
Genetic Algorithms and Deep Learning
for Automatic Painter Classification

Erez Levy
Dept. of Computer Science

Bar-Ilan University
Ramat-Gan 52900, Israel
erezlevy@gmail.com

Omid E. David
Dept. of Computer Science

Bar-Ilan University
Ramat-Gan 52900, Israel
mail@omiddavid.com

Nathan S. Netanyahu
∗

Dept. of Computer Science
Bar-Ilan University

Ramat-Gan 52900, Israel
nathan@cs.biu.ac.il

ABSTRACT
In this paper we describe the problem of painter classifi-
cation, and propose a novel hybrid approach incorporating
genetic algorithms (GA) and deep restricted Boltzmann ma-
chines (RBM). Given a painting, we extract features using
both generic image processing (IP) functions (e.g., fractal
dimension, Fourier spectra coefficients, texture coefficients,
etc.) and unsupervised deep learning (using deep RBMs).
We subsequently compare several supervised learning tech-
niques for classification using the extracted features as input.
The results show that the weighted nearest neighbor (WNN)
method, for which the weights are evolved using GA, out-
performs both a support vector machine (SVM) classifier
and a standard nearest neighbor classifier, achieving over
90% classification accuracy for the 3-painter problem (an
improvement of over 10% relatively to previous results due
to standard feature extraction only).

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—Parameter learn-
ing

General Terms
Algorithms

Keywords
Genetic Algorithms, Deep Learning, Painter Classification,
Restricted Boltzmann Machines, Deep Belief Network

1. INTRODUCTION
Art forgery, which dates back more than two thousand

years, has played a key role in the development of paint-
∗Nathan Netanyahu is also with the Gonda Brain Research
Center at Bar-Ilan University, and the Center for Automa-
tion Research, University of Maryland, College Park, MD
20742 (email: nathan@cfar.umd.edu).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO’14, July 12–16, 2014, Vancouver, BC, Canada.
Copyright 2014 ACM 978-1-4503-2662-9/14/07 ...$15.00.
http://dx.doi.org/10.1145/2576768.2598287 .

ing authentication. This task has been usually performed
manually by art experts who have dedicated their lives to
this profession. Their expertise amounted to using various
characteristics other than what the human eye can see, in-
cluding chemical analysis, spectrometry, and infrared or X-
ray imaging. The infamous Vermeer forgery [14] attests,
perhaps, most vividly to the challenges presented by paint-
ing authentication. Han van Meegeren used historical can-
vasses and managed to deceive art experts into believing
that his painting was an authentic Vermeer. Only after be-
ing charged with treason and sentenced to death for selling
another (forged) Vermeer, did he confess and was forced to
create another painting to prove himself innocent of trea-
son. A more recent case of painting authenticity involves
the Pollock paintings found a decade ago in a storage locker
in Wainscott, NY. The authenticity of these paintings was
compromised on the basis of computer analysis of the paint-
ings’ fractal dimension [21]. This claim was subsequently
disputed by analyzing childlike drawings that supposedly
have the same fractal dimension as the Pollock paintings
[8].
In this paper we address the closely related problem of

painting classification, i.e., the task of assigning a specific
artist to a given painting (from a dataset of paintings by
several artists). Note that the image authentication problem
can be viewed as a binary image classification problem (i.e.,
determine whether or not a given painting was painted by a
certain artist). Recent developments for both problem types
have focused on preprocessing techniques of reducing the
high dimensionality of visual data to low-dimensional rep-
resentations which can be manipulated towards image un-
derstanding. This process is essentially accomplished upon
the transition from image space to feature space. That is,
painting classification consists of two main stages: (1) Per-
forming feature extraction on the painting (i.e., obtaining
a low-dimensional vector of feature values for each image),
and (2) performing supervised classification given the fea-
ture vectors.
Levy et al. [13] applied feature extraction to paintings

using generic image processing (IP) functions (e.g., fractal
dimension, Fourier spectra coefficients, texture coefficients,
etc.), followed by genetic algorithms (GA)-based learning
of the weights of a weighted nearest neighbor (WNN) clas-
sifier [18]. Their approach achieved 80% accuracy for the
3-painter classification problem.
In recent years deep learning (DL) methods, in partic-

ular, deep restricted Boltzmann machines (RBM) [6] have
proven highly successful in unsupervised feature extraction

1143

tasks, improving the state-of-the-art of numerous classifica-
tion problems in image processing and computer vision [11].
In this paper we present the problem of painter classifi-

cation and briefly survey recent research that has been con-
ducted in the field. We then describe our approach which
combines feature extraction due to standard image process-
ing techniques and deep RBMs, and compare several classi-
fication methods which use the augmented set of extracted
features as input. Specifically, we compare support vector
machine (SVM), standard nearest neighbor (NN), and GA-
based weighted nearest neighbor (WNN) classifiers. The
results presented here show that the GA-based WNN clas-
sifier using features extracted by standard IP, as well as
deep RBMs outperforms the other classifiers; specifically, it
achieves over 90% classification accuracy, improving previ-
ous results in [13] by over 10%.

2. BACKGROUND
Image authentication is the task of determining whether

or not a given painting was painted by a specific artist. The
related task addressed by us, though, is image classification,
i.e., the task of determining the artist of a given painting
(from a certain group of artists). The input to our problem
consists of painting images of the group of artists (several
paintings of each artist), and our objective is to automat-
ically classify a given painting. One of the difficulties in
solving this problem is that we cannot define a certain set
of rules that the painting has to conform to in order to clas-
sify it to the subgroup corresponding to the correct artist.
For this reason, computer vision techniques which are ca-
pable of identifying shapes and objects in an image are not
sufficiently effective for solving the problem.
Formerly there have been attempts to harness the strength

of image analysis tools to classify historical art paintings into
categories of artists or genres. Levy et al. [13] used GA-
based WNN with a set of 78 prevalent image features for
classifying paintings by Rembrandt, Renoir, and van Gogh,
obtaining 80% classification accuracy. Herik and Postma
[22] surveyed image features relevant to the historic art do-
main and concluded that neural network techniques com-
bined with domain knowledge were most suitable to the task
of automatic image classification. Under-drawing strokes in
infrared reflectograms were analyzed by Kammerer et al.
[9] in order to classify how and by what tools paintings are
painted. Natural language processing techniques using a
naive-Bayes classifier and the coefficients of a discrete cosine
transform (DCT) were used by Keren [10] in order to clas-
sify local features in an image. Kroner et al. [12] classified
drawings by using image histograms and pattern recognition
methods.
The above past research focused on specific image process-

ing features tailored for specific datasets (such as ink paint-
ings, infrared reflectograms, or black and white sketches).
This domain-specific knowledge facilitates the exploitation
of various characteristics of the painting-specific domain. In
the next section we present our generic approach which does
not rely on any domain-specific knowledge. Specifically, the
features are extracted using both generic image processing
functions (not specialized for paintings) and deep RBM neu-
ral networks.

Figure 1: Basic structure of the research conducted,
feature extraction techniques used and the learning
methods compared.

3. FEATURE EXTRACTION
In this section we describe two feature extraction meth-

ods, using (1) generic IP functions and (2) deep RBM neural
networks. The number of features extracted by these meth-
ods is 78 and 20, respectively. Namely, our module extracts
a total of 98 features for each painting. Section 4 describes,
in detail, the GA-based WNN module using these 98 fea-
tures for painter classification.

3.1 Feature Extraction Using Image Process-
ing Functions

We use 78 features extracted by standard IP techniques,
as described in [13]. These features include also color unique-
ness features, defined in terms of unique color values in the
two color representations considered. We review below some
of these feature types.

3.1.1 Fractal Dimension and Texture Features
Fractal dimension measures essentially the self similarity

of an image, and is an index for characterizing fractal pat-
terns or sets by quantifying their complexity as a ratio of the
change in detail to the change in scale. A common approx-
imation to the fractal dimension is the Hurst exponent [16,
17], which is related to the fractal dimension by D = 2−HE ,
where D is the fractal dimension and HE is the Hurst ex-
ponent. Fractal dimension is widely used in various areas of
applied mathematics (e.g., fractals and chaos theory), bio-
physics, hydrology, etc.
Additionally, we extract texture features, which are im-

portant when identifying objects or regions in an image.
The texture of an image can be captured by a gray level
co-occurrence matrix which provides the distribution of co-
occurring values for a given offset. Haralick’s texture fea-
tures (defined in [5]) are extracted and used in our experi-
ments.

1144

3.1.2 Statistical Descriptors
Statistical descriptors are among the most trivial features

that may be extracted in the preprocessing stage. Nonethe-
less, they may be highly valuable to painter classification.
Specifically, we employ various standard statistical descrip-
tors, e.g., standard deviation, skewness, kurtosis, and the
minimum, maximum, mean and median values for each of
the values of the RGB and HSV representations, and of the
amplitudes of the Fourier transform.
Let I(x, y) denote an image value (at a particular pixel) of

an N ×M image, for all of the image bands considered (i.e.,
gray-scale, as well as RGB and HSV bands). We compute
the following parameters:

mean = Ī =

N∑
x=1

M∑
y=1

I(x, y)

NM
(1)

stddev = σ =

√
N∑
x=1

M∑
y=1

(I(x, y)− Ī)2

NM − 1 (2)

skewness =

N∑
x=1

M∑
y=1

(I(x,y)−Ī
σ

)3

NM
(3)

kurtosis =

N∑
x=1

M∑
y=1

(I(x,y)−Ī
σ

)4

NM
− 3 (4)

3.1.3 Steerable Filters and Color Histograms
A steerable filter is an orientation-selective convolution

kernel used for image enhancement and feature extraction.
It can be expressed via a linear combination of a small set
of rotated versions of itself. A steerable Gaussian filter eval-
uates the first directional derivative of an image. The filter
was implemented as outlined in [4] with successive angles
separated by 15°, with an expectation that the angles con-
tain the data of the brush strokes used by the painter while
painting.
Additionally, color histograms were extracted separately

for six image bands (i.e., red, green, blue, hue, saturation,
value) using 256 depth sized bins. Afterwards, statistical de-
scriptors were applied to the histogram vectors, producing
feature values. RGB values were translated to HSV repre-
sentation as outlined in [19].

3.1.4 Fourier Spectra
Fourier’s transform is one of the most applied transfor-

mations in signal processing. Upon transforming an image
matrix, the transform produces a spectral representation of
frequencies that form the image. Sine waveforms of ampli-
tudes and phases constitute an image when joined together,
and can be inversely transformed to the original image. The
transform and its inverse for a vector of length N are com-
puted by:

X(k) =
N∑
j=1

x(j)ω(j−1)(k−1)
N (5)

x(j) = (1/N)
N∑
k=1

X(k)ω−(j−1)(k−1)
N (6)

where ωN = e(−2πi)/N is an N -th root of unity. Amplitudes
for the transform are computed by applying an absolute op-
erator on the transformation’s matrix.

3.2 Feature Extraction Using Deep RBMs
Deep learning, in general, and deep RBMs, in particu-

lar, have proven recently rather effective in several machine
learning and computer vision benchmarks [3]. The idea is
to enable learning via deep networks in a manner that was
not possible before (due to the learning complexity of these
deep networks). The concept of using restricted Boltzmann
machines and stacking them on top of each other in order
to learn one layer at a time, was proved to be quite effective
for unsupervised feature extraction.
We now provide a brief overview of RBMs, and describe

how they are used to provide the 20 additional features (to
the 78 features extracted due to standard IP functions).

3.2.1 Restricted Boltzmann Machines
An RBM uses a network of stochastic binary units ar-

ranged in two layers; a visible layer and a hidden one. Units
v in the visible layers are fully connected via weights W to
units h in the hidden layer. There are no connections within
the visible layer or the hidden layer (the only connections
are between the layers). The configuration of visible and
hidden units has the energy:

E(v,h) = −
∑

i∈visible

aivi −
∑

j∈hidden

bjhj −
∑
i,j

vihiwij (7)

where vi and hj are the states of visible and hidden units
i and j, wij denotes the weight between visible unit i and
hidden unit j, and ai and bj are bias terms. The network
assigns probabilities to all pairs of a visible and a hidden
units via the function:

p(v,h) = 1
Z
e−E(v,h) (8)

where the partition function Z is calculated by summing all
possible pairs of visible and hidden vectors, i.e.,

Z =
∑
v,h

e−E(v,h) (9)

Since RBMs lack connections between units within a layer,
the conditional distributions p(h|v) and p(v|h) have a con-
venient form:

p(hj = 1|v) = σ(bj +
∑
i

wijvi) (10)

p(vi = 1|h) = σ(ai +
∑
j

wijhj) (11)

where σ(x) is the logistic sigmoid function:

σ(x) = 1
1 + e−x

(12)

1145

Figure 2: Composition of a 3-layer deep network
subsequent to learning stacks of RBMs: (a) One
layer of RBM is trained, (b) learned weights are
fixed (can no longer be modified) and new RBM
layer is added on top of previous one, and (c) weights
of second layer are fixed, and a third RBM layer is
added.

The weights wij and the biases ai and bj can be updated
during training using the so-called contrastive divergence
algorithm of Hinton et al. [6].

3.2.2 Deep RBMs
RBMs can be stacked on top of each other to form a deep

neural network (so-called deep belief network), as proposed
by Hinton et al. [6]. The idea is to train, one layer at a time,
a stack of RBM, after which the entire stack can be viewed
as a single probabilistic model. This is achieved by first
learning the initial RBM layer, then freezing the values of
the weights (can no longer be modified), and finally adding
another layer on top of the current one. Thus, the output
values of the first layer form the input values for the next
layer in the hierarchy (see Figure 2). We implemented deep
RBMs using dropouts [7, 2, 20], which regularize the network
and prevent overfitting by randomly disabling some neurons
in the hidden layer during training. The deep RBM network
provides 20 features in our implementation (see Figure 4).

4. PROPOSED CLASSIFICATION
APPROACH

We now map the classification of the data acquired during
preprocessing (i.e., feature extraction due to standard IP
and deep RBMs) to GA-based learning of the weights of
a WNN classifier. As mentioned previously, each painting
in the dataset, which consists of (3 × 40 =) 120 images, is
represented by a (78 + 20 =) 98-dimensional feature vector.
The 78 features (due to standard IP) consist of (5 × 6 =)
30 values of the mean, median, maximum, minimum and
the number of histogram bins with non-zero frequency of
each band of the RGB and HSV color representations, (4×
2 =) 8 values of the standard deviation, skewness, kurtosis
and mean of the gray-scale and FFT images, as well as the
number of unique RGB color triplets, the Hurst exponent,
24-bin histogram of directional derivatives, and Haralick’s
texture features (in the gray-scale image).
Adding the 20 features produced by the deep RBM to

the above 78 features, we obtain chromosomes of 98 real-
valued weights. We then train the GA-based scheme on
these weight vectors to produce the best chromosome, i.e.,

Figure 3: Simplified two-dimensional feature space,
illustrating the notion of weighted distance between
a (point representing a) training image and two
points representing images by two painters.

to evolve the best weights for the WNN classifier. The above
chromosome weights are tested during validation and the
overall performance of this hybrid approach is evaluated.
The basic framework is as follows:

1. Produce 98-feature vectors values for each painting in
the dataset.

2. Initialize vectors to be used with the nearest neighbor
algorithm.

3. Train a genetic algorithm using a fitness function based
on the previously produced vectors and the weighted
nearest neighbor algorithm.

4. Compare the performance of the best chromosome to
that of an ordinary (unweighted) nearest neighbor al-
gorithm and an SVM classifier.

Our training is divided to (36× 3 =) 108 training images
and (4×3 =) 12 validation images (one tenth of the dataset,
as in 10-fold cross-validation). Additionally, the image sub-
set for training is divided to (5× 3 =) 15 paintings used for
NN classification (as explained in the next subsection), and
(31×3 =) 93 paintings used to train the GA. We have tested
a 3-way classification for paintings of Rembrandt, Renoir,
and van Gough. We elaborate below on each of the above
stages.

4.1 Feature Vector Extraction
As previously discussed, 78 features are extracted due to

standard IP techniques. Additionally, a network of stacked
RBMs is trained in an unsupervised manner using the dataset
images. Running these images through the stacked RBMs
produces 20 additional features for a total of 98 features per
image. The structure of the deep RBM network (see Fig-
ure 4) consists of (35 × 35 × 3 =) 3675 nodes in the visible
layer. Note that each image is resized to 35× 35 pixels (per
each color band). The hidden layers contain 2000, 1000, 500,
250, 100, 50, and 20 nodes. Each layer was trained for 1000
epochs, during which the weights were tuned.

1146

Figure 4: Structure of RBM network: Visible layer
is of size 35×35×3 (for RGB representation). Num-
ber of nodes in each hidden layer is indicated. Final
20-node layer provides 20 features for each image
representation.

4.2 Nearest Neighbor Initialization
A portion of the training data is used for an initialization

of vectors that are used by the nearest neighbor algorithm.
A simple two-dimensional example is depicted in Figure 3.
Suppose that the vectors, “Painter 1 Image” and “Painter 2
Image”, are added to the feature space and are subsequently
utilized in the fitness evaluation of the chromosomes and in
the verification stage. During this process, weighted dis-
tances with respect to a given chromosome are calculated
between the initialized vectors and image vectors used to
train the GA.
The nearest neighbor algorithm is a special case of the

general k-nearest neighbor algorithm (where k = 1). It is
a method for classifying objects based on the closest train-
ing examples in feature space. The training stage consists
of storing labeled training vectors, and the classification is
accomplished by calculating which vector label is the most
frequent among the k closest vectors to a feature vector in
question. Based on our experiments, we chose k to be 1,
using Euclidean distance as a distance metric.

4.3 Training of Genetic Algorithm
The training phase of the genetic algorithm employs the

representation of the problem as a chromosome, and the def-
inition of several evolutionary operators that are used during
the genetic simulation performed by the genetic algorithm.
These operators include crossover and mutation (see below).
Also, the evolution is customized by fine-tuning parameters
and flags such as crossover/mutation rates and elitism.
A chromosome represents double precision values that are

vector components in feature space. Upon calculating the
fitness for each chromosome we insert it into the nearest
neighbor algorithm discussed earlier, and calculate weighted
distances (according to Eq. (13)). Based on the weighted
distances calculated, the nearest neighbor algorithm classi-
fies the paintings. The classification accuracy is used as the
chromosome’s fitness value. The weighted distance is de-

initialize population randomly
evaluate fitness of each chromosome
repeat

select best - ranked individuals to reproduce
mate pairs at random
apply crossover operator
apply mutation operator
evaluate fitness of each chromosome

until enough generations have passed

Figure 5: Pseudo-code of genetic algorithm.

Figure 6: An example of a chromosome containing
98 feature values. Every cell contains the coefficient
of its appropriate feature, and the 98-value chro-
mosome is a solution for the classification weights
applied by the weighted nearest neighbor method.

pendent on the chromosomes’ parameters as weights, and is
defined by:

NNw =

√√√√ d∑
i=1

wi(yi − zi)2 (13)

where Y = (y1, y2, ..., yd) and Z = (z1, z2, ...zd) are painting
representations in feature space, and wi(i = 1, .., d) are the
weights corresponding to a given chromosome (d = 98 in our
case). Figure 6 illustrates a chromosome structure, which
consists of the various weights used by the nearest neighbor
classifier.
Additional GA properties used are double-point location

crossover operator, Gaussian additive mutation operator,
80% crossover occurrence, 40% mutation rate and elitism.

int calculate_fitness (chrom, training_data){
fitness = 0;
for each (image in training_data){

weighted_vec = get_weighted_vec(img, chrom);
if (check_nearest_neighbor(weighted_vec))

fitness += 1;
}
return fitness;

}

Figure 7: Pseudo-code of fitness evaluation during
training.

4.4 Performance Validation
Subsequent to the training phase of the genetic algorithm,

validation (and cross-validation) is performed on (4×3) = 12
images of the dataset by applying the best chromosome ob-
tained, i.e., the one with the highest fitness value after 40
generations. Each vector (chosen for validation) is compared
against all of the vectors in the dataset (stored during the
initialization phase), by applying the weights of the best

1147

chromosome to find the vector’s (weighted) nearest neigh-
bor. The vector is classified according to its (weighted) near-
est neighbor label. We can thus classify all of the “valida-
tion vectors” and evaluate the performance according to the
number of correctly classified vectors.
Aside from evaluating the GA-basedWNN and deep RBM-

based classification, we compare its performance to that of
a GA-based WNN classifier without the features produced
by deep learning (i.e., just the module described by Levy
et al. [13]), and a standard (unweighted) nearest neighbor
classifier. Additionally, we compare all the results to those
obtained by using an SVM classifier.

5. EXPERIMENTAL RESULTS
The dataset for the conducted experiments is identical to

that used by Levy et al. [13] in their experiments. It consists
of (3×40 =) 120 digital reproductions of paintings by Rem-
brandt, Renoir, and van Gough, downloaded from the Web-
museum [15]. The acquisition process is uniform across the
images, ensuring that the classification is based on painter
characteristics rather than artifacts of electronic devices or
the digitization process. Artifacts due to JPEG compression
are uniform across all images and are relatively negligible.
Thus, they do not pose a problem. The images have 24-bit
color depth with varying resolutions averaged approximately
at 1000 × 1000 pixels, and compressed as JPEG formatted
files. We have resampled the images and normalized them
to 35 × 35 pixels for the deep RBM learning process. The
Appendix contains the painting titles of the images used in
our experiments.
We have implemented our scheme using [1] as a platform

for the genetic algorithm and MATLAB as an infrastruc-
ture for calculating feature values. Additionally, deep RBM
learning was implemented in Python. As described in Sec-
tion 3, 98 feature values were calculated for each image. The
dataset experimented with consists of (40×3) = 120 images
of paintings by Rembrandt, Renoir, and van Gough. 10 ran-
dom runs were invoked, where each run was restarted with
random initial chromosomes. The best chromosome over
these 10 runs was chosen for a given subset of the train-
ing images. Additionally, cross-validation was conducted by
shuffling (at random) the role of the images and averaging
the results, i.e., images previously used for training were
used for validation in a subsequent run and vice versa. This
way we utilized effectively our dataset.
The experiments were conducted using three feature sub-

sets: 78 features due to standard IP, 20 features due to deep
RBMs, and the augmented set of 98 features due to both.
The classification algorithms tested were a basic NN classi-
fier, an SVM classifier, and the GA-based WNN classifier.
Using only standard IP features, these classifiers achieved,
respectively, 65.71%, 68.33%, and 78.33% accuracy.
The accuracy results obtained by the above classifiers us-

ing only the 20 features (from the deep RBMs) were 64.41%,
77.50%, and 73.92%, respectively. However, for the entire
feature set the accuracy results were 68.71%, 71.66%, and
90.44%, respectively. Namely, the improvement obtained
by the GA-based WNN classifier is substantial with respect
to the 80% accuracy reported by Levy et al. [13]. Exam-
ining the output chromosome reveals that every feature is
crucial for the painter classification, as small feature values
are rarely encountered in practice. The graph in Figure 8
presents the fitness function (classification accuracy) asso-

ciated with the best and average chromosomes in a single
run over 40 generations. The evolutionary improvement is
clearly evident.
Table 1 provides a summary of the classification perfor-

mance obtained using different methods and features. IP,
DL, and IP + DL stand for features obtained due to stan-
dard IP techniques, deep learning, and the combination of
both, respectively.

IP DL IP & DL
GA-based WNN 78.33% 73.92% 90.44%
Basic NN 65.71% 64.41% 68.71%
SVM 68.33% 77.50% 71.66%

Table 1: Classification accuracy for GA-based
WNN, basic NN, and SVM, using features due to
standard IP, deep learning (DL), and the combina-
tion of both (IP + DL).

Figure 8: Accuracy scores of best and average chro-
mosomes over 40 generations: The vertical axis
represents the fitness score (classification accuracy)
in each generation and the horizontal axis repre-
sents the generation number; a chromosome’s fit-
ness is defined as the classification accuracy using
that chromosome’s weights.

6. CONCLUSION
Automatic painter classification has gained much atten-

tion over the past decades, and much progress has been
made with regards to both relevant preprocessing techniques
and classification algorithms. Still, the problem of painter
classification remains a complex task that requires more so-
phisticated techniques.
Deep learning techniques, in particular, those based on

deep RBMs have gained popularity in recent years as pow-
erful tools for unsupervised feature extraction. These meth-
ods have proven successful in improving the state-of-the-art
of numerous classification tasks in computer vision..
The results presented in this paper show that deep learn-

ing methods can yield substantial improvements when inte-
grated with standard, existing techniques. While the clas-

1148

sification rate (using either standard IP features or deep
learning features) does not exceed 80%, employing the aug-
mented set of features due to both methods results in an
enhanced performance of over 90% accuracy.
Additionally, during the supervised classification we ob-

served that while SVM performs well on a smaller feature
set, its performance deteriorates on a larger number of fea-
tures (98 in our case). Also, while the basic NN classifier is
consistently inferior to SVM, the performance of its weighted
version improves dramatically (from 68.71% to over 90%
accuracy) by evolving the feature weights due to GA. This
attests to the power of genetic algorithms for parameter tun-
ing. The hybrid IP+DL for unsupervised feature extraction
and GA+NN (WNN) for supervised classification underlines
the vast potential in combining several methods, resulting
in a hybrid approach which substantially outperforms each
method separately.
The presented hybrid approach is generic, and does not

rely on any domain-specific assumptions. As such, it may
be ported easily to additional classification domains.

7. REFERENCES
[1] S. Adcock. Gaul - Genetic Algorithms Utility Library.

http://gaul.sourceforge.net, 2000.
[2] J. Ba and B. Frey. Adaptive dropout for training deep

neural networks. In Advances in Neural Information
Processing Systems, pages 3084–3092, 2013.

[3] L. Deng and D. Yu. Deep learning: Methods and
applications. Now Publishers, 2014.

[4] W.T. Freeman and E.H. Adelson. The design and use
of steerable filters. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 13(9):891–906,
1991.

[5] R.M. Haralick, K. Shanmugam, and I.H. Dinstein.
Textural features for image classification. IEEE
Transactions on Systems, Man and Cybernetics,
(6):610–621, 1973.

[6] G.E Hinton, S. Osindero, and Y.W. Teh. A fast
learning algorithm for deep belief nets. Neural
computation, 18(7):1527–1554, 2006.

[7] G.E Hinton, N. Srivastava, A. Krizhevsky,
I. Sutskever, and R. Salakhutdinov. Improving neural
networks by preventing co-adaptation of feature
detectors. arXiv preprint arXiv:1207.0580, 2012.

[8] K. Jones-Smith and H. Mathur. Fractal analysis:
revisiting Pollock’s drip paintings. Nature,
444(7119):E9–E10, 2006.

[9] P. Kammerer, M. Lettner, E. Zolda, and R. Sablatnig.
Identification of drawing tools by classification of
textural and boundary features of strokes. Pattern
Recognition Letters, 28(6):710–718, 2007.

[10] D. Keren. Painter identification using local features
and naive Bayes. In Proceedings of the IEEE
International Conference on Pattern Recognition,
volume 2, pages 474–477, 2002.

[11] Alex Krizhevsky, Ilya Sutskever, and Geoff Hinton.
Imagenet classification with deep convolutional neural
networks. In P. Bartlett, F.C.N. Pereira, C.J.C.
Burges, L. Bottou, and K.Q. Weinberger, editors,
Advances in Neural Information Processing Systems
25, pages 1106–1114, 2012.

[12] S. Kroner and A. Lattner. Authentication of free hand
drawings by pattern recognition methods. In
Proceedings of the IEEE 14th International
Conference on Pattern Recognition, volume 1, pages
462–464, 1998.

[13] E. Levy, O.E. David, and N.S. Netanyahu. Painter
classification using genetic algorithms. In IEEE
Congress on Evolutionary Computation, pages
3027–3034, 2013.

[14] D. Phillips. How do forgers deceive art critics? The
Artful Eye. R. Gregory, J. Harris, P. Heard, and D.
Rose, Eds., Oxford University Press, pages 372–388,
1995.

[15] N. Pioch. Webmuseum.
http://webmuseum.meulie.net/wm/, 1994.

[16] J.C. Russ. Surface characterization: Fractal
dimensions, Hurst coefficients, and frequency
transforms. Journal of Computer-Assisted Microscopy,
2(3):161–183, 1990.

[17] B. Schiele and J. Crowley. Object recognition using
multidimensional receptive field histograms. In
Proceedings of the European Conference on Computer
Vision, pages 610–619, 1996.

[18] W. Siedlecki and J. Sklansky. A note on genetic
algorithms for large-scale feature selection. Pattern
Recognition Letters, 10(5):335–347, 1989.

[19] A.R. Smith. Color gamut transform pairs. In ACM
Siggraph Computer Graphics, volume 12, pages 12–19,
1978.

[20] N. Srivastava. Improving neural networks with
dropout. PhD thesis, University of Toronto, 2013.

[21] R.P. Taylor, R. Guzman, T.P. Martin, G.D.R. Hall,
A.P. Micolich, D. Jonas, B.C. Scannell, M.S.
Fairbanks, and C.A. Marlow. Authenticating Pollock
paintings using fractal geometry. Pattern Recognition
Letters, 28(6):695–702, 2007.

[22] H.J. van den Herik and E.O. Postma. Discovering the
visual signature of painters. Future Directions for
Intelligent Systems and Information Sciences. N.
Kasabov, Ed., Physica-Verlag, Heidelberg, pages
129–147, 2000.

1149

APPENDIX
This appendix lists the (40×3) = 120 titles of the paintings
experimented with by van Gogh, Rembrandt, and Renoir.

van Gogh Rembrandt Renoir
1 bandaged-ear abraham apres-bain
2 berceuse anslo baigneuses
3 cordeville aristotle-homer bathers-1887
4 corridor-asylum artemis bathers-1918
5 cypress-star bathing-river bougival
6 cypresses bathsheba canoeist
7 flower-beds-holland belshazzar chocquet
8 green-vineyard children city
9 green-wheat-field danae country
10 house-ploughman david dancer
11 mme-trabuc descent durieux
12 mr-trabuc emmaus flowers
13 old-mill hendrickje gabrielle
14 old-vineyard holy-family girl-seated
15 olive-alpilles jan-six jugglers
16 olive-trees magn-glass lady-piano
17orchard-bloom-poplars meditation laundress
18 orchard-plum-trees mill loge
19 poppies music-party lucie-berard
20 red-vineyard nicolaes-tulp near-lake
21 reminiscences old-man fournaise
22 road-menders ostrich horsewoman
23 roulin potiphar meadow
24 self-1 prodigal-son moulin-galette
25 self-2 raising-lazarus nini
26 self-easel .1640 parapluies
27 self-gauguin .1661 premiere-sortie
28 self-orsay .1669 promenade
29 self-whitney .night-watch ride
30 skull-cigarette return-prodigal-son romain-lacaux
31 sun-cloud ruts sisley-wife
32 threatening-skies samson women
33 trees-asylum scholar seashore
34 trees-ivy-asylum self-1629 seated-bather
35 village-stairs self-1634 sewing
36 wheat-field self-1660 sisley
37 wheat-rising-sun slaughtered-ox swing
38 willows staalmeesters terrace
39 peasant stofells watercan
40 woman-arles tobias woman-veil

1150

