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ABSTRACT

A team of agents that cooperate to solve a problem together
can handle many complex tasks that would not be possi-
ble without cooperation. While the benefit is clear, there
are still many open questions in how best to achieve this
cooperation. In this paper we focus on the role of commu-
nication in allowing agents to evolve effective cooperation
for a prey capture task. Previous studies of this task have
shown mixed results for the benefit of direct communication
among predators, and we investigate potential explanations
for these seemingly contradictory outcomes. We start by
replicating the results of a study that found that agents with
the ability to communicate actually performed worse than
those without when each member of a team was evolved in a
separate population [8]. The simulated world used for these
experiments is very simple, and we hypothesize that com-
munication would become beneficial in a similar but more
complex environment. We test several methods of increasing
the problem complexity, but find that at best communicat-
ing predators perform equally as well as those that cannot
communicate. We thus propose that the representation may
hinder the success of communication in this environment.
The behavior of each predator is encoded in a neural net-
work, and the networks with communication have 6 inputs as
opposed to just 2 for the standard network, giving commu-
nicating networks more than twice as many links for which
to evolve weights. Another study using a relatively similar
environment but genetic programming as a representation
finds that communication is clearly beneficial for prey cap-
ture [4]. We hypothesize that adding communication is less
costly to these genetic programs as compared to the earlier
neural networks and outline experiments to test this theory.
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1. INTRODUCTION
An Evolutionary Algorithms (EA) applies the basic forces

of biological evolution (differential fitness, inherited traits
with variation, and natural selection) to a population of
computational ”genomes”, each of which encodes an algo-
rithm that attempts to solve some problem. The goal of
these algorithms is to discover novel solutions to computa-
tional problems. As EAs are applied to more complex prob-
lems, it is necessary to incorporate more complex dynamics
of natural evolution, such as interaction between evolving
agents. Many problems that would be impossible for a single
individual to solve could be solved by a population of agents
working together. This leads to applying EAs to evolve the
behavior of agents in a multiagent system (MAS), defined as
a group of autonomous agents that interact with each other
in a common environment. Several issues must be overcome
in order to evolve a population of autonomous agents to co-
operatively complete a task, but we focus on the question of
what types of interaction should be possible between agents.
In particular, we are interested in determining if and when
explicit communication between agents becomes beneficial.

A major theme in MAS is emergence; complex behavior
that arises at the global level due to the relatively simple
actions and interactions of the multiple autonomous agents
that make up the system. In many biological species, popu-
lations of individuals cooperate without any means of direct
communication; technically these individuals are not even
”aware” that the rest of the population exists. This type
of emergent complex system behavior evolves through indi-
rect feedback received by each organism that differs based
on their individual behavior. Despite the impressive capa-
bilities of these emergent systems, a more direct form of
communication has evolved in a large number of biological
species, and is an integral trait in the many social species
[6]. This direct communication comes at a relatively high
cost, in brain mass, development time, energy/resources ex-
pended, and the danger of giving information away to hostile
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or competing entities [9]. The prevalence of direct commu-
nication in the natural world implies that a communicating
individual receives a benefit that outweighs the cost [2]. We
hypothesize that direct communication allows for more com-
plex cooperative interactions that are necessary to perform
more complex tasks. Therefore, simpler forms of coopera-
tion will prevail until a problem becomes sufficiently complex
to require more than indirect interactions to solve.

A popular framework in which to study questions of co-
ordination and cooperation in a multi-agent system is the
predator-prey model. The details vary, but the general setup
is for multiple predators to attempt to capture a single prey,
where the prey can always allude any one predator so a team
of predators must work together in order to succeed. Pre-
vious work on the benefit of direct communication to the
success of predators in this model has yielded mixed results.
Several studies have shown a clear benefit to various forms
of communication [4], [3]. However others have found that
in many situations simple strategies outperform more com-
plex, general strategies such as those using communication
[5], or even that providing predators with the ability to com-
municate is detrimental to their success [8]. We investigate
these widely diverse results in an effort to discover the key
factors that contribute to the successful evolution of com-
munication.

Our initial work focuses on the experiments performed by
Miikkulainen and Yong in [8]. The simulated world con-
tained one prey agent that used a hard-coded escape strat-
egy, and three predator agents each represented by a neural
network evolved in a separate population. The incentives
for the predators were designed to make cooperation clearly
beneficial for the individual; the question was not whether
the predators would cooperate, but rather whether or not
the ability to communicate would aid their coordination.
The authors found that simply enforcing separate popula-
tions is sufficient to cause a group of individuals unaware
of each other to evolve different fixed roles to successfully
coordinate prey capture. In fact they found that predators
took much longer to evolve successful prey capture when
they were given the ability to communicate with each other
directly. We hypothesize that the simple environment and
relatively unintelligent prey allows basic fixed-role strategies
to evolve very quickly that consistently succeed in catching
the prey. When these simple strategies are able to perfectly
solve the problem, the ability to communicate is simply an
extra burden that greatly increases the size of the search
space. We raise the complexity of the environment and in-
telligence of the prey in several ways in an attempt to bal-
ance the cost of communication with the benefit. However,
we find that communicating predators never outperform un-
aware predators, at best the two evolve equally well.

We therefore explore a new hypothesis that proposes the
issue may be in using a neural network representation for
predator behavior. In a seemingly very similar experimental
setup to ours, Luke and Spector [4] found clear significant
benefits to providing agents with the ability to communi-
cate. Their work, however, used genetic programming to
encode predator behavior instead of neural networks. We
propose several experiments to isolate and confirm or deny
that the representation difference is the key factor causing
the conflicting results.

2. EXPERIMENTS AND RESULTS

2.1 Confirming Previous Results
We first replicate the original experiments of [8] with a few

modifications to confirm that we see the same results given
their simulation environment. The authors tested three vari-
ations of predators, one in which they could sense only the
location of the prey (unaware), one in which they also could
locate each other (communicating), and one in which they
were all controlled by one network. We focus on only the
first two types as the centrally controlled network does not
relate to our study of communication. The input/output
structure of the two types of networks are shown in figure 1.

Figure 1: Input/output structure of the two types
of neural networks. The outputs of a predator’s net-
work always consisted of 5 nodes, 4 representing the
weight of each cardinal direction used to determine
the final movement direction and 1 representing the
speed at which to move. The unaware predator
networks received only the x and y offsets of the
prey from themselves as inputs. The communicat-
ing predator networks also received the same offsets
for the prey plus the x and y offsets of each of the
other two predators.

Our experiments use the same method as the original work
of enforced separate populations; each predator’s network
evolves in a population completely isolated from the other
two predators except in the step of fitness evaluation. Our
modified version does not use separate populations for each
neuron as in the original experiments; that method is tan-
gential to the benefit of communication. To evaluate fitness
one network is chosen from each population and the three
resulting predators are all initially placed in one corner of a
100x100 toroidal world. A single prey is placed at a random
position in the world, and moves at the maximum speed
the predators are capable of. All agents move as if simul-
taneously, until any one predator reaches a distance of 1 or
less from the prey (the prey is caught) or 475 steps pass
(sufficient time for a predator to traverse the entire world
diagonally). All 3 predators then receive the same fitness
for that simulation, calculated as follows:

• If caught: 200 - (Ave. distance between the prey and
each predator)
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• If not caught: (Ave. initial pred-prey distance) - (Ave.
final pred-prey distance)

Figure 2 diagrams the three predator populations and the
simulated world.

Figure 2: Diagram of the middle of a fitness evalu-
ation. One predator network is chosen from each of
the 3 populations to form a team that attempts to
catch the prey in a simulated world. A single fitness
value results based on the performance of the entire
team and is assigned to each individual predator.

The predator populations each evolve 250 individuals. Ev-
ery predator network is tested in 10 simulations, each with a
different team, and the average of the 10 results determines
its fitness for that generation. At the end of each genera-
tion, the most fit individual is selected from each of the three
populations and the resulting team is evaluated by a bench-
mark test to determine the performance of the generation.
The team is tested 9 times using 9 different fixed starting
locations for the prey, and both the average fitness and the
number of tests in which the prey is caught are recorded for
that generation.

Following the method used in [8], the prey’s strategy pro-
gresses through several levels of difficulty as the predators
evolve. Each time the final benchmark for a generation re-
sults in the prey being caught in 7 or more of the 9 tests,
the prey’s escape strategy rises a level for the next genera-
tion. The strategy never decreases in level. This is neces-
sary as otherwise the initial generations of predators can’t
come close enough to the prey to generate any useful se-
lection. We experimented with coevolving the prey but it
added complexity and did not result in more effective prey
escape behavior than we could program by hand. The ex-
periments in [8] used 5 levels of prey strategies, progressing
from a stationary prey to one moving at full speed, although
always directly away from the nearest predator. The whole

task is considered solved when the prey reaches its highest
strategy level and the benchmark for a generation results in
the prey being caught in at least 7 of the 9 tests.

We initially allowed the neural network structure (links
and hidden nodes) to evolve along with link weights, but we
found that this was detrimental in this particular environ-
ment to the successful evolution of communicating preda-
tors. The initially slow prey movement means that a preda-
tor can catch the prey by running straight towards it, and
indeed this solution is quickly found by unaware predators.
It takes longer for the initially more complex communicat-
ing predators to also reach this solution, but the assumption
is that as the prey strategy increases in difficulty, the extra
complexity of communication will become worthwhile. How-
ever, when the network structure itself is allowed to evolve,
the communicating networks find the solution to the initially
simple capture task by removing those currently unhelpful
links relating to the location of the other predators. The
early evolution of these networks is largely focused on mak-
ing them less complex, thus removing any future advantage
they may have gained. We experimented with varying lev-
els of structural evolution and numbers of hidden nodes and
found very little difference in the results of trials with un-
aware predators, but a significant improvement in the perfor-
mance of communicating predators when the structure was
completely fixed as a fully connected network with a small
number of hidden nodes (there was no significant difference
between 4 and 8 hidden nodes). All of our following exper-
iments use fixed topology, fully connected networks with 8
hidden nodes.

Table 1 shows a comparison of the original results from
[8] and our results in replicating those experiments with the
few changes described earlier. Our results are significantly
different than those reported in [8] (p<.01 for both the un-
aware and communicating predators), but they are similar
enough to seem reasonable and clearly show the same large
increase in the time to evolve a solution when communica-
tion is included (p<.001 unaware environment solves prob-
lem in fewer generations than communicating environment).

Table 1: Comparison of original results from [8] and
our results in a similar environment. The mean and
standard deviation of 30 trials are given for the num-
ber of generations to catch the highest level of prey
in at least 7/9 benchmark tests.

Unaware Communicating
results from [8] mean=18, std=7 mean=87, std=22
our results mean=9.5, std=3 mean=31, std=4

2.2 Increasing Complexity - More Intelligent
Prey

We analyzed the strategies that evolved in our initial ex-
periments and found that the trapping method shown in fig-
ure 3 was the most common in both communicating and un-
aware environments. This strategy requires only two preda-
tors to coordinate by approaching the prey from opposite
sides (though the 3rd often helps in the beginning). The
prey only senses the nearest predator and runs directly away
from it. Therefore if 2 predators can position themselves
so the prey is on the straight line between them, they can
close in from either side while the prey is stuck jiggling
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back and forth between them, effectively sitting still wait-
ing to be caught. The 3rd predator often helps initially to
”herd” the prey onto the straight line between the other two.
Other slightly different variations of this strategy evolved,
but there was no apparent difference between the strategies
of communicating and unaware predators.

Figure 3: Diagram showing a common strategy that
evolves to catch prey that runs directly away from
only the closest predator. The circles represent the
positions of the predators and the diamond repre-
sents the prey. The arrows show the directions each
individual is moving at that time. The diagram on
the left shows the state of the simulation part way
through an evaluation of a predator team. In this
configuration, the prey senses that the closest preda-
tor is the one directly to the north of it, and so it
moves directly south. Meanwhile the two trapping
predators each move one step closer to the prey.
This sequence of movements leaves the prey clos-
est to the predator directly to the south, as shown
in the right diagram, and thus causes the prey to
now move due north. Eventually the two trapping
predators close in and catch the prey.

An examination of the evolved neural networks themselves
showed that there is more nuance than we could see simply
by looking at the predator behaviors in simulation.. Many
communicating predators evolved the same trapping behav-
ior as the unaware predators, but used the positions of team-
mates more than the position of the prey to determine their
own movement. Figure 4 shows the relative weight of each
input on each output for an example communicating preda-
tor’s neural network. The inputs giving the location offsets
of the prey, pX and pY, contribute less to the output direc-
tion than the inputs giving the location offsets of the other
two predators.

Despite the fact that many predators are thus using com-
munication, it is only a byproduct of the fact that those
input nodes exist, not evidence that communication itself is
actually useful in any way. Given that the same behavior
can evolve to work just as well in far less time without any
communication, there is simply no incentive to use commu-
nication to achieve more complex behavior. We hypothesize
that we must increase the complexity of the problem in order
for the usefulness of communication to outweigh its cost.

Our first method of increasing complexity stems directly
from the frustration of watching the prey wiggle back and
forth between two trapping predators when it could easily
escape by moving away from the line between them. We

Figure 4: Simplified diagram of a communicating
predator’s neural network. The hidden and bias
nodes are not shown, only the input and output
nodes. The inputs are the location offset of the prey
(pX is the offset to the east and pY is the offset to
the north), and the offsets of the other two preda-
tors (X1,Y1 and X2,Y2. The N, S, E, and W outputs
are the weights of the four cardinal directions used
in calculating the actual direction to move, and out-
put V is the speed of the movement. The width of
the line between two nodes shows the relative contri-
bution of that input to that output when summed
over all paths between the two nodes, both direct
and through hidden nodes. The wider the line, the
more weight the input value will have on the final
calculated output value. Solid lines represent a pos-
itive relative weight, dashed lines represent a nega-
tive relative weight. In this example the inputs for
the prey location offsets have a very small influence
on the final movement; the inputs for the other two
predator offsets are much more important.

add 2 levels of prey strategy beyond the original 5. At the
6th level the prey continues to move at full speed, but de-
termines the direction to move based on the positions of the
two closest predators, with more weight given to the clos-
est. This strategy takes into account the situation where the
closest two predators are on opposite sides and will cause the
prey to move perpendicular to the line between them. At
the 7th level, the prey uses the location of all three preda-
tors to determine the direction to move, again giving closer
predators higher weight. The results of this experiment are
shown in table 2.

Table 2: Time to evolve solutions to 2 further diffi-
culty levels of prey strategies. The mean and stan-
dard deviation of 30 trials are given for the number
of generations to catch the stated level of prey in at
least 7/9 benchmark tests.

Unaware Communicating
6th prey level mean=43, std=11 mean=84, std=36
7th prey level mean=49, std=10 mean=107, std=56
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These more difficult prey strategies do increase the com-
plexity of the problem; both the unaware and communicat-
ing predators take significantly longer to evolve solutions
(p<.01 in both treatments that gens to solve 5th prey level
< gens to solve 6th prey level < gens to solve 7th prey
level). However, the communicating predators still perform
significantly worse than the unaware predators (p<.001 un-
aware gens to 6th level < communicating gens to 6th level;
p<.01 unaware gens to 7th level < communicating gens to
7th level). Once again the unaware predators were able to
find fixed strategies that successfully solved the problem in
a reasonable amount of time.

One common strategy that consistently catches the most
difficult prey is shown in figure 5. This strategy takes ad-
vantage of the toroidal world by again having two predators
trap the prey while the 3rd positions itself along the perpen-
dicular line the prey will try to escape on, exactly half-way
around the world from the prey. The prey ”sees” each preda-
tor in whatever direction makes it closest, so when a preda-
tor is half-way around the world, the prey will see it coming
from one direction and so move in the opposite, but that
move causes the predator to be closer now in the direction
just moved, so the prey moves back to the starting location.
The prey now jitters in all four directions, but never gets
anywhere.

Figure 5: Diagram showing a common strategy that
evolves to catch the most difficult prey. The circles
represent the positions of the predators and the di-
amond represents the prey. The arrows show the
directions each individual is moving, and the dot-
ted line shows the line of sight from the prey to the
3rd predator. The prey runs from all three preda-
tors with more weight given to those that are closer.
The 2 predators above and below the prey keep it
from moving any significant amount to the north or
south, just as in the earlier strategy shown in fig-
ure 3. The position of the 3rd predator is the key
advance that allows this strategy to catch the more
intelligent prey. In the left diagram the prey senses
that the 3rd predator is to the west, as the distance
to the predator is slightly shorter to the west than
it is to the east. They prey therefore moves to the
east, but that causes the predator to now be sensed
to the east, and so the prey moves back to the west,
as shown in the right diagram. Thus the prey more
or less holds still while the first 2 predators close in
on it.

We experimented with one more update to the prey’s es-
cape method designed specifically to thwart the predator
strategy in figure 5; we actually made the prey seemingly
less intelligent by limiting its sensing distance to one quar-
ter of the world size in each direction instead of the previ-
ous one half. This limit in sight means a predator half-way
around the world will have no effect on the prey at all. The
new prey strategy did significantly increase the complexity of
the problem, however the performance of the communicating
predators degraded as much or more than that of the un-
aware predators. Only 7 of 14 trials evolved a team of com-
municating predators within 500 generations that solved the
problem (success was defined as catching the highest level
of prey in 7 of 9 benchmark tests). A successful team of un-
aware predators was found within 500 generations in 13 of
14 trials (p<.01 that 13/14 successes in unaware treatment
is greater than 7/14 successes in communicating treatment).
We returned to unlimited prey sight distance in all following
experiments.

2.3 Increasing Complexity - Random Initial
Positions for Predators

In the experiments described thus far, the three predators
always began each fitness evaluation in the same positions
in the bottom left corner of the world, though the prey’s
initial position was random. This placement was used to be
consistent with the original experiments in [8]. The toroidal
world and random prey placement mean that starting in the
bottom left corner is no different than any other position,
however the fact that all three predators always start to-
gether could simplify the evolution of fixed strategies in the
unaware predator teams. It seems it should require more
coordination to catch a prey if the three predators also be-
gin each evaluation in random locations. Table 3 shows the
results of experiments where the three predators as well as
the prey began each fitness evaluation in a random location,
with the constraint that the initial distance between the prey
and closest predator must be at least 10.

Table 3: Results of experiments where predators be-
gin each simulation in random positions. The mean
and standard deviation of 28 trials are given for the
number of generations to catch the 5th, 6th, and
highest level of prey in at least 7/9 benchmark tests.

Unaware Communicating
5th prey level mean=7.4, std=2 mean=27, std=6
6th prey level mean=88, std=40 mean=115, std=51
7th prey level mean=97, std=45 mean=123, std=55

This change causes no significant difference in either com-
municating or unaware treatments for the time to evolve a
solution to the 5th level of prey, the highest level in the orig-
inal experiments. Random starting locations for predators
does make catching the 6th level of prey significantly more
difficult in both treatments (in testing if number of gener-
ations to solve 6th level of prey is higher in random start
experiments than in earlier fixed start experiments: p<.01
unaware, p<.05 communicating). However once a solution
to the 6th level of prey is found, it takes no longer to find
a solution to the highest 7th level of prey than it did with
fixed predator starting locations. The unaware predators
still find solutions to all levels of prey more quickly than
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the communicating predators, although the difference is now
much smaller (in testing if unaware treatment finds solution
in less generations than communicating treatment: p<.001
5th level of prey, p<.05 6th and 7th levels of prey).

A closer look at the actual strategies used shows that un-
aware predators take advantage of the fact that the world
is toroidal to implement successful fixed strategies. The
strategies themselves are almost the same as in earlier ex-
periments, with two predators trapping the prey while the
third keeps it on the line between them. The difference is
that it often takes longer for the two trappers to get into
the correct positions, as their fixed strategies cause them
to always move in the same direction to approach the prey.
When they began together, it worked well for one to always
for example head west and the other east; no matter where
the prey started it would immediately be between them at
least on the x axis. When they begin in random locations,
however, they sometimes start on the wrong sides of each
other and so first move towards each other until they cross
and only then really begin to trap the prey. As they have a
limited amount of time to catch the prey (475 moves for each
agent), they must nail down all other aspects of the strategy
perfectly to make up for the lost time, whereas in the earlier
experiments there was room for some inefficiency. These ex-
periments show much closer results for communicating vs.
unaware environments, but still a significant disadvantage
to including the ability to communicate.

2.4 Increasing Complexity - Limited Sensing
We next experimented with a different approach to in-

creasing the complexity of the problem; instead of increasing
the escape abilities of the prey, we limit the sensing abilities
of the predators. Specifically we hypothesize that if preda-
tors can only see the prey when they are close to it, but
can still communicate with each other over longer distances,
there should be a clear advantage to having that ability to
communicate with each other. This unequal sensing distance
is not unrealistic biologically, as predator to predator com-
munication often occurs through sound that can travel long
distances and through visual barriers, while a predator can
only sense prey when it has line-of-site. We expect unaware
predators to perform poorly in this environment, as when
they cannot see the prey they have almost no information
to base their actions on. However we expect that commu-
nicating predators can overcome this by using information
about fellow predators who can currently see the prey.

In this setup we limit sight distance of a predator to the
prey to 25 units in any direction (the world is 100x100).
This means each predator can see a bit less than one half
of the world. We also add 2 additional input nodes to both
communicating and unaware predator networks. The first is
an input that is set to 10 if the prey is in site range, or -10 if
it is not. This allows predators to evolve different behavior
when they can and cannot see the prey. When the prey
moves from in to out of site range the x and y prey offsets
remain at their last values when the prey was in range until
it comes into range again. If the initial position of the prey
is out of site range, the prey offsets are set to 0, so that
the predator may quickly evolve initial behavior based only
on the value of the new in/out range input node. We run
30 trials for each environment to 1,000 generations, as we
expect it to take longer to evolve good strategies than on
previous tasks. We find that neither environment is able to

evolve good strategies in any amount of time; only 17/30
communicating and 15/30 unaware trials even solve the 5th
level of prey, no trial from either environment solves the 6th
level of prey in the 1,000 generations.

3. CURRENT AND PROPOSED WORK -

GENETIC PROGRAMMING

REPRESENTATION
Though we found an environment where communicating

agents performed at least as well as those unable to com-
municate, it required making the problem so difficult that
predators in both environments performed poorly. Given
that several others have found communication to be ben-
eficial in similar predator-prey models, we question why it
seems so difficult to find any environment in this setup where
communicating agents have an actual advantage. This is a
broad question that has been and still is being explored from
many angles in the MAS community, but we posit that a
likely issue in our particular experiments is the use of neural
networks to encode agent behavior. In experiments seem-
ingly very similar to ours, Luke and Spector found clear
significant benefits to providing agents with the ability to
communicate [4]. Their work, however, used genetic pro-
gramming instead of neural networks to encode predator
behavior.

There have been some studies comparing the performance
of genetic programming and neural network representations
in specific problem domains [7], [10], [1], but we could not
find a comparison such as the one we propose in this con-
text. We hypothesize that there may be inherent aspects
of neural networks that make the particular implementation
of communication used in the original study [8] not a good
fit for the problem. The two main issues are related; 1)
adding the extra inputs for the location of other predators
more than doubles the size of the neural network and thus
the number of edge weights that must be optimized, and 2)
there is no simple way for a predator to ignore this extra
information or choose when to use it. We hypothesize that
Genetic Programming (GP) is more suited to adding com-
munication to the predator-prey problem. Adding functions
that allow for communication to GP does increase the size
of the overall search space, but not as drastically, and each
individual genome may choose if, when, and which ones of
those extra functions to use.

There are 2 other significant differences in [4] that may be
factors in the success of communication in their work, either
instead of, or along with the GP representation. Our cur-
rent experiments are designed to isolate these three factors
in order to determine how important each may be to the
success of evolving communicating agents. We hypothesize
that the choice of representation will be the critical factor
in explaining the conflicting results. However if we find that
one of the first two factors has a significant effect, that itself
will be an important result and warrant further investiga-
tion. The three directions we will explore are as follows.

1. The specifics of the simulated world in [4] are somewhat
different than in our previous tests. The simulations include
4 predators instead of 3, movement occurs in stepwise fash-
ion, the prey moves 3 steps for each 1 of the predators, and
the world is smaller in size. We will test the potential impact
of these differences by performing our same experiments us-
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ing neural networks except fitness evaluations will use the
simulation world from [4].

2. Each team of predators in [4] is represented as 4 branches
of a single individual, and all of these teams are evolved
in a single population. However the breeding method that
led to the largest benefit of communication comes close to
approximating the separate populations used in our exper-
iments. To test the importance of this difference in popu-
lation structure, we will replicate the experiments from [4]
both with their original single population method and with
our method of each predator evolving in a completely sepa-
rate population.

3. Finally we will attempt to run each of the 2 experimental
setups with as little change as possible except the alternative
representation. This is more difficult because so many other
aspects of evolution are tied to representation, but would
yield solid evidence as to whether the neural network repre-
sentation simply is not suited to evolving communication in
this domain.
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