
The ‘Representative’ Metaheuristic Design Pattern

Jerry Swan
Computing Science and

Mathematics
University of Stirling

FK9 4LA Scotland UK
jsw@cs.stir.ac.uk

Zoltan A. Kocsis
Computing Science and

Mathematics
University of Stirling

FK9 4LA Scotland UK
zak@cs.stir.ac.uk

Alexei Lisitsa
Department of Computer

Science
University of Liverpool

L69 7ZF UK
A.Lisitsa@liverpool.ac.uk

Categories and Subject Descriptors
I.1 [SYMBOLIC AND ALGEBRAIC MANIPULATION]: Gen-
eral|Expressions and Their Representation|Simplification of
expressions.

Keywords
Term Rewriting; Design Patterns; Evolutionary Computing;
Metaheuristics.

1. PROBLEM STATEMENT
The ‘Representative’ pattern is applicable when it is desirable
to eliminate redundancy in the search process:
• It is often the case that some function f of interest in

optimization gives a many-to-one mapping, i.e. it in-
duces equivalence classes over the image of f . If f is a
fitness function, this can lead to plateaus in the fitness
landscape.

• It may be that the elimination of redundancy allows
search to be performed in a smaller (‘quotient’) space
that can be searched using methods (possibly even exact
techniques) not applicable to the original space.

• In the case of GP-trees, syntactically inequivalent but
semantically equivalent representations (e.g. x + x, 2 ∗x)
can lead to a lack of gradient in genotype-to-phenotype
mappings, which may make the space of programs harder
to search effectively.

2. THE SOLUTION
Transform representations into a normal or canonical form.

It is useful here to adopt the terminology of the computer
algebra community in distinguishing between these forms
[6]. Consider some representation R with equivalence rela-
tion ∼. Syntactic equivalence on R is denoted by ≡.
For some distinguished element 0R ∈ R, a normal form of R is
the output of a procedure N : R → R such that for all x ∈ R

N(x) ∼ x
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO’14, July 12–16, 2014, Vancouver, BC, Canada.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2881-4/14/07 ...$15.00.
http://dx.doi.org/10.1145/2598394.2609842.

x ∼ 0R =⇒ N(x) ≡ N(0R)

A canonical form of R is the output of a procedure C : R → R
such that for all x, y ∈ R

C(x) ∼ x

x ∼ y =⇒ C(x) ≡ C(y)

Since canonical implies normal but not conversely, even if
both forms exist it is generally less computationally-expensive
to compute normal forms. For example, the normal form pro-
cedure for univariate polynomials is given by recursively dis-
tributing products over sums, collecting like terms and elimi-
nating terms with zero coefficients. In this case, the canonical
form requires the additional step of applying a fixed ordering
to terms (i.e. by degree-order). For boolean functions, both
DNF and CNF are ubiquitous normal forms. If we fix the
ordering of propositional letters and consider minimal equiv-
alents, one may obtain a canonical form. Moreover, boolean
polynomials (a.k.a. Zhegalkin polynomials [17]) may serve
as an alternative algebraic normal form (ANF). Note also that
functions on fixed-width integers (e.g. 32-bit) can be treated
as boolean functions. Table 1 gives references for representa-
tive forms for a variety of structures. The existence of normal
and canonical forms (jointly, ‘representative forms’ hereafter)
depends on the algebraic properties of the representation.
The representative forms of many structures of interest in
metaheuristics can found via the application of term rewrit-
ing [2], which proceeds via the iterated application of a Term
Rewriting System (TRS). For a set of elements of a structure
of type S (e.g. polynomials, operators etc), let the set of all
possible combinations of elements of S (e.g. expression trees,
operator sequences etc) be denoted by Σ∗. A rewriting system
(S,≺) is then a set of ordered pairs (l, r) ∈ Σ∗ × Σ∗ subject to
the condition l ≺ r, where ≺ is a reduction ordering that de-
termines which of two expressions is to be considered ‘more
simple’. The elements of S are called rewrite-rules. and the
idea is that we can replace occurrences of l in a r in the hope
of that we will eventually arrive at a maximally simplified
expression. Under certain conditions on ≺ [2], this hope is
justified: the iterated application of rewrite rules will always
yield a unique representative. Such a rewriting system is said
to be confluent.

3. THE CONSEQUENCES
• Transformations into representative form can be used

to reduce the size of the state-space graph. By convert-
ing solution states (or operator sequences, as per the
example below) into their representative forms, one is

1435



Algebraic Structure Representative Algorithm
Monoid or Group [8]
Boolean function [3]
Polynomial [6, 11]
Polynomials modulo an Ideal [4]
Rational function [6, 11]
Truncated power series [11]

Table 1: Computing representatives of various algebraic
structures

effectively working in a smaller (a.k.a. quotient) search
space.

• Elimination of redundancy is not necessarily advanta-
geous. Reduction to representative form by removing
non-functional elements from evolutionary computa-
tion (e.g. 0 ∗ s for any subexpression s) can reduce neu-
trality in genotype-to-phenotype mappings. The pres-
ence of such redundancy is argued by some to be de-
sirable [16], since it is argued that non-functional nodes
can nonetheless contribute to good quality solutions in
subsequent generations. However, there is no consen-
sus in this respect [10].

4. EXAMPLES
• In [14], a canonical form for rational functions overQ is

given in terms of their roots. In constrast to the corre-
sponding GP-tree, it is possible to make small changes
to this representation.

• Finite state automata are a ubiquitous representation
in evolutionary computation [9]. It is well-known that
there is a unique canonical form for Deterministic Finite-
state Automata (subject to the imposition of a speci-
fied ordering on transitions), and there are a number
of DFA-minimization algorithms (having O(n ∗ log(n))
average-case behaviour) for achieving this. An empir-
ical comparison of several of these algorithms is given
in [1].

• Binary decision diagrams provide a canonical form for
boolean functions [3]. In [15], Genetic Programming
is augmented via the use of binary-decision diagrams
to share isomorphic sub-graphs across the population,
thereby solving the 20-multiplexer problem.

• Techniques such as tabu search have traditionally ex-
ploited domain knowledge about operators (e.g. pro-
hibiting the inverse of an operation for some number of
iterations). Any set of operators can be considered as a
monoid under concatenation, and we can use the Knuth
Bendix Algorithm to convert a sequence of operators into
its length-minimal canonical form [13]. By this means,
as an offline activity it is possible to eliminate all oper-
ator sequences that represent cycles in the state-space
graph.

• The λ-calculus with β-reduction as a rewrite rule is con-
fluent, so normal forms are unique whenever they exist
[5].Normally, uniqueness is up to renaming of bound
variables only, but it can be extended to syntactic equal-
ity using the method of de Bruijn indices [7]. There
are multiple algorithms for finding normal forms, their
differences in reduction strategy dictated by the dis-
tinction between lazy and eager evaluation in functional

programming languages. A non-deterministic optimal
algorithm for finding normal forms is given in [12].

5. REFERENCES
[1] Marco Almeida, Nelma Moreira, and Rogério Reis. On

the performance of automata minimization algorithms.
Tech report, Universidade do Porto, 2007.

[2] Franz Baader and Tobias Nipkow. Term Rewriting and
All That. Cambridge University Press, New York, 1998.

[3] Randal E. Bryant. Graph-based algorithms for boolean
function manipulation. IEEE Trans. Comput.,
35(8):677–691, August 1986.

[4] Bruno Buchberger. An algorithm for finding the basis
elements of the residue class ring of a zero dimensional
polynomial ideal. J. Symb. Comput., 41(3-4):475–511,
2006.

[5] Alonzo Church and J. B. Rosser. Some properties of
conversion. Transactions of the American Mathematical
Society, 39(3):pp. 472–482, 1936.

[6] James Harold Davenport, Y Siret, E. Tournier, and
A. Davenport. Computer algebra : systems and
algorithms for algebraic computation, 1993.

[7] N.G de Bruijn. Lambda calculus notation with
nameless dummies. Indagationes Mathematicae
(Proceedings), 75(5):381 – 392, 1972.

[8] D. B. A. Epstein, D. F. Holt, and S. E. Rees. The use of
Knuth-Bendix methods to solve the word problem in
automatic groups. J. Symb. Comput., 12(4-5):397–414,
October 1991.

[9] L.J. Fogel, A.J. Owens, and M.J. Walsh. Artificial
intelligence through simulated evolution. Wiley,
Chichester, WS, UK, 1966.

[10] Edgar Galván-López, Riccardo Poli, Ahmed Kattan,
Michael O’Neill, and Anthony Brabazon. Neutrality in
evolutionary algorithms... what do we know? Evolving
Systems, 2(3):145–163, 2011.

[11] Keith O. Geddes, Stephen R. Czapor, and George
Labahn. Algorithms for computer algebra. Kluwer, 1992.

[12] John Lamping. An algorithm for optimal lambda
calculus reduction. pages 16–30. ACM Press, 1990.

[13] J. Swan, M. Edjvet, and E. Özcan. Augmenting
metaheuristics with rewriting systems. Technical
Report CSM-197, Computing Science and Mathematics,
University of Stirling, Stirling FK9 4LA, Scotland,
January 2014.

[14] John R. Woodward and Ruibin Bai. Canonical
representation genetic programming. In GEC Summit,
pages 585–592, 2009.

[15] Masayuki Yanagiya. Efficient genetic programming
based on binary decision diagrams. In 1995 IEEE
Conference on Evolutionary Computation, volume 1, pages
234–239, Perth, Australia, 29 November - 1 December
1995. IEEE Press.

[16] Tina Yu and Julian Miller. Finding needles in haystacks
is not hard with neutrality. In James A Foster et al,
editors, Genetic Programming, volume 2278 of Lecture
Notes in Computer Science, pages 13–25. Springer, 2002.

[17] Ivan Ivanovich Zhegalkin. On the technique of
calculating propositions in symbolic logic.
Matematicheskii Sbornik, 43:9–28, 1927.

1436



 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
     Shift: move left by 7.20 points
     Normalise (advanced option): 'original'
      

        
     32
            
       D:20140524092651
       792.0000
       US Letter
       Blank
       612.0000
          

     Tall
     1
     0
     No
     795
     352
     Fixed
     Left
     7.2000
     0.0000
            
                
         Both
         10
         AllDoc
         10
              

       CurrentAVDoc
          

     Uniform
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2 2.0
     Quite Imposing Plus 2
     1
      

        
     1
     2
     1
     2
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
     Shift: move down by 23.83 points
     Normalise (advanced option): 'original'
      

        
     32
            
       D:20140524092651
       792.0000
       US Letter
       Blank
       612.0000
          

     Tall
     1
     0
     No
     795
     352
    
     Fixed
     Down
     23.8320
     0.0000
            
                
         Both
         10
         AllDoc
         10
              

       CurrentAVDoc
          

     Uniform
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2 2.0
     Quite Imposing Plus 2
     1
      

        
     1
     2
     1
     2
      

   1
  

 HistoryList_V1
 qi2base





