
A Genetic Based Scheduling Approach of Real-Time
Reconfigurable Embedded Systems

Hamza Gharsellaoui
National Institute of Applied
Sciences and Technology

(INSAT), Carthage University,
Tunis, Tunisia

Higher School of Technology
and Computer Science (ESTI),

Carthage University, Tunis,
Tunisia

Al-Jouf College of Technology,
Technical and Vocational

Training Corporation, Al-Jouf,
KSA

gharsellaoui.hamza@gmail.com

Hamadi Hasni
National School of Computer

Science (ENSI)
Manouba University, Tunis,

Tunisia
hamadi.hasni@ensi.rnu.tn

Samir Ben Ahmed
Faculty of Science,

Mathematics, Physics and
Natural of Tunis (FST), Tunis
El Manar University, Tunisia
National Institute of Applied
Sciences and Technology

(INSAT), Carthage University,
Tunis, Tunisia

samir.benahmed@fst.rnu.tn

ABSTRACT
This paper deals with the problem of scheduling the mixed
workload of both homogeneous multiprocessor on-line and
off-line periodic tasks in a critical reconfigurable real-time
environment by a genetic algorithm. Two forms of auto-
matic reconfigurations which are assumed to be applied at
run-time: Addition-Removal of tasks or just modifications
of their temporal parameters: worst case execution time
(WCET) and/or deadlines. Nevertheless, when such a sce-
nario is applied to save the system at the occurrence of
hardware-software faults, or to improve its performance, some
real-time properties can be violated at run-time. We de-
fine an Intelligent Agent that automatically checks the sys-
tem’s feasibility after any reconfiguration scenario to verify
if all tasks meet the required deadlines after a reconfigu-
ration scenario was applied on a multiprocessor embedded
real-time system. Indeed, if the system is unfeasible, then
the proposed genetic algorithm dynamically provides a solu-
tion that meets real-time constraints. This genetic algorithm
based on a highly efficient decoding procedure, strongly im-
proves the quality of real-time scheduling in a critical en-
vironment. The effectiveness and the performance of the
designed approach is evaluated through simulation studies
illustrated by testing Hopper’s benchmark results.

1. INTRODUCTION
The packing problems have been widely studied during

the last three decades, as they are often faced in industry.
The rectangular pieces packing problem, cutting also from

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO’14, July 12–16, 2014, Vancouver, BC, Canada.
Copyright 2014 ACM 978-1-4503-2881-4/14/07 ...$15.00.
http://dx.doi.org/10.1145/2598394.2605440 .

rectangular board, is one particular case of this set of prob-
lems. The aim is often to achieve the minimum trim loss
[15]. We had done some studies on packing problems in
[10] and some other problems were studied in [16]. In this
paper we propose a real-time genetic scheduling approach
for the construction of optimization algorithms to the place-
ment and scheduling problems such as packing and place-
ment problems whose involve constructing an arrangement
of items that minimizes the total space required by the ar-
rangement. This is mainly due to the constraints imposed
by the industrial applications, e.g. textile, wood, steel and
embedded control systems. A recent survey on packing prob-
lems is given in [9]. In this paper, we specifically consider
the two-dimensional (2D) rectangular strip packing prob-
lem based on a new real-time genetic scheduling approach,
named RTGS algorithm. The input is a list of n rectangles
that represents a set of n tasks with their dimensions (length
and width that represent the worst case execution time and
the deadline). The goal is to place the rectangles without
overlap into a single reconfigurable device (shape) of width
W and minimum height H. We further restrict ourselves to
the oriented, orthogonal variation, where rectangles (tasks)
must be placed parallel to the horizontal and vertical axes,
and the rectangles can be rotated on each reconfiguration
scenario. Further, for our test cases, all dimensions are inte-
gers. Like most placement problems, 2D rectangular place-
ment (even with these restrictions) is NP-hard. Finally, our
algorithm naturally solves a more general problem: given a
set of tasks and a target rectangle, find a placement of a
subset of those tasks which gives an optimal packing of the
shape. This procedure is the our main contribution which
is an efficient heuristic for online scheduling of hard real-
time tasks to partially reconfigurable devices applicable to
2D area model. Numerical examples also showed the supe-
riority of the proposed heuristic compared with the hopper
benchmarks results. This paper is organized as follows. In
Section 2, we provide the model assumptions and the related
work. In Section 3, we present the resolution methods which
use the bottom left algorithm and the guillotine constraint.

993

In Section 4, we show how our real-time genetic schedul-
ing algorithm can be adapted for solving the general 2DPS
problem. In Section 5, we undertake a comparative study of
our proposed algorithm and evaluate its performance for the
2DPS problem using benchmark problems from the litera-
ture. Finally, in Section 6, we summarize the contributions
of this paper and explain its possible extensions.

2. MODEL ASSUMPTIONS AND RELATED
WORK

This section first presents the modeling of the reconfig-
urable resource (device) and the hardware tasks. Then,
we introduce some related work in the 2D area model and
we discuss practical limitations of this model under current
technology. Finally, we introduce the contribution of this
paper.

2.1 Definitions and Known Preliminaries
In this subsection, we will present the task model and the

genetic algorithm definitions.

2.1.1 Task Model
A hardware task is a synthesized digital circuit that has

been preplaced and prerouted. The task is stored in a position-
independent way and can be relocated to different locations
on the reconfigurable device by the operating system [6].
In our work, we will adopt this assumption and we will check
for a good way to place and schedule hardware tasks based
on their structural and timing characteristics.
According to [6], the structural characteristics of Operat-
ing Systems (OS) tasks are the size (area) and the shape.
By this way, the authors consider that hardware tasks have
a certain area requirements, given in numbers of reconfig-
urable units (RCUs). Like the most research works, we will
model also in our work, the shape of a hardware task by a
rectangle including all RCUs as well as the routing resources
used by the task. Indeed, rectangular shapes simplify the
task placement. In contrast, they lead to unused area inside
the rectangle. In our original work, our goal is to minimize
this unused area.
To formalize our work, the timing characteristics that might
be known in advance are the arrival time ai, the worst case
execution time (WCET) ci, and the deadline di of each task
Ti such that ai + ci ≤ di and 1 ≤ i ≤ n, of the n real-time
tasks to be placed and scheduled in the shape. We assume
that all tasks arrive at time ai = 0, and we call them syn-
chronous tasks.
Also, the structure model for each task Ti is a rectangular
area of reconfigurable units given by its width and height, wi

x hi. the hardware task area of the reconfigurable device is
modeled as a rectangular area shape W x H of reconfigurable
units.

2.1.2 Genetic Algorithm (GA)

A genetic algorithm (GA) is a procedure used to find ap-
proximate solutions to search problems through application
of the principles of evolutionary biology. Genetic algorithms
use biologically inspired techniques such as genetic inheri-
tance, natural selection, mutation, and sexual reproduction
(recombination, or crossover). For this problem, members
of a space of candidate solutions, called individuals, are rep-
resented using abstract representations called chromosomes.

The GA consists of an iterative process that evolves a work-
ing set of individuals called a population toward an objective
function, or fitness function. The evolutionary process of a
GA is a highly simplified and stylized simulation of the bi-
ological version. It starts from a population of individuals
randomly generated according to some probability distribu-
tion, usually uniform and updates this population in steps
called generations. Each generation, multiple individuals are
randomly selected from the current population based upon
some application of fitness, bred using crossover, and modi-
fied through mutation to form a new population [2].

2.2 Related Work
In general, packing problems are important in manufac-

turing settings; for example, one might need n specific rect-
angular pieces of glass to put together a certain piece of
furniture, and the goal is to cut those pieces from the min-
imum height fixed-width piece of glass. The more general
version of the problem allows for irregular shapes, which is
required for certain manufacturing problems such as cloth-
ing production.
Nowadays, the problem of real-time placement and schedul-
ing in the 2D area model is widely studied and has often been
used in recent research works because it’s not enabled by cur-
rently Field Programmable Gate Arrays (FPGAs) technol-
ogy in contrast to the 1D model. Indeed, FPGAs are semi-
conductor devices that are based around a matrix of con-
figurable logic blocks (CLBs) connected via programmable
interconnects. FPGAs can be reprogrammed to desired ap-
plication or functionality requirements after manufacturing.
This feature distinguishes FPGAs from Application Specific
Integrated Circuits (ASICs), which are custom manufac-
tured for specific design tasks. For more information about
the 1D and the 2D models, readers can see [6]. Indeed, the
real-time scheduling of OS tasks in embedded systems re-
quires efficient algorithms. In [3], [4], Brebner proposed an
operating system approach for partial reconfigurable hard-
ware. Furthermore, the problem of placement in the 2D
area model has been proposed by Barzagan et al. in [1]. In
[14], the authors discuss an online scenario where a resource
manager schedules arriving tasks to a farm of FPGAs. Since
each task occupies exactly one FPGA, there is no partial re-
configuration and placement is not an issue [6].
Burns et al., [5] describe several operating system functions,
including a 2D transform manager that performs translation
and rotation operations on tasks to better fit them to the
device [6]. In [8] and [7], the authors investigate compaction,
i.e., rearrangement executing tasks; in the 2D area model.
In our work, we will adopt the rotation operation to find
a best fit of the tasks in the shape. This method leads to
maximize the contiguous free area and as a consequence, the
chance of successful future placements of new arrival tasks
was increased and the internal fragmentation was decreased.
In the related work, several algorithms and approaches were
conducted with variants of the first-fit, best-fit, worst-fit and
bottom-left (BL) bin packing algorithms.
In our work and based on our previously published confer-
ence contribution in [10], we will adopt the BL algorithm for
the placement of hardware tasks, represented by a number
of rectangular sub-tasks, with transformations that consist
of a series of rotation and flip operations in order to reduce
internal fragmentation.

994

2.3 Problems and limitations
According to the previous related work, we can deduce

that; the main abstract is that tasks are modeled as relo-
catable rectangles that can be placed anywhere on the de-
vice in the 2D area model [6]. This relocatibility raises a
number of investigations concerning the device homogeneity
such as dedicated memories, task communication, embedded
multipliers, real-time constraints and the partial reconfigu-
ration. Task communication and real-time constraints are
unresolved issue in the 2D area model where some tasks
communicate with each other and with I/O devices need
online routing and online delay estimation of their external
signals. Furthermore, no analysis of the problem of commu-
nication infrastructure is provided.

2.4 Contribution of this Paper
The goal of our research problem is to minimize the waste

and the total used space in the area model used. The area
model used in our approach is the 2D model shown in fig-
ure 1, where the reconfigurable device is represented by a
rectangular area of RCUs. So, our interest is to find a best
placement approach based on a subset of tasks which gives
an optimal placement of tasks inside the shape. However,
to the best of our knowledge, the only work with the online
placement and scheduling of OS tasks with the communi-
cation mechanism is that we propose in this original work.
Our placement method is based on the BL algorithm with
guillotine method, that we will see in details in the next sub-
section, which leaves some space between tasks and performs
online routing of communication channels as a communica-
tion network that is not affected by user reconfigurations
and rearrangement of tasks based on the genetic algorithm
method. For this reason, we can believe of our proposed
work advantages over the previous works in terms of schedul-
ing performance. A significant improvement of the proposed
approach results, over those obtained by the Hopper results,
has been achieved.

3. GUILLOTINABLE TASK PLACEMENT
In this section, we explain the techniques used to resolve

placement and scheduling (PS) problems based on the Bottom-
Left heuristic which is a foundation work by [11]. For this
reason, we describe it in some details.

3.1 Bottom Left (BL) Algorithm
The Bottom-Left (BL) heuristic was introduced in [11].

The placement Bottom Left (BL) algorithm using the per-
mutation is executed to place rectangular pieces into the
main sheet (object) in the two dimensional cutting and place-
ment problems. In our work, we will adopt also this algo-
rithm for the placement of real-time tasks on the reconfig-
urable device. We can describe the BL algorithm process
using the following definition: This Bottom-Left placement
algorithm takes a reconfigurable device (shape) and an in-
put sequence of tasks and their allowable rotations (rotation
criteria). The algorithm progresses placement approach by
placing the first task in the lower left corner of the shape in
its most efficient orientation (the orientation that yields the
smallest bounding rectangle device height within the set of
rotation criteria). With subsequent tasks, a valid location
for placement is found by testing for intersections and con-
tainment. If the task is not intersecting by (or containing)
other already placed tasks, then the location of the task is

Figure 1: Guillotine Configuration.

valid and therefore can be assigned to the shape. When a
task is in a position that intersects with already assigned
tasks, we use the rotation technique. The process continues
as before with overlap/intersection tests and resolution until
the task does not intersect and can be placed. Placement
procedure with BL algorithm is completed when all tasks
have been assigned to the reconfigurable device (shape).

3.2 Guillotine Placement Problems
The two-dimensional guillotine-cutting problem has been

widely studied in the operational research literature. The
unrestricted problem is known to be NP-hard. When cut-
ting specific materials like glass it may be required that the
rectangles can be cut out of the bin by a number of guillotine
cuts which can be thought of as edge-to-edge cuts. The most
common constraint requires guillotine cutting patterns; i.e.,
patterns where pieces can be obtained using a series of hor-
izontal and vertical cuts. This constraint demands that all
placed pieces are reproducible through a series of guillotine
cuts that can cut the bin (pattern) into pieces so that each
piece contains a box and no box has been intersected by a
cut.
In our model placement and scheduling, the outer box rep-
resents the reconfigurable device which is represented by a
rectangular area of reconfigurable units (RCUs) and the in-
ner numbered boxes represent a hardware tasks. In our work
also, we mean by a guillotine placement, the method through
it when we apply a series of cuts through a reconfigurable
device (shape) from one edge to the opposite edge and par-
allel to the other two edges of the shape in a straight line,
there is no one task that can be deteriorated. That is, there
should exist a series of face parallel straight cuts.
In our example, the first tasks placement is guillotinable

and the solution to obtain a guillotine placement is feasible
(Figure 1). In this figure, cut task 1, then task 3, then task
2 and the rest is the task 4 in order to obtain a feasible cut.
This feasibility was assured in our work by the bottom left
algorithm designed for a guillotine real-time reconfigurable
scheduling specifically and only creates guillotine feasible
cuts, while the second placement is not guillotinable and
the solution to obtain a guillotine placement is unfeasible
(Figure 2).

995

Figure 2: Non-Guillotine Configuration.

Notation and example:
Alternatively, a task set to be placed in the shape can be
represented by a permutation π [13]. π = (i1, ..., in) is a
permutation and i is the index of the task (Ti). The per-
mutation represents the sequence in which the tasks (rect-
angles) are placed. The advantage of this data structure
is the easier creation of new permutations by changing the
sequence. As a consequence of the variable data structure,
every permutation has to be assigned to a unique placement
reconfigurable device (shape).
Allocation of some of tasks with BL is illustrated in Figure 3.

In π1 = (−1, 3, −2, 4)

task 1 is placed first to the bottom and then to the left as
far as possible with a rotation of 90o, (the sign - represents
a rotation of the piece by 90o). Tasks 3 and 2 are placed in
the same manner with a rotation of the task 2. Then, task
4 is placed in its optimal location.

In π2 = (−1, 2, 3, 4)

task 1 is placed first to the bottom and then to the left
as far as possible with a rotation. Task 2 is then placed in
its optimal location and tasks 3 and 4 are placed after that.

In addition, the cost of the BL-algorithm is Θ(n2). This
based on the fact, that each rectangle (task) Ti can be shifted
a maximum of i times, because each shift is limited by one
of the i - 1 placed rectangles (tasks) or by the corners of the
shape. Hence, the cost of placing task Ti is Θ(i) and the
whole cost amounts to Θ(n2).

4. REAL-TIME GENETIC SCHEDULING AP-
PROACH

A genetic search algorithm is a heuristic search process
that resembles natural selection. There are many variations
and refinements, but any genetic algorithm has the features
of reproduction, crossover and mutation. Initially a popula-

Figure 3: 2 possible permutations of tasks (1, 2, 3, 4).

tion is selected, and by means of crossovers among members
of the population or mutation of members, the better of the
population will remain. In the case of our approach the
real-time scheduling is based on genetic algorithm. For this
reason we call this scheduling method as a real-time genetic
scheduling approach.

4.1 Fitness-Function
For the genetic algorithm, the evaluation of a model set is

obligatory, this is represented by a Fitness-Function f: π →
R+ with the property f(πi) ≥ f(πj) if πi is better than πj .
The Fitness-Function value is inversely proportional to the
height of a model set: f(π) = 1/h(π);
Where h(π) is the model set height follow to the permuta-
tion π created by the BL algorithm.
π represents one permutation (arrangement) of rectangu-
lar tasks. The following picture (figure 3) is an example of
placement of 4 tasks (1, 2, 3, 4).

To reduce the internal waste we have developed two vari-
ants of the placement (arrangement) as shown in the figure
3 with the same height of the rectangle (shape) but differ-
ent in quality. By logic they have not the same Fitness
Function. With the last definition of the Fitness Function
(f(π) = 1/h(π)) if two task set placement have the same
height, their Fitness Functions are equal even if one is bet-
ter than the other. For this reason, it’s necessary to define
another Fitness Function better than this one. Following
the last picture (figure 3), it’s clear that π2 is better than
π1 because the remaining space in the result configuration
is better with π2. With this comparison, and if we consider
only one objective which is the wastage minimization. Our
Fitness Function is given by the following formula:

F(π) = H(π) + Area (worst remaining space)/h(π)* width

Where:

• H(π) = H - h(π), where H is a maximum given height
that guarantee H(π) be a positive value.
• h(π) is the model set height follow to the permutation π.
• Area (worst remaining space) is the area of the remain-

996

ing space in the placement (arrangement) model following
to the permutation π.
• width is a shape (reconfigurable device) width dimension.
• h(π)* width is the rectangle area occupied by the placed
rectangles (tasks).

4.2 Initialization
It’s evident that genetic algorithms uses m objects. Here

the m objects are m permutations: π1, π2,.., πm. We assign
for each arrangement it’s Fitness Function value: fi = f(πi);
i = 1, 2, ...,m.
We consider the permutation πi and it’s Fitness Function fi
together like one individual Ai: Ai = (πi, fi).

4.3 The Tournament Selection
The principle of selection by tournament increases the

chances for poor individuals (arrangements) to participate
in the improvement of the population. The principle is very
quick to implement. A tournament consists of a meeting
between two arrangements (parents) at random in the pop-
ulation. The tournament winner is the arrangement better
P1 (parent P1). We repeat this method to select the second
best arrangement P2 (parent P2). The principle of the ar-
rangement (parent) P selection is the following:
1. (P1, P2) = random(|n|).
2. P = random(P1, P2).

4.4 Recombination
The crossover operator is special. Indeed, in order to re-

spect the constraint that every task which is copied did not
been repeated another time in order to respect the pieces
unicity and creates two solutions or childs (permutations)
πinew and πjnew by combining two parents πi and πj . For
each pair of parents (permutations), two crossover integers
P1 and P2 are randomly chosen (generated) with the con-
dition 1 ≤ P1, P2 ≤ n. In the random position P1, the
crossover operator copy P2 elements from πi for the begin-
ning of πinew and copy P2 elements from πj for the begin-
ning of πjnew. Then, πinew is completed by the remaining
elements of πj with respect to the same order of appearance
and πjnew is completed also by the remaining elements of
πi with respect also to the same order of appearance.
Example
πi = (1, −2, 3, 4, −5, 6) and πj = (−6, 4, 2, 5, −3, 1)

if (P1 = 2 and P2 = 3) then
πinew(1) = πi(P1) = πi(2) = -2;
πinew(2) = πi(P1+1) = πi(3) = 3;
πinew(3) = πi(P1+2) = 4;
πinew(4) = πj(1) = -6;
πinew(5) = πj(4) = 5;
πinew(6) = πj(6) = 1;
Then, πi new = (-2, 3, 4, -6, 5, 1). With the same method,
πj new = (4, 2, 5, 1, 3, 6). So, with the crossover processes
we get m new permutations.

4.5 Mutation
Mutation is a genetic operator that alters one or more gene

values in a chromosome from its initial state. This can result
in entirely new gene values being added to the gene pool.
With these new gene values, the genetic algorithm may be
able to arrive at better solution than was previously possible.

Mutation is an important part of the genetic search when
it helps to prevent the population from stagnating at any
local optima. Mutation occurs during evolution according
to a user-definable mutation probability. This probability
should usually be set fairly low (0.01 is a good first choice). If
it is set to high, the search will turn into a primitive random
search. For this case, we consider in our work the model
of task set X composed by n permutations (arrangements)
which are represented by a rectangular tasks. The mutation
probability was fixed in our work to 0.05 as a good choice.
We adopt the change of one task by another of task set as
an elementary transformation and we evaluate the Fitness-
Function f for each new placement set. This algorithm was
proposed and evaluated in a series of numerical experiments
that are run on problem instances taken from the literature,
as well as on randomly generated instances which proven
our approach.

5. EXPERIMENTATION RESULTS AND DIS-
CUSSION

In this section we will present the experimentation results
and the discussion part in order to demonstrate the perfor-
mance of our method.

5.1 Simulation Results on Hopper Benchmarks
Our proposed algorithm was tested against the Hopper

results. The results indicate that performance of our real-
time genetic scheduling (RTGS) algorithm is better than
Hopper algorithm represented by the low, average and better
results. We now present experimental results demonstrating
the effectiveness of our method for finding perfect placement
task set. We use the benchmarks developed by Hopper.
Those benchmarks contain collections with size ranging from
17 to 199 rectangles (tasks), all the instances are tested into
a single rectangle as a reconfigurable device (shape) of width
(W = 300) and minimum height (H = 250).

Algorithm RTGS (%) Hopper (%)

Data N X Low Average Better

t1c.xls 17 93.12 91.62 92.67 83.47

t2a.xls 25 94.98 93.73 93.95 95.73

t2b.xls 25 92.96 92.61 93.10 88.16

t2c.xls 25 92.87 92.17 92.17 83.68

t3a.xls 29 95.32 93.46 93.90 90.91

t3b.xls 29 94.74 92.94 93.46 89.68

t3c.xls 29 93.42 93.15 93.46 88.46

t4a.xls 49 97.89 94.38 95.24 89.68

t4b.xls 49 96.78 95.10 95.24 89.68

t4c.xls 49 96.15 96.15 96.15 88.49

t5a.xls 73 95.78 95.14 95.24 93.89

t5b.xls 73 96.82 95.92 96.15 89.28

t5c.xls 73 95.33 95.14 95.24 88.10

t6a.xls 97 96.48 96.75 96.75 94.48

t6b.xls 97 96.79 95.64 96.15 93.89

t6c.xls 97 96.34 95.92 96.15 95.69

t7a.xls 199 97.56 97.09 97.09 95.23

t7b.xls 199 97.69 96.36 96.93 96.15

t7c.xls 199 98.71 96.69 97.14 93.90

Table 1: Comparison results applied to Hopper
Benchmarks

997

Results are conducted by many runs (20 runs) and we are
taken the average performance results to present the effec-
tiveness of our algorithm RTGS against the hopper results
[12].

5.2 Discussion
We evaluate our hybrid algorithm on the guillotinable in-

stances from this set by an interesting comparison between
the running results which are summarized in Table 1. This
table reports, for each collection of instances (files) the num-
ber of items or placed rectangles (a set of tasks in our case
study), and the average of occupied space of Hopper results
(Hopper (%)) and our real-time genetic scheduling algorithm
(RTGS (%)). By Examining Table 1 and considering only
those instances, we prove the performance of our proposed
algorithm and we observe that the real-time genetic schedul-
ing algorithm (RTGS (%)) performs better than Hopper re-
sults (Hopper (%)), and offer more gains in terms of occupied
space, and minimum waste of shape.

6. CONCLUSION AND FUTURE WORK
In this paper we have proposed a real-time genetic schedul-

ing approach for solving the constrained two-dimensional
placement (2DP) problem. Starting from a packing with
height H, this approach tries to solve the (2DP) problem
with decreasing values of H while avoiding solutions with
tall and thin wasted spaces. A specific fitness function f is
designed to guide the search. Computational results show
that our approach is very promising. The approach was
tested and the results indicate that performance of our orig-
inal algorithm is better than others. Since we were unable
to find a counter example for which the approach fails, we
conjecture that it always finds an optimal constrained guil-
lotine cutting. This should be extended to include other
types such as asynchronous arrival time and aperiodic tasks
problems. Further research in this area will include study-
ing the impact of rectangular devices representing tasks on
guillotine placement and scheduling problems.

7. ACKNOWLEDGMENTS
The authors would like to thank the reviewers of this work

for their valuable comments.

8. REFERENCES
[1] K. R. Bazargan, K. and M. Sarrafzadeh. Fast template

placement for reconfigurable computing systems. IEEE
Design and Test of Computers, 17(1):68–83, May 2000.

[2] J. E. Beasley. Algorithms for unconstrained
two-dimensional guillotine cutting. Operational
Research Society, 36:297–306, 1985.

[3] G. Brebner. A virtual hardware operating system for
the xilinx xc6200. In Int’l Workshop
Field-Programmable Logic and Applications (FPL)
Proceedings, pages 327–336, 1996.

[4] G. Brebner. The Swappable Logic Unit: A Paradigm
for Virtual Hardwarel. 1997.

[5] D. A. H. J. S. S. Burns, J. and M. Wit. A dynamic
reconfiguration run-time system. pages 66–75, 1997.

[6] H. W. Christoph, S. and M. Platzner. Operating
systems for reconfigurable embedded platforms:
Online scheduling of real-time tasks. IEEE
Transactions On Computers, 53(11):1393–1407, 2004.

[7] E. H. M. M. S. H. Diessel, O. and B. Schmidt.
Dynamic scheduling of tasks on partially
reconfigurable fpgas. IEEE Proc. Computers and
Digital Techniques, 147(3):181–188, May 2000.

[8] M. Diessel and H. ElGindy. On Scheduling Dynamic
FPGA Reconfigurations. 1998.

[9] K. Dowsland and W. Dowsland. Packing problems.
European Journal of Operational Research, 56:2–14,
1992.

[10] H. Gharsellaoui and H. Hasni. On a genetic-tabu
search based algorithm for two-dimensional guillotine
cutting problems. IJAPUC, 4(2):26–40, 2012.

[11] P. Gilmore and R. Gomory. The theory and
computation of knapsack functions. Operations
Research, 147:1045–1074, May 1996.

[12] E. Hopper and B. Turton. Problem generators for
rectangular packing problems. Studia Informatica
Universalis, 2(1):123–136, 2002.

[13] S. Jakobs. On genetic algorithms for packing polygons.
Euro. J. of Op. Res., 88:165–181, 1996.

[14] T. K. Y. V. S. J. Jean, J.S. and R. Cook. Dynamic
reconfiguration to support concurrent applications.
IEEE Trans. Computers, 48(6):591–602, June 1999.

[15] H. Teng and D. Liu. An improved bl-algorithm for
genetic algorithm of the orthogonal packing of
rectangles. European Journal of Operational Research,
112:413–420, 1999.

[16] Y. Z. Teng, H.F. and X. Gao. Layout optimization for
the dishes installed on a rotating table. Science in
China (series A), 1994.

998

