination
1: s∗ := LS(s0, State)
2: repeat
3: s′ := Perturbation(s∗, State)
4: s′ := LS(s′, State)
5: s∗ := Acceptance(s′, s∗, State)
6: until Termination(State)
7: return s∗

Figure 1: The iterated local search (ILS) template.

cursive definition is even older [14]. Recently, the same ideas
have been applied to hyperheuristics templates [12, 13].

Finally, the termination criterion is defined as a function
that returns true when the main loop of ILS should stop. It
can be a time limit, a number of iterations or another con-
dition. In the case of an ILS embedded within another ILS,
the termination condition of the ILS at the lower level is of-
ten a function, such as a fraction of time, of the termination
condition of the upper level.

3. CONSEQUENCES
Despite being more restricted than the general framework

given by Paradiseo-MO [4], the above template can instanti-
ate a large number of classical single-solution metaheuristics,
including SA, ILS, IG, VNS, etc. Moreover, it can combine
components of them in a flexible (but not entirely arbitrary)
way. We will discuss some examples below.

One of the consequences of such a framework is to move
away from describing algorithms in terms of similarities with
other algorithms, which is actually a subjective view that
depends on our own background, towards describing algo-
rithms in terms of the components that they use. That is, a
SA-VNS hybrid could be implemented in various ways, but
an algorithm that uses a perturbation with a dynamically in-
creasing strength and a Metropolis acceptance criterion has
always the same structure in the template proposed above.

Another consequence is that, except for a few problem-
specific components, generating a hybrid single-solution meta-
heuristic is a matter of choosing how many levels of ILS we
wish to have and which components should appear at each
level. This property allowed us to generate code in a pro-
cedural manner from a grammar description of the above
template and to find the best instantiation using an off-the-
shelf automatic algorithm configuration tool [8].

4. EXAMPLES
As an example, let us consider a hybrid IG-VNS. Such a

name on its own is not very helpful, since what is exactly a
hybrid IG-VNS depends on the actual components and how
they are combined. In terms of our ILS template, we have
at least the following three possibilities:

IG that restarts from solutions increasingly distant
from the best-so-far. In this case, there is an IG algo-
rithm that, after not improving the best-so-far solution for
a while, applies a perturbation to it and restarts the IG al-
gorithm from the perturbed solution. Every time such a
restart occurs without improving the best-so-far solution,
the perturbation applied is stronger. This corresponds to a
two level ILS, where the perturbation of the inner ILS is of
the type destruct-reconstruct, whereas the perturbation of

1424

the outer ILS is a partial reinitialization of the best-so-far
solution with a strength that increases as long as no new
best-so-far solution is found.

IG with increasingly stronger destruction-reconstruc-
tion. This corresponds to a single level ILS, where the per-
turbation is of type destruct-reconstruct, but the strength
of the perturbation increases as long as no new best-so-far
solution is found.

IG with a VNS as subsidiary local search. This cor-
responds to a two level ILS, where the perturbation of the
outer level is of the type destruct-reconstruct and the inner
level is a classical VNS algorithm.

The above examples show that complex hybrid algorithms
can be described in terms of very few components based on
the template proposed above.

5. REFERENCES
[1] H.-G. Beyer and H.-P. Schwefel. Evolution stratagies:

a comprehensive introduction. Natural Computing, 1:
3–52, 2002.

[2] P. Hansen and N. Mladenovic. Variable neighborhood
search: Principles and applications. European Journal
of Operational Research, 130(3):449–467, 2001.

[3] H. H. Hoos and T. Stützle. Stochastic Local
Search—Foundations and Applications. Morgan
Kaufmann Publishers, San Francisco, CA, 2005.

[4] J. Humeau, A. Liefooghe, E.-G. Talbi, and S. Verel.
ParadisEO-MO: From fitness landscape analysis to
efficient local search algorithms. Journal of Heuristics,
19(6):881–915, June 2013.

[5] M. S. Hussin and T. Stützle. Hierarchical iterated
local search for the quadratic assignment problem. In
M. J. Blesa et al., editors, Hybrid Metaheuristics,
volume 5818 of LNCS, pages 115–129. Springer, 2009.

[6] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi.
Optimization by simulated annealing. Science, 220:
671–680, 1983.

[7] H. R. Lourenço, O. Martin, and T. Stützle. Iterated
local search. In F. Glover and G. Kochenberger,
editors, Handbook of Metaheuristics, pages 321–353.
Kluwer Academic Publishers, Norwell, MA, 2002.

[8] M.-E. Marmion, F. Mascia, M. López-Ibáñez, and
T. Stützle. Automatic design of hybrid stochastic local
search algorithms. In M. J. Blesa et al., editors,
Hybrid Metaheuristics, volume 7919 of LNCS, pages
144–158. Springer, 2013.

[9] D. Pisinger and S. Ropke. Large neighborhood search.
In M. Gendreau and J.-Y. Potvin, editors, Handbook
of Metaheuristics, volume 146 of International Series
in Operations Research & Management Science, pages
399–419. Springer, New York, NY, 2 edition, 2010.

[10] R. Ruiz and T. Stützle. A simple and effective iterated
greedy algorithm for the permutation flowshop
scheduling problem. European Journal of Operational
Research, 177(3):2033–2049, 2007.

[11] G. Schrimpf, J. Schneider, H. Stamm-Wilbrandt, and
G. Dueck. Record breaking optimization results using
the ruin and recreate principle. Journal of
Computational Physics, 159(2):139 – 171, 2000.

[12] J. Swan, E. Özcan, and G. Kendall. Hyperion - a
recursive hyper-heuristic framework. In C. A. Coello
Coello, editor, Learning and Intelligent Optimization,
5th International Conference, LION 5, volume 6683 of
LNCS, pages 616–630. Springer, 2011.

[13] J. Swan, J. Woodward, E. Özcan, G. Kendall, and
E. Burke. Searching the hyper-heuristic design space.
Cognitive Computation, 6(1):66–73, Mar. 2014.

[14] R. J. M. Vaessens, E. H. L. Aarts, and J. K. Lenstra.
A local search template. Computers & Operations
Research, 25(11):969–979, 1998.

1425

