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ABSTRACT

This paper expands on work previously conducted on the
XCS system using code fragments, which are GP-like trees
that encapsulate building blocks of knowledge. The usage of
code fragments in the XCS system enabled the solution of
previously intractable, complex, boolean problems, e.g. the
135 bit multiplexer domain. However, it was not previously
possible to replace functionality at nodes with learned re-
lationships, which restricted scaling to larger problems and
related domains. The aim of this paper is to reuse learned
rule sets as functions. The functions are to be stored along
with the code fragments produced as a solution for a prob-
lem. The results show for the first time that these learned
functions can be reused in the inner nodes of the code frag-
ment trees. The results are encouraging as there was no sta-
tistically significant difference in terms of classification. For
the simpler problems the new system XCSCF 2, required
much less instances than the XCSCFC to solve the problems.
However, for the more complex problems, the XCSCF 2 re-
quired more instances than XCSCFC; but the additional
time was not prohibitive for the continued development of
this approach. The main contribution of this investigation
is that functions can be learned and later reused in the in-
ner nodes of a code fragment tree. This is anticipated to
lead to a reduced search space and increased performance
both in terms of instances needed to solve a problem and
classification accuracy.

Categories and Subject Descriptors

F.1.1 [Models of Computation]: Genetics-Based Machine
Learning, Learning Classifier Systems

General Terms
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1. INTRODUCTION
Learning may be considered a human ability that involves

complex processes working together to build a repository
of knowledge for later retrieval. This type of processing is
very valuable but is still out of reach for today’s computer
systems [1].

The hypothesis is that there are a finite number of com-
mon patterns in the world [20]. Furthermore, natural, hu-
man and artificial systems will tend to fall into these afore-
mentioned patterns. If a pattern can be recognized in one
system along with the ability to solve problems related to
that system or that domain, one should be able to reuse
those techniques in a related domain. This is similar to how
human beings learn, e.g. they tend to learn by analogy. If
this approach were to be harnessed by evolutionary compu-
tation techniques, it could prove useful in solving various
problems.

Learning classifier systems are one method for investigat-
ing this goal and many different types have been developed
in nearly 40 years of research [14]. One such type is XCS,
where the fitness is based on the accuracy of a classifier’s
payoff prediction instead of the prediction itself [4], [22], as
opposed to ZCS which is a strength based system [21], [22],
[23]. XCS is a powerful tool; nevertheless, some problems
are difficult to complete because of time constraints.

With the advent of Code Fragments as a methodology
within XCS, it was possible to solve until then, intractable
problems in scalable boolean domains. A code fragment
(CF) is a tree expression, similar to a tree generated in Ge-
netic Programming [6]. Code Fragments create small blocks
of code in binary trees up to a depth of two. This depth
was chosen, based on empirical evidence, to limit bloating
and the introduction of large numbers of introns. Analysis
suggests that there is an implicit pressure for parsimony [10].

Reusing code fragments in terminals of trees results in
large trees for large scale problems. Therefore, a computa-
tional limit in scalability will eventually be reached [8]. This
is because since multiple code fragments can be used at the
terminals, as the problem increases in size, then any depth
of tree could be created. The concept is to learn function-
ality to replace nodes (sets of branches) within the tree, in
order to make searching the tree tractable.
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Previously, only terminals could be replaced by the con-
structed code fragments, which was a design choice, as the
building blocks of knowledge were at the terminal level, e.g.
the discovery of useful combinations of features and con-
stants. This is analogous to feature construction using GP
trees. The reason that code fragments are used only at the
terminals in XCSCFC is because CFs can accept any number
of arbitrary inputs where a function takes in a set number
of inputs. This means that if one were to swap a function
with a code fragment this might involve dissimilar objects.

A genetic programming approach may have many pre-
programmed functions, but these are unrelated to each other
and to useful building blocks of knowledge. InXCSCF 2 it is
anticipated that functions and building blocks will be linked
in order to guide genetic operations for improved search.

Function reuse at the inner nodes is important because by
reusing the learned rule sets as Functions (termed Function-
RuleSets) and their associated code fragments, it is possible
to reduce the search space of the code fragment trees, or
likely solutions. This will aid in the performance of the
system as well as provide valuable and reusable building
blocks of learned knowledge. The analogy is as follows:

′

If < Conditions > Then < Actions >
′ (1)

′

If < Input > Then < Output >
′ (2)

Function(Arguments < Input > Return < Output >)
(3)

Equation (1) is the standard way that a classifier would
process its conditions to achieve an action, which is analo-
gous to (2). Equation (3) is the analogy with a function.
These functions will take a number of arguments as their
input and will return an output.

The main aim of this paper is to determine whether it is
feasible to reuse rule sets (Function-RuleSets) as functions
within a code fragment based classifier system.

One way to look at this is that humans learn by accu-
mulating knowledge learned from solving problems in one
domain and then applying the new knowledge repository
and functional skills to a new domain. For example, a child
learns to thread a shoelace in a 3-pair hole shoe and then
uses the knowledge to thread the laces of a 5-pair hole shoe.
Now the child learns the function to tie a bow in a shoe
lace and can then transfer that learning to tying a bow in
a ribbon of a present [admittedly both examples are hugely
more complex than the problems demonstrating the princi-
ples presented here].

The research objectives are as follows:

∗ Develop new methods for function reuse.

∗ Determine if learned rule sets can be used as functions
in CFs.

∗ Compare performance overhead or degradation on bench-
mark problems with
equivalent techniques.

The benefit of this research is that it is a new approach
to learning where knowledge from one domain may be used
to solve problems in a different but related domain. Also,
this approach lends itself to expanding current scalability
and helping to solve up-until-now intractable problems.

2. BACKGROUND
A learning classifier system (LCS) is an evolutionary adap-

tive system that learns a problem using a set of mutually
cooperative rules. An LCS learns by interacting with the
environment, it typically starts by covering the individual
data patterns from the environment input and eventually
generalizes the population by removing irrelevant informa-
tion [5].

LCSs are a good method for solving certain problems be-
cause they produce a complete state-action map. Since the
solution is a population of classifiers, each classifier repre-
sents a small portion of the overall solution [16]. The action
of each classifier represents the decision taken by the system
based on the environmental stimulus. Accuracy based LCS,
e.g. XCS [16], [19], attempt to produce the final classifier
population as a collection of general classifiers with optimal
accuracy and fitness [3]. The concept is that the suboptimal
individuals would have been eliminated by preferential selec-
tion of optimal individuals through the process of evolution.
This is where the Genetic Algorithm plays a crucial part in
the classifier; by preferentially selecting fitter individuals.

Although XCS brought with it many benefits, it still needed
some improvements in order to have it solve more complex
problems, e.g. the 135 bit multiplexer. One of the drawbacks
is that although it can scale in certain domains, it still has
to relearn from the start each time. Any increase in the di-
mensionality of the problem increases the search space, the
hardware demands, and training time [5]. To address these
pressures, several different flavors of code fragments have
been used.

By using CFs, the system increased in scalability and was
able to transfer knowledge learned in a simpler problem into
a more complex one of the same domain. For example, in
the 135 bit multiplexer problem, XCSCFC takes only 2 x
106 instances to successfully solve the problem compared to
the search space of 4 x 1040. The standard XCS was not
able to solve the same problem [11].

After CFs were utilized in the condition of an LCS, XC-
SCFC, they were tested in the action, XCSCFA [11]. This
method produced optimal populations in discrete domain
problems as well as in continuous domain problems [11].
This however lacked scaling to large problems, even if they
had repeated patterns in the data. XCSSMA [8] was intro-
duced with the ability to generate state machines to encap-
sulate repeating patterns.

The first investigation involving code fragments was the
introduction of GP-tree like expressions to represent condi-
tion bits in a classifier rule; this was named code-fragment
conditions CFC [11]. In this approach the condition bit
in a classifier was directly replaced with a code fragment.
Initially, there was a separate population of code fragments
used. Currently the code fragments are housed simply within
the rules [10], [It is now the aim to once again make use of
a separate code fragment population]. This means that the
number of code fragments to be reused from a particular
level was governed by the unique code fragments in good
classifiers.

According to [11], this investigation showed that the mul-
tiple genotypes to a single phenotype issue in feature-rich
encoding disabled the subsumption deletion function. Fur-
ther, the additional methods and increased search space also
led to much longer training times. However, this was com-
pensated by the code fragments containing useful knowledge;

970



such as the importance of the address bits in the multiplexer
problems.

The static binary action was replaced by a code fragment
while using the ternary alphabet in the condition of the clas-
sifier rules (XCSCFA) [5]. Each code fragment was a binary
tree of depth up to d. The value of d was dependent on the
length of the condition length [5]. The action value of the
classifier was determined by evaluating the action code tree
[9]. In order to achieve this, it was necessary to replace the
terminal symbols with corresponding binary bits from the
associated condition in the classifier rule [5], [7].

Subsumption deletion was effectively disabled leading to
increased methods and search space [11]. Whereas in stan-
dard XCS with binary action, subsumption deletion is fully
enabled so the numerosity of the general classifier in a niche
gets higher values as it subsumes the less general classifiers
in the niche; in code fragment based XCS, the multiple geno-
types to a single phenotype issue disables the subsumption
deletion function, so fitness in a niche is distributed among
multiple equally general classifiers, all having a relatively
small fitness value as compared to the binary action-based
XCS [5]. However, the lack of subsumption deletion was
compensated by the autonomous separation of optimal and
sub-optimal classifiers in the final population. This eventu-
ally resulted in the optimum rule set of the maximally gen-
eral, compact and accurate classifiers. XCSCFA is a useful
method because it produces a compact solution that can be
easily converted to the optimum population [10].

The result described above is an obscure but interesting
phenomenon of XCSCFA. It has to do with the fact that
there are “don’t cares” in the action; a highly unusual prac-
tice for a classifier system. The input message has to be
converted to an output. This would be achieved by taking
the environmental message and putting it into the action
part. However, if one were to randomly place a ‘0’ or ‘1’, as
part of a “don’t care”, an interesting effect occurs. Instead
of having a classifier population with a group of optimal
rules, another group of sub-optimal rules, and a spread of
rules between them, in terms of fitness and numerosity; the
result is a complete separation between the classifiers that
are optimally fit and the newly created/sub-optimal ones.
This means that it is possible to separate optimal from sub-
optimal classifiers without condensation.

Presently, any new code fragments that are learned while
solving a problem may be reused by a tree in any subsequent
problems, however, the functions are predefined and once
the current run ends, they will be “forgotten” by the system.

Some notable work that is related to the current research
are Bull’s and Lanzi’s research using Genetic Programming
within an LCS. The former studied methods for using a co-
evolutionary approach for the use of automatically defined
functions (ADFs) in genetic programming for classification
tasks. This method involved using the main program as a
binary feature selector rather than a full S-expression tree
[2]. The latter introduced an extension to XCS called XCSL.
In this system the usual bitstring conditions are replaced
by general s-expressions. XCSL was used to learn boolean
functions of increasing complexity [13],[15].

Both authors were utilizing GP as a type of filter for an
additional process, e.g. classification. Their aim was to re-
duce the number of features and the number of conditions
that go into a system and then the result would be fed to
another system, such as a K Nearest Neighbor classifier.

Lanzi’s work centered on generating whole GP trees, where
the work here is concerned with building blocks in the form
of small GP trees. Also, Lanzi’s approach involved replac-
ing the entire condition part while this work is concerned
with replacing individual bits of the condition with small
GP trees. Finally, this work is seeking to reuse the code
fragments where Lanzi was not.

3. THE METHOD
The first step is to determine the axioms and atoms that

the system can assume, e.g. the hard-coded functions and
terminal sets. The more of these that are included, the more
domain bias is also included without the ability to learn the
linkage between functions and discovered building blocks for
boolean domains. For example, for boolean domains, NAND
gates are building blocks with which it is possible to build
other gates such as the OR, AND or XOR [18], [17].

Figure 1 provides a step by step illustration of our method-
ology. The top parts of the figure with the letters “FS” rep-
resent the current function set. The X and Y axes with the
graphs represent the function and its expected performance
during the learning phase. The X axis represents the num-
ber of instances required for the process to stabilize and fully
learn the problem, while the Y axis stands for the percent-
age of the problem learned. The circles with the rules at the
bottom of figure 1 represent the rule sets that will be learned
for each of the functions. These same rule sets will be used
at the inner nodes of the code fragment trees in future runs.

The system is to be initially trained with the NAND func-
tion, which is to produce the relevant rule set and the as-
sociated code fragments. Once this phase is successful, the
system will have accumulated a population of rules that will
solve the NAND function. The next step will be to have the
system learn the OR function by using the rules belonging
to the NAND function. At the end of this new run there will
be the additional OR function as a rules set and also a set
of code fragments. The process would then proceed to learn
the AND, XOR and NOR functions in a similar manner.
By the time the system attempts the multiplexer problems
it should have a readily available stockpile of functions along
with their rules sets and Code Fragments.

As can be surmised from figure 1, the resulting Function-
RuleSets would play the role of functions in the inner nodes
in the code fragment trees of any subsequent runs while the
code fragments for the same function can get reused at the
leaf nodes of the CF trees. It is theorized that by building
upon a growing set of functions, with their respective rule
sets and code fragment sets, it is possible to transfer this
knowledge to a more difficult problem in the same domain
and possibly into a related domain. First, it is important to
mention that after the system is trained by each function, it
becomes part of the function set. In other words, a nominal
symbol is assigned by the system to represent the newly
acquired function, so that it will be available in future runs
as a component for the inner nodes.

The proposed XCS with code fragment functions, XCSCF 2,
is based on the XCSCFC which utilizes code fragments in the
condition. As can be seen in figure 2, code fragments are rep-
resented by binary trees of a determined depth. This depth
is there to prevent an uncontrolled growth of trees. The in-
ner nodes made use of predefined functions, and these were
chosen randomly when the code fragment was first created.
The leaf nodes contained either the address of a feature from
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Figure 1: Code fragment and Function-RuleSet reuse - step by step.
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Figure 2: Code fragments - XCSCFC - Initial starting sys-
tem.

the environmental input (message state) or a previously dis-
covered code fragment. This was one of the limitations of
the XCSCFC system that this work attempts to address.
Although XCSCFC was able to solve previously intractable
problems that the XCS was not able to solve, it suffered
from the lack of functionality reuse at the inner nodes, as
well as a large search space; in terms of the code fragments
generated.

Figure 3 shows the process flow of the new method. When
a problem is solved, the code fragments get stored by the sys-
tem for later usage. Now the rule-sets learned by solving the
problem also get saved. These rules are composed of 1’s and
0’s which are the result of evaluating a particular CF tree.
As can be seen in figure 3, the root node of the code fragment
tree is composed of a function with the rule-set containing
four members; in this case the rule-set maps to the OR logic
operation. In a subsequent run, while attempting to solve an
even more complex problem, the learned Function-RuleSet
could be utilized to construct new CFs. Therefore, when it
is necessary to evaluate each of the CFs, this process will
rely on the retrieved rules for each function.

Learned 

Function-
RuleSet

Rule 
Set

1 0 : 1
0 1 :1

0 0 : 0

1 1 : 1

Learned function 
code fragment is 

reused in new 

problem

Figure 3: Code fragment and rule set reuse - goal of the
proposed system.

The system uses the reverse polish notation method to
traverse the tree, evaluating each function using the values
of its children nodes. This continues recursively until the
root node is reached, which produces the value to be the
output of the tree.

The first set of experiments is to build the other boolean
functions from NAND, which the system used as the very
first function to learn. In essence, it is the bootstrap that
gets the entire process on its way. As the functions were
learned they were used to learn the next function. For ex-
ample, after learning the NAND, its code fragments and its
rule-set were used to learn the OR function and so forth. The
domain used in the final experiments was the multiplexer
problems. The reason for this is because these types of prob-
lems can be solved via boolean functions such as AND, OR,
etc [12].

Note: Apart from the axiomatic functions, only Function-
RuleSets are available for generating CFs. Thus, although
predefined OR functionality is known for training the rule-
sets, it is not used. Subsequently this enables previous func-
tions and CFs to be linked to generated Function-RuleSets.
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4. RESULTS

4.1 Experimental Setup
The experiments were run 30 times and compared with

a XCSCFC. The settings for the single step experiments
were as follows: Payoff 1,000; the learning rate β = 0.2; the
Probability of applying crossover to an offspring χ = 0.8;
the probability of using a don’t care symbol when covering
Pdon′tCare = 0.33; the experience required for a classifier to
be a subsumer Θsub = 20; the initial fitness value when gen-
erating a new classifier FI = 0.01; the fraction of classifiers
participating in a tournament from an action set 0.4.

4.2 Boolean Problems
The first problem presented to the system was the NAND

problem. This process continued next to learning the OR,
AND, XOR and NOR functions in a serial manner. By this
time the system was able to draw upon a small set of learned
functions. The subsequent runs were able to solve the 6, 11,
20, 37, 70, and 135 bit multiplexer problems by using this
same methodology.

The population sizes used for these functions as well as
the number of training instances used are listed in table 1:

Table 1: Number of classifiers and training instances

Boolean Classifiers Instances

OR 2,000 600,000
AND 2,000 600,000
XOR 2,000 600,000
NOR 3,000 700,000

It is notable that the population size required to learn
the boolean logic problems was consistently higher than the
simplest of the multiplexer problems attempted, see table 2.
The number of classifiers required remain constant during
the OR, AND, and XOR functions; it increased for the NOR
function for both, the classifiers and instances needed to
learn the function. The boolean functions required a higher
number of training instances than the simplest boolean prob-
lem. This trend continued until the NOR function required
slightly more than half the number of instances as the 37 bit
multiplexer using XCSCF 2. Table 1 shows the set-up val-
ues required during the boolean function experiments, while
figure 4 shows the results for said experiments. It is evi-
dent that the OR function required more instances to solve
the problem than the other functions with the exception
of NOR. This was expected since the system had only the
NAND function in its function set at the time. The rest
of the functions all required less instances with the XOR
function requiring the least number of instances at approx-
imately 21,000.

4.3 Multiplexer Problems
Table 2 depicts the number of classifiers used in the pop-

ulations as well as the different training sizes for each of
the multiplexer problems solved. Figure 5 shows the results
for the 6-20 bit multiplexer experiments. According to the
graphs, the XCSCF 2 system was able to solve the 6 bit
multiplexer problem with approximately 15,000 instances
while the regular XCSCFC system achieved this with ap-
proximately 80,000 instances. One possible explanation for
this performance difference is the fact that the former system

Table 2: Number of classifiers and training instances

Multiplexer Classifiers Instances

6 Bit 500 500,000
11 Bit 1,000 500,000
20 Bit 2,000 500,000
37 Bit 5,000 1,000,000
70 Bit 10,000 2,000,000
135 Bit 50,000 5,000,000
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Figure 5: Results of the multiplexer problems using XCS
with code fragments and XCS with function reuse.

had a tool-set of learned functions by this time; the NAND,
OR, AND, XOR, and the NOR function, while the latter
only had hard coded boolean functions. The performances
for the 11 bit multiplexer were similar as well. This was due
to the fact that XCSCF 2 had its set of learned rule sets
as well as the newly learned Code Fragments. The function
reuse helped the XCSCF 2 system to reach maximum per-
formance with approximately 17,000 instances while it took
the XCSCFC approximately 65,000 instances. A similar out-
come was observed with the 20 bit multiplexer problem.

The function reuse helped the system to learn the prob-
lem with less instances. However in this case the difference
in number of instances needed to solve the problem was less
than in the previous problems. It is interesting to note that
with regards to time, the XCSCFC system performed bet-
ter. For the 6 bit multiplexer XCSCF 2 took 10.1 seconds
versus 3.33 seconds for XCSCFC. For the 11 bit problem the
performances were 45.9 and 13.4 seconds. Likewise, for the
20 bit problem the performances were 220 and 63.6 seconds
respectively.

The 37 bit multiplexer problem is depicted in figure 6. In
this experiment it was the XCSCFC system which learned
the problem with less instances, approximately 110,000 as
compared with the XCSCF 2 system which needed about
170,000 instances to learn the task. In terms of time, the
trend continued unabated; XCSCF 2 took an average of
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Figure 4: A sequence of boolean logic problems
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Figure 6: Results of the 37-bit multiplexer problem using
XCS with code fragments and XCS with function reuse.

3136 seconds compared with the XCSCFC system which
only took 681 seconds.

Figure 7 shows the results for the 70 bit multiplexer. The
XCSCF 2 system produced a curve with values that varied
much more than the ones for the regular XCSCFC system.
The range of the values was ten percent of the performance
while the values for the regular code fragment curve had
less variation. In this experiment the fact that the regular
XCSCFC system outperformed the XCSCF 2 in terms of re-
quired number of instances was not a surprise as this trend
was already evident during the 37 bit experiment. Where
the XCSCFC system stabilized at approximately 450,000 in-
stances, the XCSCF 2 system achieved this with approxi-
mately 700,000 instances. In terms of time XCSCFC again
performed better than XCSCF 2. While XCSCF 2 took
approximately 27,600 seconds, XCSCFC took only approx-
imately 7,800 seconds. Function reuse is likely to be slower
as rule-sets need to be matched and the relevant output ef-
fected.
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Figure 7: Results of the 70-bit multiplexer problem using
XCS with code fragments and XCS with function reuse.

Figure 8 shows the results of the 135 bit multiplexer exper-
iments. In this case the XCSCFC system also outperformed
the system utilizing function reuse with respect to instances
needed. The proportion of execution time remained approx-
imately the same as for the 70 bit multiplexer. The func-
tion reuse system learned the problem with about 1,700,000
instances while the other system achieved this with about
1,300,000 instances. This is most likely because at this time
both systems reused the entire population of code fragments
and these were not limited to a particular function. In addi-
tion to this, XCSCF 2 was limited to only the five boolean
functions learned up to that point in time, XCSCFC also re-
lied on the same number of boolean functions with the only
difference of the NOT function. It is theorized that the XOR
function was instrumental in aiding XCSCF 2 to learn the
early multiplexer problems more efficiently than XCSCFC,
this advantage may have been diluted by the usage of the
NOT function in the XCSCFC system.

A Wilcoxon signed rank test comparing XCSCFC with
XCSCF 2 was performed. Both systems converged to the

974



0 1000 2000 3000 4000 5000

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

135−Bit Multiplexer [27 Runs]

Instances (x 1000)

P
e

rf
o

rm
a

n
c
e

0 1000 2000 3000 4000 5000

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

[1] − 135−bits using XCSCF
2

[2] − 135−bits using XCSCFC  

[1]

[2]

Figure 8: Results of the 135-bit multiplexer problem using
XCS with code fragments and XCS with function reuse.

5 million mark and as expected, no difference was evident
between both techniques.

5. DISCUSSION
Some of the results were as anticipated. For example,

it was expected that function reuse would provide an im-
provement over the standard code fragment system because
of the reduced search space; however, the magnitude of
performance difference was interesting. For the 6 bit, 11
bit, and 20 bit multiplexer problems the XCSCF 2 system
consistently solved the problems by utilizing much less in-
stances than the XCSCFC system. One could also note, that
XCSCF 2 was slower and as the complexity of the problems
increased, so did the proportion of time required by the sys-
tem.

On the contrary, when it came to the 37 bit multiplexer,
the XCSCF 2 system took more instances and more time
to solve the problem as compared with the XCSCFC sys-
tem. It appears that by this time the initial efficiency on
the part of the function reuse system was no longer sufficient
to provide efficient performance against the competitor sys-
tem. It is apparent that the initial success on the part of
the function reuse system was most likely due to the XOR
function. The standard XCSCFC system utilized the AND,
OR, NOT, NAND, NOR hard coded in the modules while
the code reuse system was trained with NAND, OR, AND,
NOR, XOR and the resulting rule populations were incorpo-
rated into the newly learned functions. Functions that were
different at this stage were the NOT and XOR and this
might be the reason for the differing performance between
the two systems. It is very possible that the XOR function
leads to shallower code fragment trees hence a smaller search
space.

In GP and XCSCFC a human is required to predefine
the function set, whereas in XCSCF 2 it is anticipated to
be able to efficiently select the most appropriate functions

from its past experiences. This is important as a human
may not know which functions are most suited to a given
problem domain, e.g. whether the XOR function is more
suitable than the NOR function for the multiplexer domain.
Including all possible functions is currently intractable to
search as there is no guidance on which functions are re-
lated to each other to aid genetic search or their suitability
to a given domain. It is envisaged that XCSCF 2 will be
able to perform a guided search for the most suited learned
functions as it will know the ‘family tree’ for a function and
which functions were utilised in certain problems. Although
a human must decide upon these experiences it is antici-
pated that through linking rule-sets, future searches will be
more efficient/effective.

For the more complex problems such as the 37, 70 and 135
bit multiplexers, there was also knowledge transfer taking
place. As in the less complex cases, the code fragments
learned from the previous levels were used in certain cases
to create new trees. For example the following is a code
fragment that was part of the solution for one of the 70 bit
problems with identification (id) 73:

D2 D2 M D0 D1 N c o−−−−−−−−− > 73

During the execution of the 135 bit problem this same
code fragment was reassigned the id number 138:

D2 D2 M D0 D1 N c o−−−−−−−−− > 138

During the execution of the same 135 bit problem, Code
Fragment 138 was reused in Code Fragment with id 190.
D1 CF 155 cD5 CF 138 m M o−−−−−−−−− > 190

The term “CF 138” signals to the system that it is using
Code Fragment 138 in that specific node of the tree. Taking
a closer look at the first line once again, the term D2 stands
for the terminal value from the environment message with
index 02. Similarly D0 and D1 stand for the message bits 00
and 01. The letters M, N and c stand for some previously
learned function. The letter o stands for “No Operation”,
which in this case signifies the end of the Code Fragment.
The right facing arrow is inconsequential and only points to
the CF id, which in this case is 73.

The 70 bit multiplexer experiments showed that the trends
in performance continued as they had been previously es-
tablished in the 37 bit experiments, in addition to this, both
systems demonstrated an increase in “don’t care” fragments
being used, however the XCSCF 2 system did produce more
of these fragments as part of the final rules. It is believed
that this was due to the fact that XCSCF 2 was utilizing
NOR learned function where XCSCFC was using the NOT
hard coded function. This led to more general Code Frag-
ments as part of the final rules.

During the 135 bit multiplexer experiments there was also
a higher performance on the part of the XCSCFC system;
however, the actual ratio of performance between both sys-
tems actually remained quite similar. For the 70 bit multi-
plexer the ratio of instances needed to learn the problem for
the XCSCFC to the XCSCF 2 system was approximately
0.65 while for the 135 bit multiplexer it was about 0.69.

Ultimately this approach seeks to accumulate a network
of learned functions in different groupings. For example, it is
envisioned that there will be a group of logic functions such
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as NAND, OR, etc. There will also be a group of functions
that would have proven useful for solving the multiplexer
problems. It is believed that further learning of new func-
tionality is possible and one potential candidate is a function
that translates a binary input into a decimal number.

6. CONCLUSIONS
This paper showed that by using XCSCF 2, it is possible

to learn building blocks of functionality from basic boolean
rules. These Function-RuleSets were stored and used to
solve the subsequent problems. In addition, it was shown
that knowledge learned in the boolean logic domain could
be used to solve problems in a different domain such as the
multiplexer. This in fact is the crux of the argument; that
it is possible to transfer knowledge learned in one domain to
solve problems in a different, but related domain.

The XCSCF 2 system was able to achieve this for the 6-20
bit multiplexer problems with better than expected results,
in terms of instances needed to learn the problems. However,
it was slower in larger scale problems, but not prohibitively
so.

By using the learned functions it was possible for the sys-
tem to evaluate the code fragment trees at the appropriate
time in the process. It is anticipated that by linking the new
code fragments to their respective functions, it will make the
system even more efficient in terms of instances needed for
solving a particular problem. This would be a crucial step
in order to fully implement cross-domain knowledge transfer
that includes Function-RuleSets as well as their particular
set of code fragments.

In this work it has been shown that there is potential
for function re-use by transferring learned knowledge within
the same domain or between related domains. It has also
been shown that rule sets can be used as functions in code
fragment trees.

7. REFERENCES

[1] W. Banzhaf, P. Nordin, R. E. Keller, and F. D.
Francone. Genetic Programming An Introduction.
Morgan Kaufmann Publishers, Inc., San Francisco,
California, 1998.

[2] L. Bull and M. Ahluwalia. Coevolving functions in
genetic programming: Classification using
k-nearest-neighbor. Proceedings of the Genetic and
Evolutionary Computation Conference
(GECCO-1999), 2:947–952, July 1999.

[3] M. V. Butz, M. Pelikan, X. Llora, and D. Goldberg.
Extracted global structure makes local building block
processing effective in XCS. IlliGAL Report,
2005011:1045–1052, February 2005.

[4] M. V. Butz and S. W. Wilson. An algorithmic
description of XCS. Soft Computing, 6:144–153, 2002.

[5] M. Iqbal, W. N. Browne, and M. Zhang. Evolving
optimum populations with XCS classifier systems. Soft
Computing, 2013(17):503–518, September 2012.

[6] M. Iqbal, W. N. Browne, and M. Zhang. XCSR with
computed continuous action. Proceedings of the
Australasian Joint Conference on Artificial
Intelligence, pages 350–361, 2012.

[7] M. Iqbal, W. N. Browne, and M. Zhang. Comparison
of two methods for computing action values in XCS

with code-fragment actions. GECCO’13 Companion,
pages 1235–1242, July 2013.

[8] M. Iqbal, W. N. Browne, and M. Zhang. Extending
learning classifier system with cyclic graphs for
scalability on complex, large-scale boolean problems.
Proceedings of the Genetic and Evolutionary
Computation Conference, pages 1045–1052, 2013.

[9] M. Iqbal, W. N. Browne, and M. Zhang. Learning
complex, overlapping and niche imbalance boolean
problems using XCS-based classifier systems.
Evolutionary Intelligence, 6(2):73–91, 2013.

[10] M. Iqbal, W. N. Browne, and M. Zhang. Learning
overlapping natured and niche imbalance boolean
problems using XCS classifier systems. Proceedings of
the IEEE Congress on Evolutionary Computation,
pages 1818–1825, 2013.

[11] M. Iqbal, W. N. Browne, and M. Zhang. Reusing
building blocks of extracted knowledge to solve
complex, large-scale boolean problems. IEEE
Transactions on Evolutionary Computation, 2013.
DOI: 10.1109/TEVC.2013.2281537.

[12] J. R. Koza. A Hierarchical Approach to Learning the
Boolean Multiplexer Function. Morgan Kaufmann
Publishers, Inc., 1990.

[13] P. Lanzi. Extending the representation of classifier
conditions part i : From binary to messy coding.
Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-1999), 1:337–344,
July 1999.

[14] P. Lanzi. XCS with stack-based genetic programming.
Evolutionary Computation, 2:1186–1191, 2003.

[15] P. Lanzi and A. Perrucci. Extending the
representation of classifier conditions part ii : From
messy coding to s-expressions. Proceedings of the
Genetic and Evolutionary Computation Conference
(GECCO-1999), 1:345–352, July 1999.

[16] P. L. Lanzi. Learning classifier systems: Then and
now. Evol. Intel., 1:63–82, 2008.

[17] N. Nisan and S. Schocken. The Elements of
Computing Systems : Building a Modern Computer
from First Principles. MIT Press, Cambridge,
Massachusetts, 2008.

[18] R. J. Tocci, N. S. Widmer, and G. L. Moss. Digital
Systems : Principles and Applications. Prentice Hall,
Upper Saddle River, New Jersey, 2011.

[19] R. J. Urbanowicz and J. H. Moore. Learning classifier
systems: A complete introduction, review, and
roadmap. Journal of Artificial Evolution and
Applications, 2009(736398):1–25, June 2009.

[20] N. Wiener. Cybernetics: or Control and
Communication in the Animal and the Machine. The
MIT Press, Cambridge, Massachusetts, 2006.

[21] S. Wilson. A zeroth level classifier system.
Evolutionary Computation, 2(1):1–18, 1994.

[22] S. Wilson. Classifier fitness based on accuracy.
Evolutionary Computation, 3(2), 1995.

[23] S. Wilson and O. Sigaud. Learning classifier systems:
A survey. Soft Computing, 11(11):1065–1078,
September 2007.

976




