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ABSTRACT 

Agent-Based Models are used to model dynamic systems such as 
stock markets, societies, and complex biological systems that are 
difficult to model analytically using partial differential equations. 
Many agent-based modeling software are designed for serial von-
Neumann computer architectures. That limits the speed and 
scalability of these systems. Systemic computation (SC) is 
designed to be a model of natural behavior and, at the same time, 
a non Von-Neumann architecture with its characteristics similar to 
multi-agent system. Here we propose a novel method based on an 
Artificial Immune System (AIS) and implemented on a systemic 
computer, which is designed to adapt itself over continuous arrival 
of data to cope with changing patterns of noise without 
requirement for feedback, as a result of its own experience. 
Experiments with heartbeat data collected from a clinical trial in 
hospitals using a digital stethoscope shows the algorithm performs 
up to 3.60% better in the precision rate of murmur and 3.96% 
better in the recall rate of  murmur than other standard anomaly 
detector approaches such as Multiple Kernel Anomaly Detection 
(MKAD). 
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1. INTRODUCTION 
Real world machine learning, where data is gathered continuously  
may in theory be classifiable into distinct and unchanging 
categories but in practice the classification becomes non-trivial 
because the nature of the background noise continuously changes. 
One example of such a problem is the classification of heart 
sounds. Although there may in theory be a limited number of 
specific categories of heart sound, (e.g. Normal, Extra Heart 
Sound, Murmur, Etc.), in practice new sounds are gathered within 
such varied environments that the changing background noise can 
obscure or corrupt the features being used for learning. For this 
application, a classifier trained on a static training set may be less 
effective than a method that can continuously learn and adapt. 

This problem is extremely important. According to the World 
Health Organization, cardiovascular diseases (CVDs) are the       
number one cause of death globally: more people die annually 
from CVDs than from any other cause. An estimated 17.1 million 
people died from CVDs in 2004, representing 29% of all global 
deaths. Of these deaths, an estimated 7.2 million were due to 
coronary heart disease[1]. 

There is also a real need to automate the classification of heart 
sounds. This is because forming a diagnosis based on sounds 
heard through either a conventional acoustic or an electronic 
stethoscope is itself a very special skill, one that can take years to 
acquire. Because this skill is also very difficult to teach in a 
structured way, the majority of internal medicine and cardiology 
teaching programs offer little or no such instruction. Despite its 
obvious utility, primary care physicians are documented to have 
poor auscultatory skills [2]. Any method which can help to detect 
signs of heart disease could therefore have a significant impact on 
world health. 

The aim of this work is to produce methods to do exactly that. 
Specifically, we are interested in creating the first level of 
screening of cardiac pathologies both in a Hospital environment 
by a doctor (using a digital stethoscope) and at home by the 
patient (using a mobile device). We propose a novel approach to 
tackling the problem of varied background noise. Instead of 
supervised machine learning, we propose the use of online 
learning methods such as anomaly detection. More specifically we 
propose a novel method based on an AIS and implemented on a 
systemic computer. The AIS-SC algorithm is designed to adapt 
itself over the course of a lifetime to cope with changing patterns 
of noise without requirement for feedback, as a result of its own 
experience. 

The next section provides background to the work. Section 3 
details the design of AIS-SC algorithm. Section 4 and 5 compares 
and presents the performance of AIS-SC model and benchmark 
model on the classification of heart sound. Finally section 6 
concludes our work. 

2. Background 
2.1 Heartbeat Sounds Classification 
Classification of heart sounds is of particular interest to machine 
learning researchers as it involves classification of audio sample 
data, where distinguishing between classes of interest is non-
trivial. Data is gathered in real-world situations and frequently 
contains background noise of every conceivable type. The 
differences between heart sounds corresponding to different heart 
symptoms can also be extremely subtle and challenging to 
separate. Success in classifying this form of data requires 
extremely robust classifiers. Despite its medical significance, to 
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date this is a relatively unexplored application for machine 
learning. 

So far, heart sound segmentation algorithms reported in literature 
may be generally classified into two types: (i) using 
electrocardiogram (ECG) as a reference signal and (ii) without 
ECG. ECG is a transthoracic (across the thorax or chest) 
interpretation of the electrical activity of the heart over a period of 
time, as detected by electrodes attached to the surface of the skin 
and recorded by a device external to the body [3]. 

In the first class of approaches, QRS complexes (a name for the 
combination of three of the graphical deflections seen on a typical 
ECG) and T-waves (represents the repolarization (or recovery) of 
the ventricles in ECG) are always detected in order to locate the 
S1 (the first heart sound) and S2 segments (the second heart 
sound) [4]. Calvalho applied the variance fractal dimension to 
adaptively identify the boundaries of sound lobes and used QRS 
synchronization to detect S1 components while for S2 
components a non-supervised classification approach is applied, 
based on temporal features of the lobes [5]. Kampouraki used 
support vector machines (SVMs) to classify ECG recordings [6]. 
Karraz extracted the QRS complex and T-waves from the signal 
as features and applied them into a Neural Network Classifier 
based on a Bayesian framework [7]. 

In the second class of approaches, many signal processing 
techniques are utilized. For example, Leung characterized 
digitally recorded pathological and non-pathological 
phonocardiograms (PCGs) by a time- frequency (TF) method 
known as the trimmed mean spectrogram (TMS). Features were 
extracted from the TMS containing the distribution of the systolic 
and diastolic signatures in the TF domain. Together with the 
acoustic intensities in systole and diastole, these features were 
used as inputs to the probabilistic neural networks (PNNs) for 
classification [8]. A similar TF method was adopted by Yoshida 
who estimated instantaneous frequency of the phonocardiogram 
from averaged Wigner-Ville distribution [9]. Groch designed a 
heart sound gating device which utilized dynamically varying 
timing windows to anticipate the occurrence of S1 and S2, 
providing two trigger points through the cardiac cycle for 
synchronizing medical images [3]. Strunic extracted signals on 
certain band to reduce anomalies and then set an amplitude 
threshold to pick out the spikes and realize the segmentation [10]. 
Haghighi chose an autoregressive (AR) model to estimate the 
power spectral density (PSD) of the signal as well as the energy in 
certain frequency bands for consecutive overlapping frames to 
realize the automatic segmentation [11]. Liang chose Chebyshev 
type I low-pass filter combined with Shannon energy to attenuate 
noise and make the findings of low intensity sounds, namely heart 
beats, easier [12] Developed from Liang’s algorithm, Spencer 
integrated all the segmented heart cycles into one average heart 
cycle and used it to train the Artificial Neural Network (ANN) to 
classify heartbeat into Normal, Systolic Murmur caused by Mitral 
Regurgitation (MR), Systolic Murmur caused by Aortic Stenosis 
(AS) and Diastole Murmur caused by Aortic Regurgitation (AR) 
[10]. The way ECG signal is collected conserves fidelity and 
compresses background noise. Hence segmentation results with 
the reference of ECG are relatively better than those without it. 
However, ECG is not a cost-effective choice for preliminary 
screening of heart problems. Furthermore, with low-quality ECG 
signals, T-waves are not always clearly visible; in such cases, S2 
sounds may be classified by an unsupervised classifier. 

For the second approach, most data processed are either simulated 
or super clean Phonocardiogram (PCG), which is not really the 

case in daily collection of heartbeat. For instance, according to 
Spencer’s result, when processing simulated heart sounds, the 
accuracy and sensitivity of ANN could be as high as 76±6.1% and 
89.7±5.9% respectively. The accuracy drops to 48.7±12.7% when 
he used data collected by an electronic stethoscope with a duration 
of about 5 seconds. In an attempt to apply this system to our real-
world datasets for this work the system was unable to differentiate 
between heartbeats and background noise in most cases. 
Unfortunately, real life data is always of varying durations and 
with excessive background noise. Under such circumstances, the 
differentiation among different subtle heart symptoms can be 
extremely challenging. To cater to demands from such data, an 
algorithm is required that may independent of ambient or body 
sounds. 

2.2 Systemic Computation 
Systemic computation (SC) is designed to be a model of natural 
behavior and, at the same time, a model of computation with its 
characteristics similar to biological systems and processes. As 
biologically inspired model, cellular automata have proven 
themselves to be a valuable approach to emergent, distributed 
computation [14]. Generalizations such as constrained generating 
procedures and collision-based computing provide new ways to 
design and analyses emergent computational phenomena [15]. 
Bio-inspired grammars and algorithms introduced notions of 
homeostasis (for example in artificial immune systems), fault-
tolerance (as seen in embryonic hardware) and parallel stochastic 
learning, (for example in swarm intelligence and genetic 
algorithms) [16, 17]. 

In SC, everything is regarded as a system, or an agent. This 
implies the notion of the inherent hierarchy in nature and enables 
SC analysis in different levels of abstraction. Also, SC is designed 
to operate using any system, meaning that, provided that the 
interaction pattern is the same, systems of different levels of 
abstraction can perform the same calculation. Systems can never 
be destroyed, reflecting the fundamental principle of conservation 
of energy (first law of thermodynamics). As a result, systemic 
computations imply metabolism and ecology, since new systems 
need to be transformed and unwanted computation remnants need 
to be removed, meaning that the “waste” of one program will have 
to be recycled as “food” for another. 

In SC, each system comprises three elements: two schemata that 
define the possible systems that may interact in the context of the 
current system, and a kernel which defines how the two 
interacting systems will be transformed.  

The interaction of two systems can be described by the systems 
themselves and a third “contextual” system which denotes how/if 
the interacting systems are transformed after their interaction. The 
“shape” of a contextual system affects the result of the interaction 
between systems in its context. This encompasses the general 
concept that a resultant transformation of two interacting systems 
is dependent on the context in which that interaction takes place. 
A different context will produce a different transformation. Since 
everything in systemic computation is a system, context must be 
defined by a system. 

Systemic computation also exploits the concept of scope. In all 
interacting systems in the natural world, interactions have a 
limited range or scope, beyond which two systems can no longer 
interact (for example, binding forces of atoms, chemical gradients 
of proteins, physical distance between physically interacting 
individuals). In cellular automata this is defined by a fixed 
number of neighbors for each cell. Here, the idea is made more 
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flexible and realistic by enabling the scope of interactions to be 
defined and altered by another system. Interactions between two 
systems may result in one system being placed within the scope of 
another (akin to the pino membrane computing operation), or 
being removed from the scope of another (akin to the exo 
membrane computing operation). So just as two systems interact 
according to (in the context of) a third system, so their ability to 
interact is defined by the scope they are all in (defined by a fourth 
system). Scope is designed to be infinitely recursive so systems 
may contain systems containing systems and so on. Scopes may 
overlap or have fuzzy boundaries; any systems can be wholly or 
partially contained within the scopes of any other systems. Scope 
also makes this form of computation tractable in simulation by 
reducing the number of interactions possible between systems to 
those in the same scope. 

3. Algorithm 
Le Martelot provided a simple implementation of “artificial 
tissue” for AIS using systemic computation [17], which serves as 
the foundation of our work. He created an artificial organism, a 
program with metabolism that “eats” data, expels waste, clusters 
cells based on the nature of its food and emits danger signals 
suitable for an artificial immune system. 

3.1 Artificial Immune System 
The immune system is a complex of cells, molecules and organs 
aiming at limiting damage to the host organism by pathogens, 
which elicit an immune response and thus are called antigens. One 
type of response is the secretion of antibody molecules by B cells. 
Antibodies are Y-shaped receptor molecules bound on the surface 
of a B cell with the primary role of recognizing and binding, 
through a complementary match, with an antigen. The strength 
and specificity of the Antigen-Antibody interaction is measured 
by the affinity (complementarity level) of their match [18].  

When stimulated, the B cell proliferates and secretes its receptor 
molecules as free antibodies. Antibodies thus can either be free 
molecules or receptors attached to cells. Secretion requires that B 
cells become activated, undergo proliferation (cloning) and then 
finally matured into memory cells which are used for antigen 
recognition. A clone is a cell, or a set of cells, which is the 
progeny of the same cell. This basic process of pattern recognition 
and selection is known as clonal selection [19] and is similar to 
natural selection, except that it occurs on a rapid time scale on the 
order of days and weeks, within our bodies. 

3.2 AIS in Systemic Computation 
In Le Martelot’s model, the organism should be able to eat food 
from its environment, converts each data item into a new cell, and 
attempts to bind that cell to itself in order to grow organs, with 
cells made from similar data items binding to each other. Thus, a 
cell unable to bind to any group of cells reveals itself to be 
significantly different from them. If this abnormal cell dies 
unbound, it can therefore be spotted as a potential anomaly. To 
regulate this growth and introduce the notion of time, a decay 
process simulates the aging of cells. When cells die, a split 
process splits them from the adhesion surfaces they are bound to. 
In the model dead cells can thus be recycled into new food. The 
whole ecosystem could be visualized in Figure 1 below. 

We based on our model on Le Martelot’s ecosystem to model the 
process of antigen recognition. While his model mainly focused 
on clustering data through the growth of adhesion surface and left 
the AIS mechanism unexploited, we intend to implement the full 
function of AIS with antigens being “eaten” continuously into the 

organism and inspired the secretion of antibodies which serves as 
the classifier to recognize later-come antigens. More specifically, 
data from the same category is regarded as sharing a same/similar 
feature which in the scenario of AIS would correspond to antigen. 
Those data with same/similar antigen would then be recognized 
by memory antibodies trained previously through clonal selection. 

 
Figure 1 Systemic organization of Le Martelot’s organism. 

 

3.3 Systemic Analysis 
When programming with SC it is of great importance to conduct a 
systemic analysis in order to identify and interpret appropriate 
systems and their organization. The first stage is to identify the 
low-level systems (i.e. determine the level of abstraction to be 
used). In most artificial immune systems, the level of abstraction 
is the cell: few approaches require modeling of the internal 
organelles or genome of cells, and few require modeling of 
populations of organisms. Here we intend to model the 
consumption of “food” (data items), the secretion of antibodies 
and the recognition of antigens. Thus an abstraction at the cellular 
level is appropriate, with systems being used to explicitly model 
each element. Below is an overview of the whole system. 

 
Figure 2 Systemic Organization of our model 

The whole system is organized in the scope of Universe which is 
an abstraction of the immune system. Inside it, training data could 
be eaten into B cell to generate memory antibody which would be 
later secreted and used to recognize data with similar features 
(antigens). Based on Le Martelot’s idea, we associate data 
systems with the candidate antibodies is a straightforward choice, 
as they both carry the information for recognition. However, in 
order to enable each system to represent a complete data item this 
work introduces a new extension to the systemic computation 
paradigm – the use of pointers. In this work each system may 
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behave as a pointer to a fixed and unique region of memory where 
a larger or more complex data structure can be held..  

As systems are set as antigens or randomly initialized into 
antibody candidates after the beginning of the program, the SC 
model should initially include non-initialized data systems. 
Moreover, the organism should be able to stimulate an adaptive 
immune response where a spectrum of clones of antibody 
candidates is produced with different affinity. Antibody 
memories, those with the highest affinity, would be expelled to 
the outside environment to recognize antigens (classify data). 
Therefore antibody candidates and antibody memories would be 
seen as different states of the same systems. Moreover, antigen 
system asks for an on-off mode to denote its status in first phase 
and second phase of maturation. Thus, five distinct types of data 
systems, identified using bit 15 to bit 17 in the function of each 
data system, are required to represent all possible solution: non-
initialized, antibody candidate, antigen not ready, antigen ready 
and antibody memory (see in figure below). 

 
Figure 3 Representation of different data systems in SC 

After identifying the elementary systems, we move to the 
identification of contextual systems which are in charge of system 
interaction and transformation. 

An initialize context is implemented in order to initialize the B-
cell with training data. The production of antibody memories 
could be divided into 2 maturation phases according to the 
literature above. However, our attempt on organizing the scope 
based on different phases the separate design suffers from low 
efficiency due to the adoption of too many long chains and the 
way it store the data centrally go against the distributed design of 
systemic computing.  Therefore an integrated B-cell system 
scopes are implemented by using an on-off mode to denote 
different phases. 

In the first phase of maturation, the Compare system calculates 
the distance between B-cell and antibody candidate and compares 
it with the distance stored in B-cell last round of comparison. It is 
evident that Compare system acts as context systems, defining the 
measurement of  the distance between 2 data systems and 
updating the distance stored in B-cell with the smaller one for 
further use. The counter implemented in Compare system keeps 
track of continuous winning time for the current stored distance. 
When it reaches the counter threshold, the B-cell would be turn to 
on-mode to be handover to Mature context. 

The second phase of maturation follows the similar thought 
process. The only difference is that the Kill context holds the 
winner and keeps comparing it with others with the help of chain 
mechanism. It is worth noting that within each Compare/Kill 
context a counter is stored in the core to keep a record of 
consecutive winning time which will be reset if encountering a 
better match. The data systems would either be discarded for 
Refresh context to recycle or selected as the final winner if it wins 
more than 5 times consecutively. 

Moving into the next pair of interactions, Refresh system updates 
the loser antibody candidate with new randomized value to 
introduce new solutions to the system. Thus Refresh system acts a 
context, defining the refresh of failed data systems in the 
maturation. 

Looking at the Generate reaction, it acts as a context to proliferate 
5 mutated copies of the winner antibody candidates resulted from 
comparison process with the help of chain.  

The mature context is designed to have two functions. In the first 
phase of maturation, it interacts with successful selected antibody 
candidate and turns the B-cell to on-mode to proliferate. In the 
second round, it is in charge of changing the state of antibody 
winner to antibody memory. 

Finally, if antigens in the environment fall into the category of the 
antibody memory, the expelled antibody memory will classify 
them by absorbing them into its own scope and update the 
antibody memory data with the averaged data. Borrowed from the 
idea of aiNet [18], the expelled antibody memories could be 
further merge if their distance is below the threshold which 
indicates they might come from the same category.   

 

Pseudo-code for the classify context clustering method and merge 
context. d, m are given thresholds for classify and merge context 
respectively. The distance function calculates the Euclidian 
distance of two vectors. 

if distance(Antigen data, Antibody Memory data) ≤ d       
    Absorb Antibody into the scope of Antibody Memory 
    Antibody Memory data ← Average(Antigen data, Antibody 
    Memory data)           
end if 
if distance(Antibody Memory1 data, AntibodyMemory2 data) ≤ d       
    Integrate all the antigens in both antibody memories into the  
    scope of  antibody memory 1 and set 2 as waste 
    Antibody Memory 1 data ← Average(Antibody Memory 1 data,  
    Antibody Memory 2 data)           
end if 
 

After identifying the systems involved in the SC integrated data 
clustering model above, the last part for the systemic analysis is 
with regards to the required scope of interaction.  This model 
separates systems according to which B-cell they relate to. 
Therefore, an exact representation of the model would require that 
once an antibody candidate C, modeled as a separate system, is 
bound to an antigen during selection, this C could not be able to 
be re-bound to another antigen. Furthermore, if this C would need 
interact again with other antigens, it would need to unbind the 
specific antigen that had bound before. This functionality, 
representing the physical location in a real biological system 
could be implemented using scopes. However, it would add 
considerable complexity to the SC model if each antigen own 
itself a set of all the contexts. Hence, all the antigens are designed 
to share a same set of contexts, which, on the other hand, 
increases greatly the utility rate of the contexts. 

3.4 Model Implementation 
A description of the SC contexts functionality is given in Table 1. 
To further explain it, the code written in SC language is provided 
below. SC language is intuitively very close to the SC model and 
is created together with a compiler translating source code into 
byte-code for the virtual machine. The aim of the SC language is 
thus to aid the programmer when defining systems, declaring 
instances of them and setting scopes between them. Defining a 
system involves defining its kernel and its two schemata. When a 
system acts as a context, the two schemata are used as the two 
templates of the systems to interact with, and the kernel encodes 
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the context behavior. In order to make the code more readable, 
string labels can be defined and then used in the program instead 
of their value [16]. 

Table 1. Summary of the Process-oriented AIS SC model 
functions 

Function 
Names Description 

Initialize Initializes B-cells with training data.  

Compare Compares the distance between the antigen itself 
and the interacted antibody candidates and stores 
better the index and distance in the right schema 
of the context. The context also keeps a counter of 
consecutive comparison time.  

Mature Transform the antigen to the state of second round 
of selection and mark the final selected antibody 
candidate as antibody memory. 

Generate Duplicates the winner antibody candidate with a 
mutation on each dimension proportional to its 
distance to the antigen it compares to. 

Kill Compares the distance between the two mutated 
duplicates antibody candidates and their 
corresponding antigens, mark the winner and 
record its winning time in the counter. If the 
counter exceeds counter threshold, transforms the 
winner to antibody memory. 

Expel Pulls the generated antibody memory out of the 
scope of the second selection to the root scope. 

Merge Calculates the distance between the two interacted 
antibody memories and if it is below the sigmoid 
threshold,  pulls all the classified test data systems 
into one antibody memory and update the value of 
that memory with the average of the two 
memories. Meanwhile, transforms the other 
antibody memory into waste for recycle.  

Refresh Updates the loser antibody candidate with new 
randomized value to introduce new solutions to 
the system. 

Classify Decides whether the interacted test data systems 
belongs to this category. If so, tags them. 

 

 
Figure 4 Representation of contexts in SC code. 
The SC Integrated AIS model has been implemented applying the 
suggested development methodology in the previous section. In 
order to show the function of each context, the source code of the 
model is given in Figure 5. Its direct mapping to Figure 2 is 
evident as, after the functions and some useful labels are defined, 

the data systems, contexts and scopes are defined exactly as 
represented graphically. 

 
Figure 5 SC code of AIS-SC Model 

4. Heart Data 
4.1 Data description 
Our work uses data provided for the first PASCAL Challenge on 
Classifying Heart Sounds. The dataset comprises data collected 
from a clinical trial in hospitals using the digital stethoscope 
DigiScope [20]. In the dataset, sounds were recorded at a 
frequency of 4000Hz. In this work we consider 2 groups within 
the set: Normal and Murmur. 

The audio files are all of varying lengths, between 1 second and 
30 seconds (some have been clipped to reduce excessive noise and 
provide the salient fragment of the sound). Most information in 
heart sounds is contained in the low frequency components, with 
noise in the higher frequencies. It is common to apply a low-pass 
filter at 195 Hz. Fast Fourier transforms are also likely to provide 
useful information about volume and frequency over time. More 
domain-specific knowledge about the difference between the 
categories of sounds is provided below. 

4.1.1 Normal Category 
In the Normal category there are normal, healthy heart sounds. 
These may contain noise in the final second of the recording as 
the device is removed from the body. They may contain a variety 
of background noises (e.g., traffic, radios, doors slamming, 
children crying). They may also contain occasional random noise 
corresponding to breathing, or brushing the microphone against 
clothing or skin. A normal heart sound has a clear “lub dub, lub 
dub” pattern, with the time from “lub” to “dub” shorter than the 
time from “dub” to the next “lub” (when the heart rate is less than 
140 beats per minute). Note the temporal description of “lub” and 
“dub” locations over time in the following illustration: 

lub......dub...............lub......dub............ 
In medicine we call the lub sound "S1" and the dub sound "S2". 
Most normal adult heart rates at rest will be between about 60 and 
100 beats (‘lub dub’s) per minute. However, note that since the 
data may have been collected from children or adults in calm or 
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excited states, the heart rates in the data may vary from 40 to 140 
beats or higher per minute.  

4.1.2 Murmur Category 
Heart murmurs sound as though there is a “whooshing, roaring, 
rumbling, or turbulent fluid” noise (Bentley P. 2011) in one of 
two temporal locations: (1) between “lub” and “dub”, or (2) 
between “dub” and “lub”. They can be a symptom of many heart 
disorders, some serious. There will still be a “lub” and a “dub”. 
One of the things that confuses non-medically trained people is 
that murmurs happen between lub and dub or between dub and 
lub; not on lub and not on dub. Below, we illustrate with an 
asterisk* at the locations a murmur may appear: 

lub...****...dub...............lub...****...dub 
or 

lub.........dub...******...lub.........dub...******... 
 

4.2 Data Pre-processing 
No machine learning approach can cope with uncleaned data. For 
this work we attempt to clean the data as much as feasible so that 
traditional machine learning methods may be used in addition to 
our proposed method, for comparison purposes. It should be noted 
that although significant cleaning is performed, the levels of noise 
are sufficiently high that the extracted features (described in the 
following section) are still significantly affected. 

At first, the original signal was down sampled by a factor of 10. 
Since the heart sound feature with the highest frequency is 
murmur which is up to 600Hz [12], the new sampling frequency 
4410Hz is still more than seven times higher. Thus no useful 
features of heart sounds are missed. After that, we reduce noise 
within the sound clip by wavelet coefficient soft thresholding 
using global positive threshold. Then a fifth-level discrete wavelet 
decomposition of the signal was done to obtain the coefficients of 
all the components of the decomposition. Using these coefficients, 
the details and approximation in desired level were obtained by 
reconstruction. The details and approximations vary depending on 
the wavelet families and orders used in the decomposition and 
reconstruction. Order six Daubechies filters were used in our work 
[12]. After reconstructing the heart sound, the envelope of the 
reconstructed signal is calculated to further emphasize heart beat 
information while reduce trifle disturbance. Because Shannon 
Entropy accentuates the medium intensity signal and attenuates 
low intensity value much more than high intensity signal, which 
shortens the difference of the envelope intensity between the low 
and high intensity sounds and makes the finding of low intensity 
sounds easier, we calculate the average Shannon energy in 
continuous 0.02-second segments with 0.01-segment overlapping 
(see Equation below): 

𝐸 = −𝑥! ∙ log 𝑥! 

𝐸 = −1/𝑛 ∙ −𝑠!(𝑖) ∙ log 𝑠! (𝑖)
!

!!!
 

For the convenience of parameter setting, the normalized average 
Shannon energy is computed as follows, 

𝐸!"#$ 𝑡 =
𝐸 𝑡 −𝑀(𝐸(𝑡))
𝑆𝑡𝑑(𝐸(𝑡))

 

where 𝑀(𝐸(𝑡)) is the mean value of 𝐸 𝑡  and 𝑆𝑡𝑑(𝐸(𝑡)) is the 
standard deviation. Then we find the heart spike based on the 
normalized Shannon Energy. Figure 6 shows the original signal 
and its average Shannon energy. 

 
Figure 6 Signal s, a5’s average Shannon Energy and selected 

heart spikes. 

4.3 Feature Extraction 
Before classification, raw audio of heart beat needs to be 
processed due to its large dimension and redundancy. By 
exploiting the results from previous sections, we obtain altogether 
8 indicative parameters representing the features of each heart 
sound clip. 

1. N: heart rate describes the number of heartbeat per minute. 
Heart rate not in the range of 40 to 140 bpm indicates potential 
abnormality. 

2. Rs1 & Rs2: the ratio of the standard deviation of S1 (𝛿!!) and 
S2 (𝛿!!) over total standard deviation (𝛿!"!#$) respectively. Here 
we assume S1 corresponds to the shorter interval which we tag it 
as the systolic period and S2 corresponds to the longer one which 
is diastolic period. Rs1 and Rs2 describes the duration stability of 
systolic and diastolic period of heartbeat. Extra or skipped heart 
sound would result in large Rs1 and Rs2. 

3. Rm1 & Rm2: the ration of the mean of S1 and S2 over the total 
mean. 

4. Std1 and Std2: the standard deviation of sound duration and 
interval duration. They mainly evaluate the stability of sound and 
non-sound intervals. As mentioned in the previous work that heart 
murmurs usually exhibit high frequency content which is more 
complex compared to S1 and S2 sounds, hence in order to detect 
murmurs more features should be extracted. We first calculate the 
Shannon energy of the detail d4 achieved from the wavelet 
decomposition from the previous step to further attenuate the 
noise. Then a binary threshold is constructed and applied to 
Shannon energy curve to calculate Std1 and Std2 respectively. In 
this work, the threshold is experimentally chosen as 1/10 of the 
maximum Shannon energy of d4. The binary threshold is, 

𝑆!! =
1      𝐸!! ≥ 0.1max  (    𝐸!!)
0      𝐸!! < 0.1max  (    𝐸!!)

 

5. Prop: sound duration proportion in the whole sound clip length. 
Prop is in charge of judging the likelihood of heartbeats with a 
regular pattern being murmur heartbeat. Large Prop means that 
heart keeps making sound in the most of the time during the 
systole period, which is an obvious evidence for murmur 
heartbeat. 

5. Experiments 
In order to test AIS-SC model’s performance in classifying data 
against changing background noise, we select 20 testees with 
normal heartbeat and 20 testees with murmur heartbeat. For each 
of them, four clips of heartbeat sound are recorded in different 
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time and location, which makes the total of samples 160. We 
reserve one clip of each person for training and use the rest 120 
 

 
Figure 7 1) Wavelet-decomposition of normal heartbeat at 4th 
depth level, 2)Thresholded Shannon energy of d4 of normal 
heartbeat, 3) Wavelet-decomposition of murmur heartbeat at 
4th depth level, 4) Thresholded Shannon energy of d4 of 
murmur heartbeat. 
samples as test data. In other words, we initialize the B-cells in 
our model with the 40 training data clips and set rest of them as 
antigens who are designed to be classified by antibody memories 
generated by B-cells after maturation. As a comparison, we also 
feed the heartbeat data into Multiple Kernel Anomaly Detection 
(MKAD) which is designed for anomaly detection over a set of 
files [21]. Since theoretically speaking, there is no ending point of 
systemic computation unless it reaches the limit of the set 
interaction times, we here set the number of interactions as 
3000000 as it is the lowest number to guarantee the complete 
recognition of all the test data. Then we calculate the average 
result of 20 rounds experiments on SC and MKAD, respectively. 
The result is as following: 

Table 2 Comparison of Classification Result from AIS-SC and 
MKAD  

 AIS-SC  MKAD 
Precision of 

Normal 78.67% 81.29% 

Precision of 
Murmur 65.72% 63.12% 

Recall Rate 
of Normal 77.25% 82.37% 

Recall Rate 
of Murmur 66.97% 63.01% 

 

As can be seen from Table 2, the AIS-SC model’s performance in 
recognizing normal heartbeat is quite close to that of MKAD 
while it outperforms MKAD in the precision of Murmur. This 
advantage becomes more obvious in the recall rate.  

To have a better idea on how the AIS-SC model adapts itself 
along the time, we divide the 120 training data into 5 data chunk 
and present them  one at each time to the model while keep the 
training data unchanged. Again we run the test 20 times to get the 
average results. Below depicts how the AIS-SC model improves 
itself overtime: 

 
Figure 8 Precision Rate Comparison Against Number of 

Presented Test Data between AIS-SC and MKAD 
Similar pattern could also be observed from the recall rate of 
murmur.  

 

Figure 9 Recall Rate of Murmur Comparison Against 
Number of Presented Test Data Presented to the Model 

From the figure above, It could be inferred that with more data 
coming in, the model will better adapt itself to the heartbeat sound 
as well as the background noise. Considering the model is used to 
help doctor detect potential heartbeat issues, it is more important 
for the model to tell the illness than confirming the wellness. 
Hence, it could be reasonable concluded that AIS-SC could reach 
the similar classification level with current classification model 
such as MKAD and shows a potential to improve with the 
increase of data. 

6. CONCLUSIONS 
In this paper, we examine the possibility to realize an agent-based 
model on a non von Von-Neumann computing architecture. We 
propose a novel method based on an AIS and implemented on a 
systemic computer, which is designed to adapt itself over 
continuous arrival of data to cope with changing patterns of noise 
without requirement for feedback, as a result of its own 
experience. Experiments on the heartbeat data classification 
shows the algorithm performs up to 3.60% better in the precision 
rate of murmur and 3.96% better in the recall rate of  murmur than 
other standard anomaly detector approaches such as MKAD. To 
improve the model, future work will explore more on the increase 
of system efficiency and test on its ability to cope with more than 
two classes.  
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