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ABSTRACT

This paper proposes a novel finite Gaussian mixture model
to study the population dynamics of evolutionary algorithms
on continuous optimization problems. While previous re-
search taking on a dynamical system view has established
the transition equation between the density functions of
consecutive populations, the equation usually does not have
closed-form solutions and can only be applied to very few op-
timization problems. In this paper, we address this issue by
approximating both the population density function of each
generation and the objective function by finite Gaussian
mixtures. We show that by making such approximations the
transition equation can be solved exactly and key statistics,
such as the expected mean and the variance of fitness values
of the population, can be calculated easily. We also prove
that by choosing appropriate values of the parameters, the
L1-norm error between our model and the actual population
density function can be made arbitrarily small, up until a
predefined generation. We present experimental results to
show that our model is useful in simulating and examining
the dynamics of evolutionary algorithms.

Categories and Subject Descriptors

F.2.1 [ANALYSIS OF ALGORITHMS AND PROB-

LEM COMPLEXITY]: Numerical Algorithms and Prob-
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1. INTRODUCTION
Despite the efficiency and effectiveness of evolutionary

algorithms at solving difficult optimization problems, the
understanding of the underlying evolutionary processes and
the behavior of these algorithms remain incomplete. Among
the many theoretical analyses of evolutionary algorithms,
the dynamical systems modelling approach is a primary and
influential one. The idea is to consider the state space of
all possible populations, and the stochastic evolution of the
populations from one generation to the next is characterized
by the transition matrix of a Markov chain. Equivalently,
as a distribution of the population states corresponds to
a probability density function determining the probability
that each individual occurs in the population (henceforth
denominated as population density function), the evolution
of the algorithm can also be characterized by a difference
equation (transition equation) between population density
functions of consecutive generations. The transition equa-
tion describes exactly how the population evolves as the
evolutionary algorithm progresses. In order to obtain simple
forms of the transition equation and derive analytical results,
an assumption that the evolutionary algorithm has infinite
population size is often made, and properties regarding the
transient and asymptotic behavior of the evolutionary algo-
rithms are analyzed. In addition, given the initial population
density function, it is possible to simulate and visualize
the trajectories of key statistics of the algorithm such as
the expected average fitness value and the expected mean
center of the population on certain optimization problems,
by recursively applying the transition equation.

Research efforts adopting a dynamical system view have
been fruitful. Here we mention the fundamental monographs
of Vose [13], Beyer [1], and the survey of Reeves and Rowe
[10]. Usually, the research starts with the most general forms
of population density functions (or population vectors as
used in [10,13]) and objective (fitness) functions. Then, the
transition equation is derived by modeling the effects of var-
ious operators on the population, such as that of mutation
and fitness proportional selection. Though under the infinite
population size assumption the transition equation often has
simple forms and general properties can be derived from the
transition matrix of the Markov chain, the problem with this
approach is that given particular optimization problems, it
is usually impossible to construct the transition matrix in
practice, and to solve the transition equation analytically.
In other words, the transition equation cannot be applied
recursively to simulate the running of the evolutionary algo-
rithms generation by generation.
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To resolve this issue, one major approach is to introduce
the framework of statistical mechanics [10, 11]. The idea is
that instead of using microscopic descriptions of population
dynamics to describe precisely what happens to the popu-
lation density function after each iteration, use macroscopic
descriptions where key statistics of interest such as the aver-
age fitness value of the population become the target to be
modeled and analyzed. For example, if the average fitness
value is taken as the key statistic to describe a population,
the first step of a statistical mechanics analysis is likely to be
modelling the probability distribution of average fitness val-
ues over all possible populations in each generation. Then,
by truncating a representation of this distribution (such as
moments or cumulants) to a certain number of terms, a
transition equation of the preserved terms can be derived
and readily solved. The benefit of this approach is that by
characterizing population dynamics by a few statistics, the
scale of the model is greatly reduced, thus simulation and
visualization of the dynamics of the system are possible.
Also, most of the time the key statistics in the model are
closely related to the properties of interest. Therefore, this
level of description seems sufficient. However, the drawback
of this approach is that the key statistics do not contain
all the information to describe a population and truncat-
ing transformations of probability distributions further dis-
cards information, additional approximation errors are in-
troduced. Besides, in general, the transition equation of
the preserved terms is usually difficult to derive, and other
principles such as the principle of maximum entropy or other
modelling assumptions are needed to derive it. In fact, only
a few discrete optimization problems have been successfully
analyzed by this approach [10].
In this paper, we propose a different approach. We are

concerned mainly with continuous optimization problems,
and the target model to be approximated is the general
model introduced by [8,9]. This model studies the dynamics
of simple evolutionary algorithms with infinite population
size, and the transition equation of the model is a micro-
scopic level description of the evolution of the population
density functions. Instead of using statistical mechanics to
simulate the evolution of the system, we propose a novel
finite Gaussian mixture model to solve the transition equa-
tion approximately. The key to our model is that both
the objective function and the population density functions
are approximated by finite Gaussian mixtures. Due to the
nice properties of Gaussian functions, such approximations
guarantee that the transition equation can be solved analyt-
ically and the solution is also a Gaussian mixture. Moreover,
key statistics of interest such as the expected mean and the
variance of fitness values of the population can also be easily
calculated from the population density functions of Gaussian
mixtures. Regarding the accuracy of our method, we prove
that our framework works for nearly arbitrary continuous
objective functions, and given a predefined generation num-
ber k and a tolerance level ǫ, by choosing appropriate pa-
rameter values, the L1-norm error of our method can be less
than ǫ up until the kth generation. We simulate our model
running on low dimensional multimodal optimization prob-
lems and visualize and compare the simulation results with
results obtained from actually running the algorithm. The
experimental results show that our method can predict the
behavior of evolutionary algorithms with fair accuracy. To
the best of our knowledge, our effort is the first in adopting

approximation techniques other than statistical mechanics
and function transforms to study the population dynamics
of evolutionary algorithms.

The rest of this paper is organized as follows. In Section 2
we provide a review on research efforts directly related to our
work. In Section 3 we describe our Gaussian mixture model.
The analysis of the L1-norm error is presented in Section 4.
Experimental results are presented in Section 5. Finally, in
Section 6 we conclude the paper and suggest possible future
work.

2. RELATED WORK
As our method is different from traditional approaches, we

draw our inspirations from diverse sources. It is our under-
standing that the greatest difficulty in calculating an infinite
population model in the general case lies in the fact that the
fitness function can be of any form. This mandates that in
order to solve the transition equation analytically and iterate
it recursively, the approximation framework must assume
“compatible” forms of both the fitness function and popula-
tion density functions. In this regard, the research of [14,15]
is illuminating. Though the crux of these papers is not to
devise an approximation framework as in this one, in the
analysis the authors directly applied the Walsh transform
(the Fourier transform for binary representations) to mixing
matrix (or population density function in this context) and
at some point to the fitness functions. However, as we are
more concerned with evolutionary algorithms on continuous
optimization problems and it usually incorporates operators
that directly use Gaussian functions, it is more natural and
simpler to approximate the fitness function and population
density functions as Gaussian mixtures.

There are also a few studies on population dynamics of
evolutionary algorithms solving specific problems. Among
them [3] is similar to this work in that it also assumes a spe-
cific form of population density functions. The population
density functions are described by probabilistic graphical
models in their research. For the symbolic regression prob-
lem considered in that paper, this representation is natural
and exact. However, our study differs from that paper in
that the latter is mainly an empirical study which does
not consider transition functions explicitly and the graphical
model is learned from experimental results.

Though to our knowledge we are the first to use Gaus-
sian mixtures to study population dynamics of evolutionary
algorithms, in other fields such as estimation and filtering
theory, Gaussian mixtures have been used to study dynam-
ical systems. Among them we mention [12], which seems
most relevant to our study. That study is concerned with
evolving state probability density functions of nonlinear dy-
namical systems. Its main contribution is in proposing two
novel schemes to update the weights of components of Gaus-
sian mixtures as system uncertainty propagates. However,
unlike this paper their study assumes that the number of
components in the Gaussian mixture remains the same all
the time, which seems unrealistic for modelling evolutionary
algorithms and also introduces additional error. Besides, the
approximation and propagation error of density functions is
not considered in their research.

With respect to the L1-norm error of the model, the first
part of our proof is based entirely on the fundamental results
of [4–6]. Basically, the study of [6] proves that Gaussian
mixtures can approximate any functions in Lp, p ∈ [1,+∞)
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with arbitrarily small Lp-norm error, while the study of [4,5]
gives a more detailed analysis on the error of approximations
with regard to parameter values. In particular, [5] is an
application of the general results in the field approximate
approximations introduced by the Swedish mathematician
Vladimir Maz’ya (see [4] for a more recent survey).

3. THE GAUSSIAN MIXTURE MODEL

3.1 Notations and Preliminaries
In this paper, a function a of x is commonly denoted

as a(x), and a is used when there is no risk of confusion.
Random variables and random vectors are represented in
boldface. The expectation and variance of a(x) with x ∼
f(x) are denoted as Efa(x) and V arfa(x), respectively, or
Exa(x) and V arxa(x) if the distribution is clear in the
context. Notice that if a maps x into a vector, V arxa is
actually the covariance matrix of a(x).
The multidimensional Gaussian function or multivariate

normal distribution with parameters µ, Σ is denoted as

fN (µ,Σ)(x) =
1

(2π)
d
2 |Σ| 12

exp

[

−1

2
(x− µ)TΣ−1(x− µ)

]

where µ ∈ R
d is the mean vector and the symmetric positive

definite matrix Σ ∈ R
d×d is the covariance matrix. A finite

Gaussian mixture in R
d with m components is a function

h : Rd 7→ R with the form

h(x) =
m
∑

i=1

πifN (µi,Σi)(x) (1)

where πi is called the weight of component i. Notice that in
the paper we are using the term“finite Gaussian mixture” to
mean any function with the form (1). If the finite Gaussian
mixture represents a probability density function, it is also

required that πi > 0 and
m
∑

i=1

πi = 1.This requirement is often

omitted if the context is clear.
We use Euclidean norm for vectors and denote it as ‖ · ‖,

and the Lp norm for functions is denoted as ‖ · ‖p where

p ∈ [1,+∞]. For any two functions a, b : Rd 7→ R, denote
(a ∗ b)(x) or a ∗ b as the d-dimensional convolution of a and
b, i.e.

(a ∗ b)(x) =
∫

Rd

a(y)b(x− y)dy

Throughout the paper the continuous optimization prob-
lem has the following form

max g(x) s.t. x ∈ R
d

where g : Rd 7→ R is the objective function or the so-called
fitness function. We further assume that

0 < gmin 6 g(x) 6 gmax < ∞ (2)

where gmin and gmax are the known lower and upper bounds,
respectively. Note that by (2) g ∈ L∞.
The simple evolutionary algorithm considered in this pa-

per includes only mutation and fitness proportional selec-
tion. It is similar to the algorithm analyzed in [8]. However,
we restrict the mutation operator to be adding an indepen-
dent multivariate normal random vector w ∼ fN (µw,Σw)
to each individual in the population. In fact it is also the

most commonly used mutation operator for continuous op-
timization problems. The pseudo-code of the algorithm is
shown in Algorithm 1.

Algorithm 1: The Simple Evolutionary Algorithm

Input: population size N ; initial population density
function f0

1 set k = 0; sample N individuals x1
0, x

2
0, . . . , x

N
0

identically and independently according to f0;
2 while stopping criteria is not satisfied do

3 (Selection) choose yi
k from x1

k, x
2
k, . . . , x

N
k such that

Pr
{

yi

k = x
j
k

}

=
g(x

j
k
)

∑
N
l=1

g(xl
k
)
for all i, j = 1, 2, . . . , N ;

4 (Mutation) sample xi
k+1 from the distribution of

random vector yi
k +w for all i = 1, 2, . . . , N ;

5 k = k + 1;

6 end

In this paper the population density function of gener-
ation k is denoted as fk. In particular, f0 is the density
function of the first population and it depends on how the
initial population is constructed. To simplify the analysis of
approximation errors we further assume that

f0 is continuous with compact support (3)

The key result of [8] is the large sample theory proof of
the transition function between fk and fk+1 as N → ∞. It
also serves as the target of approximation in our research.
To reframe it in this context, this theorem reads as follows.

Theorem 1 (Qi & Palmieri [8]). Let fk be the popula-
tion density function of the kth generation, k = 0, 1, 2, . . .,
and the objective function g(x) satisfy (2). For the simple
evolutionary algorithm as in Algorithm 1, as N → ∞ the
population density function fk+1 satisfies

fk+1(x) =
fk(x) · g(x)

∫

Rd fk(y)g(y)dy
∗ fN (µw,Σw)(x) (4)

The transition equation (4) in Theorem 1 can be divided
into two parts. The effects of fitness proportional selection
constitute the first part. If we denote

f
′
k(x) =

fk · g
∫

Rd fk(y)g(y)dy
(5)

then f ′
k is the population density function after selection.

Similarly, the effect of mutation is expressed by

fk+1(x) = f
′
k ∗ fN (µw,Σw) (6)

As can be seen from (4), because g can be any real-valued
function, it is highly probable that (4) cannot be analytically
solved. Moreover, even if fk+1 can be obtained by substi-
tuting g and fk into (4), it is not likely that subsequent
population density functions starting from fk+2 can all be
obtained by substituting g and its predecessors. It is for
this reason that the approximations of g and fk should have
“compatible” forms.

3.2 The Gaussian Mixture Model
The core of our research is to use finite Gaussian mixtures

to approximate g and fk, so that the transition function (4)
is analytically solvable and the solution is also in Gaussian
mixture form.
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3.2.1 Approximation of Fitness Function g and Ini-
tial Population Density Function f0

This section explains the method to approximate the fit-
ness function g and the initial population density function
f0 with finite Gaussian mixtures. The idea is to sample
function values on a lattice in a region of interest, and then
interpolate the function with Gaussian kernels. The ap-
proach coincides with [6] and [5] and we describe it in our
context.
Consider an arbitrary continuous function u ∈ Lp : Rd 7→

R for some p ∈ [1,+∞]. The approximation procedure
requires two parameters D > 0 and h > 0 to control the
sampling granularity and an additional parameter r > 0 to
control the region of sampling. The formula of interpolation
reads as

û(x) =
∑

z∈Zd,hz∈[−r,r]d

h
d · u(hz) · fN (hz,

Dh2

2
Id) (7)

where Id is the d-dimensional identity matrix. Basically
this procedure samples the region [−r, r]d with step size h

and interpolates each sample with the Gaussian function

fN (0, Dh2

2
Id). The result û has (⌊ 2r

h
⌋+ 1)

d
components.

Note that in (7), if û is constructed by sampling and
interpolating the whole region of Rd, the Gaussian mixture
û will have infinite number of components. Therefore, to
make û a finite mixture the parameter r is introduced.
To approximate f0, because f0 has a compact support,

rf0 can be a value such that supp(f0) ⊂ [−rf0 , rf0 ]
d where

supp(·) denote the support of a function. In practice how-
ever, it may happen that f0 does not have a compact sup-
port. In that case, we suggest a method of assigning rf0 for
practical use. For f0, given a threshold 0 < ǫ < 1 we choose
rf0 such that

∫

Rd\[−rf0 ,rf0 ]d
|f0(x)|dx < ǫ

∫

Rd

|f0(x)|dx = ǫ

The idea is to choose rf0 such that the sampling region
covers most “masses” of f0. Such rf0 can always be obtained
because ‖f0‖1 is 1.
As g is in L∞, there is no general way to derive rg. For

practical use however, it is possible to derive a region of
interest either from prior knowledge or from previous runs of
the algorithm. For example, if prior knowledge is available
that the global maximum is likely to be within a region
S where rs = maxx∈S ‖x‖ is known, we can set rg to be
max(rf0 , rs).
After rg and rf0 are fixed, given the parameter values of D

and h we can approximate g and f0 according to formula (7).
The error of approximation with regard to parametersD and
h will be analyzed in Section 4. In fact, it is more convenient
to organize the expressions of approximated functions into
standard representations of Gaussian mixtures. From now
on we will use the notations that the Gaussian mixture
approximation of g is

ĝ(x) =
n
∑

i=1

cifN (µi,Σi) (8)

and the Gaussian mixture approximation of the kth popu-
lation density function fk, k = 0, 1, 2, . . . is

f̂k(x) =

mk
∑

i=1

πkifN (µki,Σki) (9)

3.2.2 Approximation of Transition Equation

By approximating g and f0 by ĝ and f̂0, an approximated
dynamical system is constructed. The input to the system
is ĝ and f̂0, and the evolution of the system follows the
transition equation

f̂k+1(x) =
f̂k · ĝ

∫

Rd f̂k(y)ĝ(y)dy
∗ fN (µw,Σw) (10)

.
The idea is that evolving the real system (with g and f0 as

its input and (4) as the transition equation) and obtaining its
population dynamics is difficult, while evolving the approxi-
mated system and observing its population dynamics f̂k and
key statistics such as Ef̂k

ĝ is easy. The transition equation

of the approximated system needs not change from (4) as
they are both modeling the same operators, and the error is
only introduced by the approximations of g and f0. In this
section, we explain how the approximated dynamical system
evolves and calculate the approximated population density
function f̂k by solving the transition equation (10). The
key result is presented in Theorem 2 which gives a recursive
equation between f̂k and f̂k+1.

Theorem 2. Let ĝ and f̂k be the approximated fitness func-
tion and the population density function of the kth genera-
tion, respectively, k = 0, 1, 2, . . ., and assume that ĝ and f̂k
are Gaussian mixtures with known coefficients as represented
in (8) and (9). Then for the transition function (10) the

population density function f̂k+1 is also a Gaussian mixture
and has the following form

f̂k+1 =

mk
∑

i=1

n
∑

j=1

πkicj c̃ijfN (µ̃ij + µw, Σ̃ij +Σw)

mk
∑

i=1

n
∑

j=1

πkicj c̃ij

(11)

where

c̃ij = fN (µj ,Σki +Σj)(µki)

Σ̃ij = (Σ−1
ki +Σ−1

j )
−1

(12)

µ̃ij = (Σ−1
ki +Σ−1

j )
−1

(Σ−1
ki µki +Σ−1

j µj)

Proof. Similar to (5) and (6), we consider the effects of selec-
tion and mutation separately. The approximated population
density function after selection is

f̂
′
k(x) =

f̂k · ĝ
∫

Rd f̂k(y)ĝ(y)dy
=

f̂k · ĝ
Ef̂k

ĝ
(13)

Consider f̂k · ĝ only. By using the fact (8.1.8 in [7]) that

fN (µa,Σa) · fN (µb,Σb) = cfN (µc,Σc)

where

c = fN (µb,Σa +Σb)(µa)

Σc = (Σ−1
a +Σ−1

b )−1

µc = (Σ−1
a +Σ−1

b )−1(Σ−1
a µa +Σ−1

b µb)
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f̂k · ĝ can be calculated as

f̂kĝ =

mk
∑

i=1

n
∑

j=1

πkicjfN (µki,Σki)fN (µj ,Σj)

=

mk
∑

i=1

n
∑

j=1

πkicj c̃ijfN (µ̃ij , Σ̃ij) (14)

where c̃ij , µ̃ij and Σ̃ij satisfies (12). Also by (14)

Ef̂k
ĝ =

mk
∑

i=1

n
∑

j=1

πkicj c̃ij (15)

Combining (13), (14) and (15) we get

f̂
′
k(x) =

mk
∑

i=1

n
∑

j=1

πkicj c̃ijfN (µ̃ij , Σ̃ij)

mk
∑

i=1

n
∑

j=1

πkicj c̃ij

(16)

Now the effect of mutation can be characterized as

f̂k+1(x) = f̂
′
k ∗ fN (µw,Σw) (17)

Substituting (16) into (17) and taking into account the
fact (8.1.4 in [7]) that

fN (µa,Σa) ∗ fN (µb,Σb) = fN (µa + µb,Σa +Σb)

(11) can be easily verified and the proof is complete.

Theorem 2 states that if f̂k is a Gaussian mixture of mk

components, then f̂k+1 is also a Gaussian mixture and it has
mk · n components. Notice that it is the selection operator
that increases the number of components, and for the muta-
tion operator the component number remains the same. It
can be conceived that for the approximated dynamical sys-
tem, the population density function of the kth generation
hasm0·nk components. As it grows exponentially, we simply
limit the number of components in the mixture by discarding
components with least weights in our implementation.

3.2.3 Key Statistics

In this section we show that key statistics of interest of the
approximated dynamical system can also be derived from
Gaussian mixture population density functions. In fact, in
the proof of Theorem 2 the expected average fitness value
of the population Ef̂k

ĝ is already calculated in (15). To be
complete it is also included in the result.

Theorem 3. Let ĝ and f̂k be the approximated fitness func-
tion and the population density function of kth generation as
in Theorem 2, respectively. Then

Ef̂k
ĝ =

mk
∑

i=1

n
∑

j=1

πkicj c̃ij (18)

V arf̂k ĝ =

mk
∑

γ=1

n
∑

α=1

n
∑

β=1

πkγcαcβdαβ + (

mk
∑

i=1

n
∑

j=1

πkicj c̃ij)
2

(19)

Ef̂k
x = µ̄ (20)

V arf̂kx =

mk
∑

i=1

πkiΣki+

mk
∑

i=1

πki(µki − µ̄)(µki − µ̄)T (21)

where

c̃ij = fN (µj ,Σki +Σj)(µki)

dαβ = fN (µβ ,Σα +Σβ)(µα) (22)

µ̄ =

mk
∑

i=1

µki

Proof. (18) is already proved. For V arf̂k ĝ, noticing that

V arf̂k ĝ = Ef̂k
ĝ
2 − (Ef̂k

ĝ)2

and taking into account that ĝ2 is also a Gaussian mixture
with n2 components, (19) can be proved by taking a similar
approach to the one used in Theorem 2.

The remaining two equations are properties of finite Gaus-
sian mixtures. The proof of (20) is straightforward and thus
omitted. For (21), consider a random variable s following a
discrete distribution that

Pr(s = i) = πki, i = 1, 2, . . . ,mk

Define a d-dimensional random vector Y following the con-
ditional distribution that

(Y |s = i) ∼ fN (µki,Σki)

It is known that the distribution of Y is equivalent to the
distribution of x and they all follow the same Gaussian mix-
ture distribution f̂k. By adopting the law of total covariance
that

V arf̂kY = Es(V arY |sY ) + V ars(EY |sY ) (23)

and calculating the two terms in (23), (21) can be proved.

Theorem 3 gives expressions of the expected average fit-
ness value and the variance of fitness values of the population
as well as the expected mean center and the covariance
matrix of the population. Though our approximated model
is a microscopic description, these statistics can still be cal-
culated with ease due to the nice properties of Gaussian
mixtures. Moreover, by explicitly yielding an expression of
population density function of each generation, our model
provides more details of the dynamics of evolutionary algo-
rithms than statistical mechanics methods.

4. APPROXIMATION ERROR ANALYSIS
In this section we study the L1-norm error between the

approximated population density function and the real one.
More precisely, we are mostly concerned with ‖fk − f̂k‖1 for

k = 0, 1, 2, . . ., where fk and f̂k are specified in Theorem 1
and Theorem 2, respectively. The analysis is on the ideal
case that the number of components in a finite Gaussian
mixture can be arbitrarily large, i.e. the approximation
system has infinite memory. As a result, the error of truncat-
ing mixtures in implementation is not considered here. As
expounded in Section 3, the approximation error stems from
the interpolation of f0 and g. Approximating f0 introduces
the error ‖f0 − f̂0‖1. Then, as the two systems evolve ac-
cording to the transition equations (4) and (10) respectively,
the approximation error propagates and amplifies under the
influence of g and ĝ. Therefore, to analyze the error of the
whole system, the errors of initially approximating f0 and g

as well as the amplification effect of the transition equations
must be analyzed first.
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4.1 Approximation Errors of f0 and g

This section analyzes the approximation errors of f0 and
g. The key result in this section is entirely based on [6] and
[4,5]. Due to the high degree of technicality in these papers
it is both impractical and unnecessary to include all details
of proofs in this paper. Therefore key theorems relevant
to our research are included and the implications for our
research are discussed.

Theorem 4 (Park & Sandberg [6]). Let K : Rr 7→ R be
an integrable bounded function such that K is continuous
almost everywhere and

∫

Rr K(x)dx 6= 0. Then the family
SK is dense in Lp for every p ∈ [1,∞) where SK consists of
functions q : Rr 7→ R represented by

q(x) =
M
∑

i=1

ωi ·K
(x− zi

σ

)

(24)

where σ > 0, M ∈ N, ωi ∈ R and zi ∈ R
r.

Theorem 4 is the main result in [6]. It proves that under
certain mild conditions (bounded, integrable and continuous
almost everywhere) the function family SK can approximate
any function in Lp with arbitrarily small Lp-norm error. If
we take the function fN (0, Id) as K, apparently it satisfies
the conditions in Theorem 4. Therefore the family SfN (0,Id)

is dense in Lp. By merging constants into ωi, SfN (0,Id)

consists of functions of the form

q(x) =
M
∑

i=1

ωi · fN (zi, σ
2
Id) (25)

Therefore we have

Corollary 1. The family of Gaussian mixtures of functions
in the form of (25) is dense in Lp with p ∈ [1,+∞).

Comparing (7) with (25), it can be seen that û is in
SfN (0,Id) and û corresponds to an instance of (25) where the
values of zi, ωi, σ and M are decided by r, h, D and u(·). In
fact, though Corollary 1 states that the family SfN (0,Id) has
the ability to universally approximate any functions in Lp,
it does not necessarily prove that the approximation formula
(7) can achieve the same goal. After carefully examining the
proof of Theorem 4 in [6] however, we found that the authors
in fact proved Theorem 4 by first proving that formula (7)
is able to universally approximate any continuous functions
with compact support in Lp as

√
Dh → 0, though this fact

was not presented as a lemma or a theorem in the paper.
Combining this fact with the fact that f0 is continuous with
compact support and is in L1, we have

Theorem 5. Let f0 be the density function of the first
population and satisfy (3). Then there exist appropriate
values of r, D and h for f0 such that by applying formula (7)

to f0 the approximation error ‖f0 − f̂0‖1 can be arbitrarily
small.

For the approximation of g, because g satisfies (2), g is
in L∞ and does not have compact support. Therefore, the
reasoning leading to Theorem 5 is not applicable to g. In this
regard, [4,5] provides further analysis. Based on Lemma 2.1
in [5] and its related discussions we formulate one relevant
result as a theorem and discuss its implications.

Theorem 6 (Maz’ya & Schmidt [5]). For any function u ∈
C2(Rn) ∩W 2

∞(Rn) it holds that

|u(x)− ũ(x)| 6 |u(x)|
∑

v∈Zn\{0}

exp(−Dπ
2‖v‖2)

+Dhπ
∑

|α|=1

|∂α
u(x)|

∑

v∈Zn\{0}

|vα| exp(−Dπ
2‖v‖2)

+ (
√
Dh)

2 ∑

|α|=2

ρα‖∂α
u‖∞ (26)

where

ũ(x) = (πD)−
n
2

∑

m∈Zn

u(hm) exp

(

−‖x− hm‖2
Dh2

)

(27)

and

ρα =
1

α!

∥

∥

∥

∥

∥

D
−n/2

∑

m∈Zn

∣

∣

∣

∣

(

· −m√
D

)

η

(

· −m√
D

)
∣

∣

∣

∣

∥

∥

∥

∥

∥

∞

(28)

In Theorem 6, α is a multi-index (α1, α2, . . . , αn) ∈ Z
n
>0

and |α| = α1 + · · ·+ αn, x
α = x

α1

1 · · ·xαn
n , α! = α1! · · ·αn!

and ∂αu(x) = ∂|α|

∂x1
α1 ···∂xn

αn
u(x). The Sobolev space WN

p ,

p ∈ [1,+∞] and N ∈ N consists of functions in Lp whose
generalized derivatives up to order N also belong to Lp. CN

consists of continuous functions whose generalized deriva-
tives up to order N exist and are all continuous.

To see the relevance of Theorem 6 to our research, first
note that ũ in (27) is equivalent to û in (7) when r =
+∞. Secondly, as u ∈ W 2

∞, ‖u‖∞ and ‖∂αu‖∞, |α| = 1, 2
are all finite. Therefore the terms related to u in (26)
can all be bounded by constants. As a consequence, if D
is fixed and h → 0, the second and third terms in (26)
vanish and the remaining term or the so-called saturation
error is ‖u(x)‖∞

∑

v∈Zn\{0} exp(−Dπ2‖v‖2). It can be seen
that this term can be arbitrarily small when D → +∞.
Combining these facts, it can be concluded that ‖u − ũ‖∞
can be arbitrarily small if the values of h and D are chosen
appropriately.

For the approximation error of û, it is proved in chapter
2.3.2 of [4] that ‖ũ−û‖∞ can be arbitrarily small by choosing
appropriate values of r in (7) when D and h are all fixed.
Because ‖u− û‖∞ 6 ‖u− ũ‖∞ + ‖ũ− û‖∞, combining this
fact with all previous reasoning it can be concluded that
‖u− û‖∞ can be arbitrarily small if the values of D, h and
r are chosen appropriately. In summary, we have

Theorem 7. Let g ∈ C2 ∩ W 2
∞ be the objective function.

Then there exist appropriate values of r, D and h for g such
that by applying formula (7) to g the approximation error
‖g − ĝ‖∞ can be arbitrarily small.

4.2 Propagation Error
In this section we analyze the amplification effects of tran-

sition functions on approximation errors. More specifically,
assume the error of the kth generation ‖fk − f̂k‖1 is known,

we want to derive an upper bound for ‖fk+1 − f̂k+1‖1.
Theorem 8. Let g and ĝ be the real and approximated
fitness functions and fk and f̂k be the real and approxi-
mated population density functions of the kth generation,
k = 0, 1, 2, . . .. Assume that g satisfies (2) and ‖fk − f̂k‖1
and ‖g − ĝ‖∞ are known. Then

‖fk+1 − f̂k+1‖1 6
2gmax

gmin
‖fk − f̂k‖1 +

2‖g − ĝ‖∞
gmin

(29)
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Furthermore, if ‖f0 − f̂0‖1 is known, it holds that

‖fk − f̂k‖1 6 α
k‖f0 − f̂0‖1 + ‖g − ĝ‖∞ · 1− αk

1− α
β (30)

where α = 2gmax

gmin

and β = 2
gmin

.

Proof. To be concise we denote
∫

Rd a(x)b(x)dx as
∫

ab. Adopt-
ing the notations in the proof of Theorem 2, we consider the
effects of selection and mutation separately.
To analyze the effect of selection, first note that as g satis-

fies (2) and the Gaussian mixtures f̂k, ĝ > 0 are continuous
functions,

0 < gmin 6

∫

fkg =

∣

∣

∣

∣

∫

fkg

∣

∣

∣

∣

=

∫

|fkg|

and

0 <

∫

f̂kĝ =

∣

∣

∣

∣

∫

f̂kĝ

∣

∣

∣

∣

=

∫

∣

∣

∣
f̂kĝ

∣

∣

∣

The L1-norm difference after selection is

∥

∥

∥
f
′
k − f̂

′
k

∥

∥

∥

1
=

∥

∥

∥

∥

∥

fkg
∫

fkg
− f̂kĝ

∫

f̂kĝ

∥

∥

∥

∥

∥

1

=

∥

∥

∥

∫

f̂kĝ ·
(

fkg − f̂kĝ
)

+ f̂kĝ ·
(

∫

f̂kĝ −
∫

fkg
)
∥

∥

∥

1
∫

fkg
∫

f̂kĝ

6

∫

f̂kĝ ·
∥

∥

∥
fkg − f̂kĝ

∥

∥

∥

1
+

∫

f̂kĝ ·
∣

∣

∣

∫

f̂kĝ −
∫

fkg
∣

∣

∣

∫

fkg
∫

f̂kĝ

6

2
∥

∥

∥
fkg − f̂kg + f̂kg − f̂kĝ

∥

∥

∥

1
∫

fkg

6
2

∫

fkg

(
∥

∥

∥
g(fk − f̂k)

∥

∥

∥

1
+

∥

∥

∥
f̂k(g − ĝ)

∥

∥

∥

1

)

6
2

gmin

(

gmax

∥

∥

∥
fk − f̂k

∥

∥

∥

1
+ ‖g − ĝ‖∞

)

In the proof we used the Minkowski inequality ‖a + b‖1 6

‖a‖1 + ‖b‖1, Hölder’s inequality ‖ab‖1 6 ‖a‖1‖b‖∞ and the
inequality

∫

a 6
∫

|a|.
To analyze the effect of mutation, first we denote h =

fN (µw,Σw). Obviously ‖h‖1 = 1. The L1-norm difference
after mutation is
∥

∥

∥
fk+1 − f̂k+1

∥

∥

∥

1
=

∥

∥

∥
f
′
k ∗ h− f̂

′
k ∗ h

∥

∥

∥

1
=

∥

∥

∥
(f ′

k − f̂
′
k) ∗ h

∥

∥

∥

1

6

∥

∥

∥
f
′
k − f̂

′
k

∥

∥

∥

1
‖h‖1 by Young’s inequality

=
∥

∥

∥
f
′
k − f̂

′
k

∥

∥

∥

1

Combining the two inequalities, the proof of (29) is com-
plete. (30) is obtained by expanding (29) recursively until

‖f0 − f̂0‖1.

4.3 Overall Error
By applying Theorem 5 and Theorem 7, the initial approx-

imation errors ‖f0 − f̂0‖1 and ‖g − ĝ‖∞ can be arbitrarily

small. As a consequence, if k is fixed in (30), ‖fk − f̂k‖1
can be arbitrarily small. Therefore the error introduced by
the Gaussian mixture model can be arbitrarily small up to
a predefined generation k. This result is summarized in the
following theorem.

Theorem 9. Let f0 be the density function of the first
population and satisfy (3), and g ∈ C2∩W 2

∞ be the objective
function and satisfy (2). Then given a threshold 0 < ǫ < 1
and a generation number k ∈ N, there exist appropriate
values of r, D and h for f0 and g, respectively such that by
applying formula (7) to them and evolving the two systems
according to Theorem 1 and Theorem 2, the approximation
error ‖fl − f̂l‖1 < ǫ for all l ∈ N, l 6 k.

5. EXPERIMENTAL RESULTS
In this section we apply the finite Gaussian model on a

simple low dimensional optimization problem to illustrate
the usefulness of the model in predicting the behavior of
evolutionary algorithms. In the experiment the solution
space is R

2 and the objective function under consideration
is an isotropic Gaussian mixture with two components

g(x) = c1fN (µ1,Σ) + c2fN (µ2,Σ)

where

(

c1
c2

)

=

(

50000
40000

)

, µ1 =

(

2.5
2.5

)

, µ2 =

(

−2.5
−2.5

)

and Σ =

(

2 1
1 2

)

. Though the problem is simple it is

sufficient to illustrate our proposed approach. Besides, we
mention that in general finding the maximum or all modes of
a multidimensional Gaussian mixture is not an easy task [2].

The initial population density function f0 is a Gaussian
function with µf0 = (0,−2.5) and Σf0 = 64I2. We evolve
the Gaussian mixture model according to Theorem 2 for 50
generations. We also run Algorithm 1 with population size
of 100, 1000, 10000 and 100000 to solve this problem once
respectively. The mutation vector w follows fN (0, I2), and
the stopping criteria of the algorithm is the iteration number
reaching 50. The expected average fitness value Ef̂k

ĝ and
the expected population mean center Ef̂k

x are calculated
for each generation, and they are compared with the values
observed by running the real algorithm. To facilitate calcu-
lation we set the component number limit to be 215, i.e. we
preserve the largest 215 components in the calculation. The
simulation results are depicted in Figure 1 and Figure 2.
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Figure 1: Trajectories of population mean center

predicted by our proposed approximation and ob-

served from running the real algorithm
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Figure 2: Comparison of average fitness values

predicted by our proposed approximation with ob-

served values from running the real algorithm

In Figure 1 the line in black (marked GM) is the trajectory
of predicted population mean center calculated by Ef̂k

x,

while lines in other colors (marked p = 100, 1000, 10000, and
100000) are the real population means observed by running
the algorithm with different population sizes. Similarly, in
Figure 2 we depict average fitness values of our prediction
and that of real observations versus iteration number, re-
spectively. From both figures it can be seen that our model
can predict key statistics of evolutionary algorithm with
fair accuracy, and as the population size grows, the error
becomes smaller. This is due to the fact that our model is
aimed at predicting the behavior of evolutionary algorithms
with infinite population size. Since in the experiment f0
and g are both Gaussian mixtures, the error comes from
the finite population effect and the truncation of Gaussian
mixtures during the calculation.

6. CONCLUSION
In this paper we propose a novel finite Gaussian mixture

model to approximate the behavior of simple evolutionary
algorithms. Our model is conceptually straightforward yet
it has many nice properties. In the model the transition
function can be easily iterated and key statistics of interest
can be calculated by simple formula. As it also yields explicit
expressions of population density functions, it can provide
more insight into the dynamics of evolutionary algorithms
than traditional approaches. In addition, based on [4–6],
we proved that in theory our model can approximate the
dynamics of simple evolutionary algorithm with arbitrarily
small error. The experimental result illustrated the effec-
tiveness and usefulness of the model.
For future work, it is possible to extend this research in

many directions. Firstly, the errors due to finite popula-
tion in real algorithm and the truncation of mixtures in
the implementation can be analyzed. Secondly, to simplify
things, the crossover operator is not considered in this paper.
However, it would not be too difficult to apply our model
on elementary crossover operators. Last but not least, the
truncation method in the implementation is a very elemen-
tary method. It is possible to adopt more advanced mixture

component number reduction algorithms in our framework
to cope with more complex problems.
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