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1. PROBLEM STATEMENT
The ‘Representative’ pattern is applicable when it is desirable
to eliminate redundancy in the search process:
• It is often the case that some function f of interest in

optimization gives a many-to-one mapping, i.e. it in-
duces equivalence classes over the image of f . If f is a
fitness function, this can lead to plateaus in the fitness
landscape.

• It may be that the elimination of redundancy allows
search to be performed in a smaller (‘quotient’) space
that can be searched using methods (possibly even exact
techniques) not applicable to the original space.

• In the case of GP-trees, syntactically inequivalent but
semantically equivalent representations (e.g. x + x, 2 ∗x)
can lead to a lack of gradient in genotype-to-phenotype
mappings, which may make the space of programs harder
to search effectively.

2. THE SOLUTION
Transform representations into a normal or canonical form.

It is useful here to adopt the terminology of the computer
algebra community in distinguishing between these forms
[6]. Consider some representation R with equivalence rela-
tion ∼. Syntactic equivalence on R is denoted by ≡.
For some distinguished element 0R ∈ R, a normal form of R is
the output of a procedure N : R → R such that for all x ∈ R

N(x) ∼ x
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x ∼ 0R =⇒ N(x) ≡ N(0R)

A canonical form of R is the output of a procedure C : R → R
such that for all x, y ∈ R

C(x) ∼ x

x ∼ y =⇒ C(x) ≡ C(y)

Since canonical implies normal but not conversely, even if
both forms exist it is generally less computationally-expensive
to compute normal forms. For example, the normal form pro-
cedure for univariate polynomials is given by recursively dis-
tributing products over sums, collecting like terms and elimi-
nating terms with zero coefficients. In this case, the canonical
form requires the additional step of applying a fixed ordering
to terms (i.e. by degree-order). For boolean functions, both
DNF and CNF are ubiquitous normal forms. If we fix the
ordering of propositional letters and consider minimal equiv-
alents, one may obtain a canonical form. Moreover, boolean
polynomials (a.k.a. Zhegalkin polynomials [17]) may serve
as an alternative algebraic normal form (ANF). Note also that
functions on fixed-width integers (e.g. 32-bit) can be treated
as boolean functions. Table 1 gives references for representa-
tive forms for a variety of structures. The existence of normal
and canonical forms (jointly, ‘representative forms’ hereafter)
depends on the algebraic properties of the representation.
The representative forms of many structures of interest in
metaheuristics can found via the application of term rewrit-
ing [2], which proceeds via the iterated application of a Term
Rewriting System (TRS). For a set of elements of a structure
of type S (e.g. polynomials, operators etc), let the set of all
possible combinations of elements of S (e.g. expression trees,
operator sequences etc) be denoted by Σ∗. A rewriting system
(S,≺) is then a set of ordered pairs (l, r) ∈ Σ∗ × Σ∗ subject to
the condition l ≺ r, where ≺ is a reduction ordering that de-
termines which of two expressions is to be considered ‘more
simple’. The elements of S are called rewrite-rules. and the
idea is that we can replace occurrences of l in a r in the hope
of that we will eventually arrive at a maximally simplified
expression. Under certain conditions on ≺ [2], this hope is
justified: the iterated application of rewrite rules will always
yield a unique representative. Such a rewriting system is said
to be confluent.

3. THE CONSEQUENCES
• Transformations into representative form can be used

to reduce the size of the state-space graph. By convert-
ing solution states (or operator sequences, as per the
example below) into their representative forms, one is
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Algebraic Structure Representative Algorithm
Monoid or Group [8]
Boolean function [3]
Polynomial [6, 11]
Polynomials modulo an Ideal [4]
Rational function [6, 11]
Truncated power series [11]

Table 1: Computing representatives of various algebraic
structures

effectively working in a smaller (a.k.a. quotient) search
space.

• Elimination of redundancy is not necessarily advanta-
geous. Reduction to representative form by removing
non-functional elements from evolutionary computa-
tion (e.g. 0 ∗ s for any subexpression s) can reduce neu-
trality in genotype-to-phenotype mappings. The pres-
ence of such redundancy is argued by some to be de-
sirable [16], since it is argued that non-functional nodes
can nonetheless contribute to good quality solutions in
subsequent generations. However, there is no consen-
sus in this respect [10].

4. EXAMPLES
• In [14], a canonical form for rational functions overQ is

given in terms of their roots. In constrast to the corre-
sponding GP-tree, it is possible to make small changes
to this representation.

• Finite state automata are a ubiquitous representation
in evolutionary computation [9]. It is well-known that
there is a unique canonical form for Deterministic Finite-
state Automata (subject to the imposition of a speci-
fied ordering on transitions), and there are a number
of DFA-minimization algorithms (having O(n ∗ log(n))
average-case behaviour) for achieving this. An empir-
ical comparison of several of these algorithms is given
in [1].

• Binary decision diagrams provide a canonical form for
boolean functions [3]. In [15], Genetic Programming
is augmented via the use of binary-decision diagrams
to share isomorphic sub-graphs across the population,
thereby solving the 20-multiplexer problem.

• Techniques such as tabu search have traditionally ex-
ploited domain knowledge about operators (e.g. pro-
hibiting the inverse of an operation for some number of
iterations). Any set of operators can be considered as a
monoid under concatenation, and we can use the Knuth
Bendix Algorithm to convert a sequence of operators into
its length-minimal canonical form [13]. By this means,
as an offline activity it is possible to eliminate all oper-
ator sequences that represent cycles in the state-space
graph.

• The λ-calculus with β-reduction as a rewrite rule is con-
fluent, so normal forms are unique whenever they exist
[5].Normally, uniqueness is up to renaming of bound
variables only, but it can be extended to syntactic equal-
ity using the method of de Bruijn indices [7]. There
are multiple algorithms for finding normal forms, their
differences in reduction strategy dictated by the dis-
tinction between lazy and eager evaluation in functional

programming languages. A non-deterministic optimal
algorithm for finding normal forms is given in [12].
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