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ABSTRACT
Interrelationships between rules can be used to develop net-
work models that can usefully represent the dynamics of
Learning Classifier Systems. We examine two different kinds
of rule networks and study their significance by testing them
on the 20-mux problem. Through this experimentation, we
establish that there is latent information in the evolving rule
networks alongside the usual information that we gain from
the XCS. We analyze these interrelationships using metrics
from Network Science. We also show that these network
measures behave as reliable indicators of rule set conver-
gence.

Categories and Subject Descriptors
G.2.2 [Graph Theory]: Network problems; I.2.6 [Learning]:
Knowledge Acquisition; I.2.11 [Distributed Artificial In-
telligence]: Intelligent agents

General Terms
Network Science Applications, Evolutionary Algorithms, Learn-
ing Classifier Systems

Keywords
Evolutionary Algorithms, Genetic Algorithms, Learning Clas-
sifier Systems, XCS, Network Science, Convergence Detec-
tion

1. INTRODUCTION
In studies of evolutionary algorithms, relationships be-

tween individuals are usually ignored. Some efforts have
focused on relationships between subsets of the population.
Our focus is on examining relationships between individuals,
asking what happens over time to the structural properties
of networks representing evolving populations. Networks are
important to study because of the following reasons: (i) Net-
works take into account relationships between individuals
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(via the existence of edges and their lengths), (ii) Networks
are better suited to depict various other kinds of relation-
ships as well, such as ancestral connections, and (iii) Net-
works provide useful models of relationships that biological
species share.

In most other network-theoretic applications where net-
works change over time, the nodes in a network are mostly
the same from one instant to the next, although some edges
(and a small number of nodes) may appear or disappear.
However, in applying this approach to evolutionary algo-
rithms, we observe that individuals in an evolving popula-
tion may not persist over time. Nodes in a network vanish in
one generation, so that there is no obvious “continuity” be-
tween networks representing successive generations. Hence
the key questions to be posed are at the level of the en-
tire network (representing the entire population) or its sub-
graphs (representing sub-networks consisting of “related” in-
dividuals).

We present below a brief introduction to networks.

1.1 Introduction to Networks
The study of graphs and networks has been ongoing for

a long time. However, the study of dynamic networks has
been exciting considerable interest in recent years, particu-
larly in the social networks context, mostly because of the
success and popularity of many online social networks such
as Facebook, Twitter, and LinkedIn. A comprehensive in-
troduction to Network Science is provided by Newman [10].

Although the terms “graphs” and “networks” may be used
interchangeably in many cases, a graph is an abstract rep-
resentation of a network. For instance, a user’s friends and
social connectivities constitute a network, but their repre-
sentation is a graph. Similarly, in our case, the population
that is performing an optimization is a network of individu-
als, but is represented as a graph.

Any graph consists of a set of vertices (or nodes), V, and a
set of edges E. An edge between two nodes represents some
form of connection between them. The edge can be directed,
implying that there is an asymmetric relation between the
nodes, or undirected, implying a symmetric one. One exam-
ple of a directed graph models the Twitter network where
if a person A follows a person B, it does not imply that
B follows A; for example, a celebrity on Twitter may have
many more followers than he/she is following. In the case
of an undirected graph, such as in Facebook, if a person A
is a friend of person B, it implies that B is also a friend of
A. This establishes an undirected edge between the nodes
representing the two people.
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1.2 Selected Network Terminology
Some frequently used terms associated with networks are:

• Degree: The degree of a node is the number of edges
connected to it. Directed networks have an in-degree
and an out-degree, although in this paper we consider
only undirected networks.

• Weighted Networks: Unlike unweighted networks, where
all edges are considered equal for analysis, in certain
types of networks, edges can be assigned a weight, if
there is a need to represent more than just the presence
or absence of edges. This is typically a real number,
and it can represent various measures in different kinds
of networks. For example, when modeling networks of
friendships, we might assign stronger weights to edges
between close friends, and weaker ones with acquain-
tances. We can assign each edge a certain weight in-
dicative of this difference in friendship levels.

• Community: A community is a subgraph which is char-
acterized by a tightly-knit structure. Each node in a
community is connected to many others within that
community, and significantly fewer edges between com-
munities. A network is said to have a community struc-
ture if it can be sub-divided into such sub-networks
(with or without overlaps).

• Adjacency Matrix: This is a two-dimensional matrix
with vertices representing the rows and columns and
the (i, j)th entry representing the presence or absence
of an edge between vertices i and j. This matrix con-
sists of 1s and 0s in case of an unweighted network,
i.e., the presence or absence of an edge, and real val-
ues in the case of a weighted one, i.e., the strength
of the edge. Also, the matrix is symmetric across the
principal diagonal if the network is undirected, and
asymmetric if directed.

• Component: If there exists a path from every node
to every other node in a network, then the network
is said to be fully connected. A sub-graph displaying
similar characteristics is a component, i.e., there is a
path from each node to every other node, but not to
other nodes in the network that are not part of this
component. Here, we are interested in a component of
rules (nodes).

• Large Component: If the size of a network component
grows in proportion to the number of nodes in the
network, it is called a “Giant Component” [10]. When
the network is not associated with a specific growth
process, we refer to a component that contains a large
proportion (say 80− 90%) of the nodes in the network
as a “large” component.

We explain some of the above terms with an example net-
work in Figure 1. This is a single unweighted, undirected
network consisting of 9 nodes. This could, for example, be
a network of 9 rules in an LCS, with an edge denoting some
kind of interrelationship between them.

There are two components, one composed of nodes 5, 6, 7, 8
and the other having nodes 1, 2, 3, 4, 9.

The degrees of nodes 1 − 9 are: {3, 2, 3, 1, 1, 3, 1, 1, 1} re-
spectively. When normalized to a range [0, 1], the degrees

Figure 1: Network Example

are {1, 0.67, 0.33, 0.33, 0.33, 1, 0.33, 0.33, 0.33}, i.e., the high-
est degree gets the value 1, and the others degrees are com-
puted proportionally.

The adjacency matrix would be a 9 × 9 matrix of 0s and
1s, with a 1 in a cell indicating an edge between the nodes
corresponding to the row and column of that cell.

Many other metrics, measures and examples are discussed
in [10].

2. RELATED WORK

2.1 Networks in the context of EAs
Genetic Algorithms and other population-based evolution-

ary algorithms are rich sources of information contained in
the ever-changing generations and populations. The effects
of genetic operators and other ideas borrowed from observ-
ing various biological species serve as models to study the
growth of a species from its infancy to maturity as a commu-
nity or communities. Observing that the natural behavior
of most species in the biosphere is to form cohesive commu-
nities (or networks) for survival and growth, we believe that
a deeper understanding of such evolutionary systems can be
greatly enhanced by the science of networks.

Considering that each generation of an evolving popula-
tion contributes towards one snapshot of a network, we have,
in effect, created a dynamic network with a simple biological
evolution system.

In prior work, we had begun the exploration with a study
of networks in Genetic Algorithms [6]. In that work, we ex-
plored the notion of individuals in an EA having underlying
interrelationships which we experimentally found to be of
use in understanding and improving the performance of an
EA. The main focus was on networks created using a con-

978



straint on the Euclidean distance between nodes. In other
words, a Euclidean Network G =< V,E > was defined as
follows:

• V: All n individuals in the population are vertices or
nodes.

• E: Two individuals have an edge between them if the
Euclidean distance between them is less than the“Edge
Threshold” value (δ). This value was chosen to be
proportional to the length of the body-diagonal of the
search space, since the “closeness” of two points is rel-
ative to the space being searched.

In that work, we had found that:

1. Analyzing a GA via network metrics can help in iden-
tifying convergence faster.

2. We can use these network measures and metrics to
speed up a GA.

3. We can use these evolving networks to identify a niche
space where the optimum solution lies, based on ex-
periments performed on five test problems .

4. The largest component of the network is a key identi-
fier of the region of interest and its centroid is a good
representative of this space.

Summarizing the above, we found that there is benefit
in analyzing GAs as evolving networks instead of evolving
populations. In the work so far, the populations we have
been considering have been real-valued. We wish to ex-
plore the behavior of individuals and networks in a special-
ized evolutionary system. We choose to study networks in
Learning Classifier Systems [7], more specifically with XCS
[1][2][3][14]. We wish to extend the concept of analyzing
EAs using networks by creating rule networks in an LCS,
and studying the evolution of network parameters as well as
XCS evaluation measures and examine their similarities.

Some earlier work involving the study of rules in rule-set
form, includes the creation of rule clusters in an XCS system
to specialize rule-sets and to merge rules which overlap, and
the removal of redundant rules [11]. Attribute co-occurrence
networks in LCSs have been studied in [13]. Also, an infor-
mation theoretic approach to rule specialization involves the
study of the development of specialized rule-sets from a mu-
tual information viewpoint [12].

We proceed to define the similarity between rules and the
creation of a network of rules.

3. SIMILARITY MEASURE
Since the genotypes of the rules have bit-string representa-

tions, a similarity measure based on the Hamming distance
can be applied, as in [8]. We define the similarity between
two rules similar to the Hamming distance where we make
bitwise comparisons. But these rules contain don’t cares
(#), therefore we not only consider the number of differ-
ences, but also by how much. In other words, we define
similarity between pairs of individuals in a ternary system
involving a don’t care as:

• Similarity between 1 and 1 or 0 and 0 is 1.

• Similarity between 1 and # as well as that between 0
and # is 0.5. This is because in each of these cases,

there can be two values for each don’t care (0 or 1)
where one of the values is a perfect match having a
similarity of 1, and the other is a mismatch, an exact
opposite with a similarity of 0. Hence, we use the
average value which is 0.5.

• Similarity between # and # is 0.5. This is because
there are four combinations here: If both are the same
(both 0 or 1), then there is a perfect match with a
similarity of 1. Else, they are negations of each other,
implying complete dissimilarity.

The more similar the rules are, the stronger the edge. In
this computation, we compare only the condition part of
the rules and not the action, since each incoming point is
matched only with the condition string to trigger a rule.

4. NETWORK CONSTRUCTION
We create networks in two different ways:

1. A weighted network: An edge is assigned a weight pro-
portional to the similarity between the two vertices.
Hence, the edge strengths can vary from 0 (i.e., no
edge), to CL, i.e., an exact match. (Here, CL is the
length of the multiplexer problem being solved and is
equal to k + 2k for the multiplexer problem, where
k ∈ I+. k represents the number of select lines of the
multiplexer, and 2k refers to the possible binary strings
input to the multiplexer.)

2. An unweighted network: This network has a similarity
threshold for two rules. In other words, two nodes are
connected by an edge if the edge strength is greater
than a threshold. Hence, all nodes are not connected
to each other, unlike the previous case. In this context,
we perform a degree-based analysis.

We examine rule-set convergence indicators from both of
these methods.

5. EXPERIMENTS AND RESULTS
In order to correlate the network measures, we use the

following two popularly used XCS evaluation measures [14]:

• Accuracy (or Performance): The fraction of the last
50 trials that were correctly predicted.

• System Error: Normalized absolute difference between
system prediction and external payoff, averaged over
the last 50 trials.

Hence, the goal is to improve accuracy while reducing sys-
tem error. Performance analysis of an LCS is also discussed
in detail in [4] and [5].

We will compare these XCS evaluation parameters with
the network parameters that we will describe next. These
network parameters are used to detect rule-set convergence
from a network perspective. An alternate view of rule-set
convergence based on parent-trees of rules has been studied
in [9].

5.1 The Weighted Network
In the first network, we have a completely connected net-

work, but with varying edge weights. Network measures as
well as XCS measures are plotted in a dual Y-axis against
Generation on the X-axis in Figure 2, we observe that there
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is a rise and fall of the average edge weight per rule, akin
to the component structures seen in a GA [6], and their
collapse. If a function is monotonically increasing or de-
creasing, without knowledge of the distribution, it is hard
to determine when it will stabilize. But by having a rise and
fall structure, we have a baseline to work with.

Further, we note the strong correlation between the av-
erage edge weight per rule (and also the same measure per
microclassifier), and the XCS evaluation measures of Accu-
racy and System Error. These graphs are plotted for every
50th generation, and the values are averages over the past
50 generations.

In Table 1, we list the observations at various generations.
We also compute two measures of correlations over all data
from the experiments:

1. Correlation between the System Error and the Average
edge weight per microclassifier is 0.848, and

2. Correlation between the System Error and the Average
edge weight per rule is 0.857

Both correlations have p-values < 0.001, which are in-
dicative of strong correlations between the XCS evaluation
measures and the corresponding network measures.

5.2 The Unweighted Network
In the unweighted network, we set a threshold of half the

maximum similarity possible as the criterion for the exis-
tence of an edge. Creating the network thus, this time we
plot the distributions of degrees (after normalization to the
range [0, 1]), i.e., the degrees of all rules in the network, nor-
malized to account for different numbers of rules in different
generations. We align boxplots of these distributions and
the XCS measures, and plot them against the Generation,
until 50, 000, on the X-axis as seen in Figure 3. Here, too,
except the degree distributions (which are plotted at those
instants), all values are averaged over the past 50 runs.

From Table 2 and Figure 3, we observe that once the box-
plots stabilize, there is negligible change in the System Er-
ror. We let the experiment run for about 100, 000 genera-
tions and note that in the second half, there is very little
improvement as is noticed from the various parameters. In
other words, if we had observed the run purely from the
network theoretic standpoint, we could have stopped the
run reasonably with little accuracy sacrificed by Generation
30, 000, which results in System Error a little higher than in
Generation 100, 000 (which was about 5.9).

We also observe from Figure 3 that the degree distribution
is very well aligned with the accuracy/system error plots.
This is yet another indication of network measures being
very well synchronized with EA measures.

6. SUMMARY
In a bit-string representation as seen in an LCS, the sim-

ilarities between rules are high (which is dependent on the
problem being solved and the input points at each genera-
tion) when we compare bit-positions. The weight threshold
(to determine when an edge exists in the network) can be
modified for the problem at hand. More importantly, we no-
tice a strong correlation between the edge weights and node
degree distributions and the corresponding convergence cri-
teria in the XCS algorithm (high accuracy as well as low
system error).

Figure 3: Accuracy, System Error compared with
Degree Distributions in XCS: 20-mux

980



Figure 2: Accuracy, System Error compared with the Edge weights in XCS: 20-mux

Table 1: XCS Evaluation measures: Accuracy, System Error compared with Edge weight per microclassifier
and Edge weight per rule

Generation Accuracy System Error Edge weight per
microclassifier

Edge weight per rule

5000 0.6 467.658 13.564 541.320
10000 0.6 425.089 8.570 260.379
15000 0.78 303.681 5.934 244.428
20000 0.96 174.084 3.696 164.941
25000 1 61.981 2.422 118.396
30000 1 28.587 2.648 144.453
35000 1 12.024 2.345 98.749
40000 1 55.630 2.884 84.737
45000 1 6.185 2.128 72.584
50000 1 5.182 2.323 241.563
60000 1 10.316 2.311 52.768
70000 1 18.228 1.858 55.337
80000 1 5.059 1.974 54.883
90000 1 6.127 2.435 222.440
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Table 2: XCS Evaluation measures: Accuracy, System Error compared with Average Rule Degree and its
Standard Deviation

Generation Accuracy System Error Avg. Rule Degree Rule Std. Dev.
5000 0.66 445.507 0.399 0.166

10000 0.7 414.770 0.380 0.183
15000 0.86 312.837 0.582 0.211
20000 0.92 292.491 0.825 0.139
25000 0.94 168.776 0.905 0.119
30000 0.98 59.863 1 0
35000 1 45.090 1 0
40000 1 23.420 0.974 0.051
45000 1 6.714 1 0
50000 1 9.198 1 0
60000 1 7.546 1 0
70000 1 20.975 1 0
80000 1 13.618 1 0
90000 1 8.356 1 0

Although it is hard to determine when the system error
will reach 0, if at all, it is easier to observe the network
measures which clearly converge, which is noticed far more
easily in the case of degree distributions. For the same pa-
rameters, we continued running the XCS for another 50, 000
generations, but the graph was a continuation of the values
seen from about 30, 000− 50, 000 and are hence not plotted.

Through these experiments, we observe that although the
LCS is a completely different EA system (that involves ternary
strings, has many other processes alongside a GA, and in-
volves multi-layered individuals – macroclassifiers and mi-
croclassifiers), we are still able to identify and draw par-
allels with the interrelationships that they share in space.
Strong correlations between the network measures and the
LCS evaluation measures suggest that the networks and the
EA are in synchrony, i.e., the dynamical changes in network
and EA measures are very well synchronized.

7. CONCLUSION
In this work, we explore networks that model rule sets and

the information they provide about an XCS run. It is of in-
terest to note the amount of information that is conveyed
by the underlying rule networks. The strong correlation be-
tween network and LCS evaluation measures also suggests
that there is underlying interrelationships between the rules
that can be tapped.

We plan to study specialization of rule-sets using this ad-
ditional network information, which can potentially lead to
more expressive rule-sets akin to those found information-
theoretically in [12]. We propose to retain representatives of
rule-sets upon detection of convergence and use the remain-
ing rules to explore other rule spaces, in order to attempt to
reduce system error. This is presently being researched and
is a subject for future work.
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