The Executable Experimental Template Pattern for the
Systematic Comparison of Metaheuristics

[Extended Abstract]

Geoffrey Neumann
Computing Science and
Mathematics
University of Stirling
FK9 4LA Scotland UK
gkn@cs.stir.ac.uk

Mark Harman
Department of Computer
Science
University College London,
London, WC1E 6BT, UK.

mark.harman@ucl.ac.uk

Categories and Subject Descriptors
1.2 [Computing Methodologies|: Artificial Intelligence;

1.2.8 [Problem Solving, Control Methods, and Search]:

[Heuristic Methods]

Keywords
Statistical Significance, Hypothesis Testing, Effect Size

1. PROBLEM STATEMENT

In order to establish the effectiveness of a new metaheuris-
tic it is necessary to compare it against a base case (e.g.
some version of the metaheuristic without the new function-
ality under consideration or a metaheuristic representing the
state-of-the-art).

This is an area that is fraught with difficulty for several
reasons. Firstly, for some metaheuristics there are many
parameters that may require manual tuning (e.g. mutation
or crossover rate [8]). As there is a tendency to tune these
parameters to obtain the best possible performance for a
new metaheuristic it is difficult to differentiate between a
genuine advantage and the effect of tuning.

Secondly, since metaheuristics are stochastic, it is impor-
tant to distinguish genuine improvements in the performance
of a metaheuristic from apparent improvements arising from
chance. There are a wide variety of statistical tests for this
purpose, many of which have certain preconditions regard-
ing the nature of the data (e.g. assumptions of normality).
It is desirable that a statistical test is chosen which is ap-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO’14, July 12-16, 2014, Vancouver, BC, Canada.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2881-4/14/07 ...$15.00.
http://dx.doi.org/10.1145/2598394.2609850.

Jerry Swan
Computing Science and
Mathematics
University of Stirling
FK9 4LA Scotland UK
jsw@cs.stir.ac.uk

John A. Clark
Department of Computer
Science and YYCSA
University of York
York, YO10 5GH, UK.

john.clark@cs.york.ac.uk

1427

propriate for the results, and yet metaheuristic researchers
are often not sufficiently knowledgeable to make this deci-
sion [2] [9].

This paper focusses primarily on a solution to the second
of these problems, but also describes how this solution may
be incorporated into a wider framework for testing a new
metaheuristic.

2. THE SOLUTION

We are developing an automated system for comparing
metaheuristics. We claim that this would be of benefit,
both in ensuring good practice in the assessment of new
metaheuristics and as part of the wider goal of automating
the metaheuristic design process. A framework for automat-
ically choosing and carrying out statistical tests, based on
the nature of the data, forms a key part of such a system.

The approach proposed in this paper is an application
for systematic comparison of experimental results. For sim-
plicity, we will restrict discussion to comparison of a pair
of experiments, since the nontransitive effects that may re-
sult from comparing multiple experiments [12] would detract
from the essential points we wish to convey. We will also
initially focus solely on real valued data, although nomimal
data may be considered at a later date. This will ultimately
form the ‘Core Layer’ of a framework for the systematic
comparison of metaheuristics. We term this framework as
an ‘Executable Experimental Template’ (EET) which is an
instance of a Template Method Pattern whereby a skeleton
structure is defined which defers to user-specified callbacks
which are invoked at key points in the skeleton. Each sta-
tistical test, for example, constitutes one subclass [7].

The EET framework consists of three layers. Although
the ‘Core Layer’ is the focus of this paper, all three layers
are briefly outlined below:

1. ‘Core Layer’: Responsible for determining whether two
datasets are different to a statistically significant ex-
tent and what the effect size of this difference is.

2. ‘Experimental Layer’: Responsible for planning and
conducting experiments. In the case of metaheuris-
tics, it should be able to conduct the experiments nec-
essary to determine whether there is a difference in
performance between different techniques. Given two
datapoint-generating procedures f, and f, (potentially
paired), this layer will initially generate k datapoints,
producing two sets of fitness scores a and b. Although
we are working in the domain of metaheuristic devel-
opment, without loss of generality, f, and f, can be
any stochastic functions able to generate data points.
The functionality of the ‘Core Layer’ is invoked to de-
termine whether a and b are significantly different and
the size of the effect observed. If the ‘Core Layer’ is
unable to find a statistically significant difference be-
tween the two sets of results then the ‘Experimental
Layer’ may decide to run further tests to obtain more
results. This increases the probability that a signifi-
cant p value will be obtained but, in doing so, increases
the risk that two techniques will be judged to be signif-
icantly different even when the difference is minimal.
This concern is addressed by ensuring that the ‘Core
Layer’ carries out effect size tests in addition to p value
tests.

3. ‘Sensitivity Layer’: Responsible for establishing how
senstive a datapoint generator is to its choice of param-
eters. This layer is provided with a parameter schema
that describes the set of permissible parameter values,
(e.g. mutation or crossover probabilities when the dat-
apoint generator is a genetic algorithm). This layer
samples the search space of parameters by generating
datapoints from different parameter settings. These
will be compared using the ‘Experimental Layer’. The
underlying intention is to allow fair comparision of the
‘tunability’ of metaheuristics in terms of: a) the ro-
bustness of metaheuristics w.r.t. their parameter set-
tings b) the number of samples required to achieve
equivalent results. The process of automated parame-
ter tuning to ensure the fair comparison of algorithms
has precedent in the work of Wang et al [18].

The EET framework has the following design criteria:

1. Portability: It should be widely portable and easily
deployed. Conforming to these requirements will en-
sure maximum adoption and enable EETSs to become
a standard.

2. Familiarity: It should use a widely-accepted implemen-
tation for statistical tests.

3. Recordability: Every decision made by an EET (as
well as the outcome of every test) should be recorded
and made available to the user. This will enable the
user to publish a complete account of all testing carried
out and so will help to ensure complete transparency
for all published results.

4. Controllability: Although the system should be able to
function without user input, it should also be possible
for the user to take manual control of any part of the
process. Where a decision cannot be made automat-
ically the system should inform the user and prompt
for further action.

1428

5. Plugability: The user should be able to modify EETs
to reflect their own preferences in areas such as the
choice of statistical test. They should be able to add
new tests or new preconditions, to remove tests or to
change the way in which tests are selected. Although
EETs will have a default configuration suitable for
most users, those who have expertise in a particular
area should be able to construct versions of EETs that
are most suitable for their requirements.

In order to satisfy the portability and familiarity require-
ments, the EETs are implemented in the Java programming
language. All statistical tests are carried out using R, a
popular statistical language providing standard implemen-
tations of many statistical tests [15]. This is a natural imple-
mentation as Java provides RJava, an interface to R. Java
itself has the advantage of being a widely used and platform
independent language.

2.1 The ‘Core Layer’

This layer takes the form of a rule-based system for hy-
pothesis testing. It takes as input two datasets (viz. ‘Dataset
A’ and ‘Dataset B’). It may be used to compare a new meta-
heuristic (Metaheuristic A) against a baseline metaheuristic,
(Metaheuristic B). In this case Dataset A will consist of a
vector of fitnesses achieved by Metaheuristic A and Dataset
B will be the corresponding vector for Metaheuristic B. The
purpose of this layer is to find a statistical test which is able
to correctly reject the null hypothesis if and only if there is a
significant difference between the two datasets. The null hy-
pothesis in this case is that there is no such difference and
that both datasets are drawn from the same distribution.
This test should have sufficient power to avoid making type
IT errors [14] without making inaccurate assumptions about
the data, increasing the risk of type I errors.

In order to identify the appropriate test, the datasets are
examined for the following characteristics:

e Whether both datasets follow a normal distribution.

e Whether both datasets have a similar variance or whether
this varies between the two datasets, in which case the
two datasets are said to heteroscedastic.

e If one or both datasets are skewed, whether the extent
and direction of skew is similar in both datasets.

e Whether the level of kurtosis is similar in both datasets.
e Whether either dataset contains missing data.

e Whether the size of both datasets is the same or whether
there is a difference. If there is a difference then the
two datasets are said to be unbalanced.

These characteristics are used in a decision tree to choose
the appropriate statistical test (i.e. a test which does not
make an assumption which contradicts an observed charac-
teristic).

We do not claim this list to be complete: rather it will be
revised according to feedback from the empirical methods
community. It should be noted that, although some research
has already been carried out on automating the process of
statistical testing [10] we are not aware of any complete so-
lutions. That is to say, a solution that takes into account

all of these considerations and that can be integrated into a
wider automated experimental framework.

Having decided on a test, the EET performs the test and
outputs the corresponding p value. If this p value is below
the level of confidence specified by the user, then this is in-
terpreted as a rejection of the null hypothesis. Although the
p value on its own is useful for determining statistical signifi-
cance, it can be misleading when the number of runs is large.
In this situation the p value will likely be low even when two
experimental treatments differ to only a very slight degree.
For this reason it is necessary to supplement a statistically
significant p value with a measure of effect size in order to
give an indication of the magnitude of difference between the
two metaheuristics [1]. The ‘Core Layer’ of the EET frame-
work therefore also chooses and carries out an appropriate
effect size test and outputs the results of this test too.

Because of the number of characteristics to be taken into
consideration and the fact that many of them require their
own tests, the process of choosing an appropriate statisti-
cal test may become complex and time consuming. For this
reason, it is highly desirable that a simple and efficient test
should occupy the root of the decision tree and that further
tests should only take place when the results of this test are
unsatisfactory. The CIiff test was chosen for this purpose
due to its simplicity and because it makes no assumptions
about the data [5]. This test produces an effect size (d). d
is simply the number of possible comparisons between the
two datasets that return in Dataset A’s favour subtracted
from the number of comparisons that return in Dataset B’s
favour. This is then divided by the total number of possible
comparisons. d will be in a range -1.0 to +1.0, with values
close to 0 indicating little difference between the two sam-
ples. A d value close to -1.0 or +1.0 indicates both a high
probability that the two datasets are from different distri-
butions and provides a measure of effect size similar to the
Vargha-Delaney Alz measure recommended elsewhere [2]
Because of this, by initially using the CIliff test, EETs do
not necessarily need to identify and carry out either an ideal
test for statistical significance or an ideal test for effect size.

3. AN EXAMPLE: CHOOSING AND CAR-
RYING OUT STATISTICAL TESTS

This section illustrates the behaviour of the ‘Core Layer’.
As previously mentioned, the schematic provided here is
simply an example produced from the rules existing in our
current, standard implementation of the EET framework.
These rules may change due to further feedback from the
empirical methods community. It is also a key requirement
that the specific tests used and the decisions made are plu-
gable modules. This is so that the user is able to adapt the
default EET configuration to their needs.

We will assume that this layer is presented with two datasets,

Dataset A and Dataset B. Let us assume that these two
datasets have the attributes specified in Table 1.

To establish whether there is a significant difference be-
tween these two datasets, the CIiff test is first employed. As
discussed above, this is the EET framework’s default test
as it has no preconditions and so is suitable for any two
datasets. The result of this test will be returned to the user
(who may be either a human researcher or the ‘Experimen-
tal Layer’ of the framework). If the user is not satisfied
with the outcome of the CIiff test then the following steps

1429

Table 1: Datasets

Attribute Dataset A Dataset B
Dataset Size 35 60
Distribution Type Normal Not Normal
Heteroscedastic Yes Yes
Missing Data No No

will be completed. The outcome of these steps will be a p
value indicating the statistical significance of the difference
between the two sets and a measure of effect size, indicating
the magnitude of the difference between the two sets.

1. First of all, the number of data points in each dataset
will be counted. If either dataset contains fewer data
points than a pre specified threshold then a warning
will be returned to the user. For example: with fewer
than 20 data points determining whether the data is
normally distributed can be difficult [16]. As normal-
ity is a prerequisite for many statistical tests, this may
lead to an inappropriate test being chosen. A low num-
ber of datapoints may also reduce the probability that
a statistically significant difference can be found [1].

. It will then be determined whether or not the data is
normally distributed. A decision tree within EET's will
be used to choose an appropriate normality test:

(a) For Dataset A the Shapiro-Wilk test will be used.
This has been shown to perform better than sev-
eral well known alternatives for a dataset size of
between 20 and 40 [16].

(b) For Dataset B the Shapiro-Francia test will be
used as it has been shown to perform better than
the Shapiro-Wilk test for dataset sizes above 40 [17].

. Once it has been established that Dataset A does fol-
low a normal distribution but Dataset B does not, a
test will need to be carried out to determine whether
the data is heteroscedastic or not. This will be the case
if the two datasets have a different variance. Again, a
decision tree within EETSs is used to determine an ap-
propriate check for heteroscedasticity.

(a) For this decision the main consideration is whether
the data is normally distributed. As in this case it
is not, a common check for heteroscedasticity, the
Bartlett test, is not suitable as it relies on both
datasets following a normal distribution. Brown
and Forsythe discuss a number of alternatives [3],
including several variations of the Levene test,
which may be used instead.

. In this case, a reliable test for heteroscedasticity should
show that the data that we are using is heteroscedastic.

. It is now known that two preconditions that some sta-
tistical tests rely on, i.e. that both datasets are nor-
mally distributed and that there is no heteroscedastic-
ity, are not met. This information will be used by the
main decision tree that is used to decide on a statistical
test:

(a) In the absence of normality, a nonparametric test
is likely to be more reliable than a parametric

test. The Mann-Whitney U test, a popular non-
parametric test, will be considered [13].

(b) The U test will be rejected when heteroscedastic-
ity is considered as it is sensitive to heteroscedas-
ticity. A more robust test, such as the Brunner-
Munzel test [4] will be chosen.

6. Having chosen a test, the p value will be obtained.

7. If the p value is below the threshold, the datasets will
be judged to be different to a statistically significant
extent. An effect size test will now be chosen in a
similar manner to how the significance test was chosen.

CONSEQUENCES

e Decreased human effort EETs allow further au-
tomation of the time-consuming process of parameter
tuning and choosing an appropriate statistical test can
now be achieved automatically.

e Less dependence on the knowledge of the re-
searcher The necessary statistical knowledge is em-
bedded within EETs.

e A step towards fully-automated metaheuristic
development If a generative hyperheuristic [6] is in-
tegrated into EETs then the complete process of devel-
oping and testing metaheuristics may be automated.

e Helps to ensure complete transparency in ex-
perimental methods EETs will generate a report
detailing every decision that was made and the grounds
on which it was made. For example, suppose that a
normality test is carried out in order to choose the most
appropriate statistical test. Details of which normal-
ity test was used and how it was chosen, the resulting
normality score and how this affected subsequent deci-
sions will all be included in the report. This report will
be in latex so that a complete, standardized and un-
ambiguous account of statistical testing can be easily
incorporated into publications for peer review.

e Helps to ensure reproducibility By making exper-
imental conditions explicit it will be easier to recreate
these experiments.

e Helps to ensure a standard practise in the anal-
ysis of results In current research, experimentation
is often carried out in an informal and ad hoc man-
ner [11]. A recent study by Arcuri found a lack of con-
sistency in the quality of statistical testing [1]. In many
cases the number of data points was insufficient and
sometimes statistical testing was omitted altogether.
By automating the process of statistical testing EETs
will bring much needed standardization to this area.

e Standardization and transparency in parame-
ter tuning The ‘Sensitivity Layer’ also encourages
standardization and full transparancy in the process of
parameter tuning. EETSs produce a report which will
enable researchers to provide complete, detailed and
standardized information on how a new metaheuris-
tic performs under different parameter settings. This
will both confirm that the performance has been fairly

1430

S.
[1]

[2

3

(4

5

6

[7]

8

[9

(10]
(11]

(12]

(13]

(14]

(15]

[16]

(17]

(18]

assessed and provide information on metaheuristic ro-
bustness and the amount of parameter tuning that is
required to produce good performance.

REFERENCES

A. Arcuri and L. Briand. A practical guide for using
statistical tests to assess randomized algorithms in software
engineering. In ACM/IEEE Int. Conf. on Software
Engineering (ICSE), pages 1-10, 2011.

Andrea Arcuri and Lionel Briand. A hitchhiker’s guide to
statistical tests for assessing randomized algorithms in
software engineering. Software Testing, Verification and
Reliability, 2012.

Morton B Brown and Alan B Forsythe. Robust tests for the
equality of variances. Journ. of the American Statistical
Assoctation, 69(346):364-367, 1974.

Edgar Brunner and Ullrich Munzel. The nonparametric
behrens-fisher problem: Asymptotic theory and a
small-sample approximation. Biometrical Journ.,
42(1):17-25, 2000.

Norman Cliff. Dominance statistics: Ordinal analyses to
answer ordinal questions. Psychological Bulletin,
114(3):494, 1993.

G. Kendall G. Ochoa E. Ozcan E.K. Burke, M. Hyde and
J. R. Woodward. A Classification of Hyper-heuristic
Approaches, chapter Handbook of Meta-Heuristics, pages
449-468. Kluwer, 2010.

Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides. Design patterns: elements of reusable
object-oriented software. Pearson Education, 1994.
Greffenstette. Optimization of control parameters for
genetic algorithms. In IEEE Trans. Syst. Man Cybern.
SMC-16, volume 1, pages 122-128, Jan/Feb 1986.

Phil Souza Jerffeson Teixeira de Harman, Mark McMinn
and Shin Yoo. Search based software engineering:
Techniques, taxonomy, tutorial. In Bertrand Meyer and
Martin Nordio, editors, Empirical software engineering and
verification: LASER 2009-2010, pages 1-59. Springer,
2012. LNCS 7007.

W.M. Hathaway. Automated hypothesis testing, February 5
2013. US Patent 8,370,107.

John N Hooker. Needed: An empirical science of
algorithms. Operations Research, 42(2):201-212, 1994.
Sean Luke. Essentials of Metaheuristics. Lulu, second
edition, 2013. Available for free at
http://cs.gmu.edu/~sean/book/metaheuristics/.

Henry B. Mann and Donald R. Whitney. On a test of
whether one of two random variables is stochastically larger
than the other. The annals of mathematical statistics,
18(1):50-60, 1947.

J. Neyman and E. S. Pearson. On the Use and
Interpretation of Certain Test Criteria for Purposes of
Statistical Inference: Part I. Biometrika, 20A(1/2):175-240,
July 1928.

R Core Team. R: A Language and Environment for
Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria, 2013.

Martin B Shapiro, Samuel S Wilk and Hwei J Chen. A
comparative study of various tests for normality. Journ. of
the American Statistical Association, 63(324):1343-1372,
1968.

Samuel S Shapiro and RS Francia. An approximate analysis
of variance test for normality. Journ. of the American
Statistical Association, 67(337):215-216, 1972.

Tiantian Wang, Mark Harman, Yue Jia, and Jens Krinke.
Searching for better configurations: a rigorous approach to
clone evaluation. In Furopean Software Engineering Conf.
and the ACM SIGSOFT Symposium on the Foundations of
Software Engineering, ESEC/FSE’13, Saint Petersburg,
Russian Federation, August 2013. ACM.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move down by 23.83 points
 Normalise (advanced option): 'original'

 32

 D:20140514140943
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352
 Fixed
 Down
 23.8320
 0.0000

 Both
 10
 AllDoc
 10

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 3
 4
 3
 4

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move left by 7.20 points
 Normalise (advanced option): 'original'

 32

 D:20140514140943
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352

 Fixed
 Left
 7.2000
 0.0000

 Both
 10
 AllDoc
 10

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 3
 4
 3
 4

 1

 HistoryList_V1
 qi2base

