
NSGA-II with Iterated Greedy for a Bi-objective
Three-stage Assembly Flowshop Scheduling Problem

Saulo Cunha Campos
Departamento de Informática

Universidade Federal de Viçosa (UFV)
Campus Universitário, Viçosa-MG

+55 (31) 3899-2394, Brazil, 36.570-000
saulo.campos@ufv.br

José Elias Claudio Arroyo
Departamento de Informática

Universidade Federal de Viçosa (UFV)
Campus Universitário, Viçosa-MG

+55 (31) 3899-2394, Brazil, 36.570-000
jarroyo@dpi.ufv.br

ABSTRACTT
In this paper we address a three-stage assembly flowshop
scheduling problem where there are m machines at the first stage,
a transportation machine at the second stage and an assembly
machine at the third stage. At the first stage, different parts of a
product are manufactured independently on parallel production
lines. At the second stage, the manufactured parts are collected
and transferred to the next stage. At the third stage, the parts are
assembled into final products. The objective is to schedule n jobs
on the machines so that total flowtime and the total tardiness of
the jobs are minimized simultaneously. This problem has many
applications in industry and belongs to the class of NP-Hard
combinatorial optimization problems. In order to obtain near
Pareto optimal solutions, we propose an Elitist Non-dominated
Sorting Genetic Algorithm (NSGA-II) coupled with Iterated
Greedy (IG) strategy. IG is a simple heuristic that has shown
excellent results for different flowshop scheduling problems. A
comparative study is presented between the results obtained using
the standard NSGA-II, the enhanced NSGA-II with IG approach
and a single-objective GRASP heuristic. Experimental results on
both medium and large size of instances show the efficiency of
the hybrid NSGA-II approach.

Keywords
Assembly Flowshop Scheduling, Multi-objective Optimization,
Heuristics, Genetic Algorithms, Local Search.

1. INTRODUCTION
Jobs scheduling is a decision-making problem that occurs in
manufacturing systems. This problem deals with the allocation of
available resources to jobs over given time periods and the goal is
to optimize one or more objectives (or criteria).

The scheduling problems have been thoroughly studied since the
mid-50 [3]. Nowadays, scheduling problems are one of the most
studied problems. It occurs mainly by two aspects: the first one
concerns their practical importance, with various applications in
several industries. The second aspect is about the difficulty for
solving the majority problems of this class (these problems belong
to the class NP-Hard).

The scheduling problem focused in this paper is the three-stage
Assembly Flowshop Scheduling (3sAFS) problem. In this

problem, n jobs (or products) are performed in three stages. At the
first stage, the different parts of a job are manufactured
independently on m parallel machines (each job has m parts), at
the second stage the produced parts are collected and transferred
from the production site to the assembly site, and at the last stage
they are assembled into final products. At the second and third
stages there is only a single machine. The production shop is
composed of three stages that are disposed in series. Each job
visits each stage in order, characterizing a permutation flowshop.
This problem is NP-hard since its special case when m = 1 (which
is a regular three-machine flowshop scheduling problem) is NP-
hard [10].

In order to make the problem real, we consider sequence
dependent setup times on machines of the first stage,
transportation machine and assembly machine. Setup time is
necessary to prepare the machine (for example, tooling, cleaning,
positioning accessories, inspection of materials, among others)
when a job j is processed immediately after another job i.

The 3sAFS problem addressed in this work is to find the
processing sequence of jobs (schedule) in order to minimize
simultaneously two objectives: the total flowtime and the total
tardiness. The goal is to provide the decision maker with a set of
efficient schedules (Pareto-optimal solutions) such that he may
choose the most suitable schedule.

In the literature, other versions of the Assembly Flowshop
Scheduling (AFS) problem have been studied by some authors.
Some solution approaches have been proposed to solve the single
objective two-stage AFS (2sAFS) problem. For the maximum job
completion time (makespan) minimization some heuristics
methods were developed by Potts et al. [23]. Al-Anzi and
Allahverdi [1] consider the total completion time minimization
and propose three metaheuristics, simulated annealing, tabu
search, and a hybrid tabu search. Maximum lateness criterion is
minimized by Allahverdi and Al-Anzi [2]. They consider
sequence independent setup times and propose a self-adaptive
differential evolution heuristic.

The single objective 3sAFS problem has been also addressed by
some authors. For minimizing the makespan, Koulamas and
Kyparisis [15] analyze the worst-case ratio bound for several
constructive heuristics. Koulamas and Kyparisis [15] extended the
2sAFS problem to 3sAFS problem with the objective of
minimizing the makespan. For the 3sAFS problem with sequence
dependent setup times on first and third stages, a mathematical
MIP model for minimizing the total completion time is proposed
by Andrés and Hatami [4].

The 3sAFS problem with multi-objective optimization has been
less studied. Some authors address bi-objectives problems but

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’14, July 12–16, 2014, Vancouver, BC, Canada.
Copyright 2014 ACM 978-1-4503-2662-9/14/07…$15.00.
http://dx.doi.org/10.1145/2576768.2598324

429

they use weighted linear functions, that is, weights (preferences)
are defined to each objective and them are combined in a linear
function.

To minimize the weighted sum of the mean flowtime and
maximum tardiness in a 3sAFS problem with sequence dependent
set up times, a tabu search and a simulated annealing
metaheuristic were developed by Hatami et al. [12]. For the same
problem, a Greedy Randomized Adaptive Search Procedure
(GRASP) was proposed by Campos et al. [7]. Maleki et al. [17]
consider a 3sAFS problem with blocking and sequence dependent
setup times with the objective to minimize the weighted mean
completion time and makespan. These authors propose a
metaheuristic based on simulated annealing.

Recently, Tajbakhsh et al. [26] apply multi-objective algorithms
based on genetic algorithm and particle swarm optimization for a
bi-objective 3sAFS problem with the objective to minimize the
makespan and sum of the earliness and tardiness costs,
simultaneously.

In this paper, multi-objective optimization is understood in its
traditional form, which involves the generation of the Pareto-
optimal or efficient solutions. To solve the bi-objective 3sAFS
problem, we propose a hybrid algorithm based on NSGA-II
(Elitist Non-dominated Sorting Genetic Algorithm) and Iterated
Greedy (IG) algorithm.

NSGA-II proposed by [8] has been widely used for solving a
variety of multi-objective optimization problems. IG algorithm,
proposed by [25], is a powerful heuristic that has been applied to
all sorts of scheduling problems obtaining high quality results.
The main feature of the IG is its simplicity which is contrary to
sophisticated algorithms that embed problem specific knowledge
and that usually have many control parameters. Despite its
simplicity, IG has shown state-of-the-art results under different
flowshop variants and objectives [21].

In the literature, some authors show that the performance of the
NSGA-II algorithm can be improved by using local search
techniques [9] [11] [22]. To the best of our knowledge this is the
first paper that combines NSGA-II with IG.

The rest of this paper is organized as follows. Section 2 presents
the 3sAFS problem statement. In Section 3 we describe the
proposed algorithm. The computational experiments and the
statistical analyses of the obtained results are presented in Section
4. The last Section concludes the work.

2. PROBLEM STATEMENT
The 3sAFS problem investigated in this work consists in
processing (or manufacturing) n jobs (products) on three stages
production shop. Each job has m components (or parts) that are
manufactured separately at the first stage (production line
composed by m parallel machines). At the second stage, the
produced parts of a job are collected and transported from
production site to assembly machine. At the third stage, the parts
are assembled into a final product. All jobs are available to be
processed at time zero. All machines (including transportation and
assembly machines) process only one job at a time without
interruption or preemption. In addition, the sequence of jobs at all
stages is the same (only permutation schedules are considered).

The processing time of a job j on machine k of the first stage
is known and defined by t[j,k]. This time corresponds to the
manufacturing time of part k. The transportation time (tt[j]),

assembly time (at[j]) and the due date (d[j]) of a job j also are
known.

Between the processing of two consecutive jobs i and j, on a
machine k of the first stage, a sequence dependent setup time
s1[k,i,j] is considered. The setups times on the transportation and
assembly machines are defined by s2[i,j] and s3[i,j], respectively,
where i and j are two consecutive jobs.

The objective of the problem is to determine a permutation
schedule s (sequence of the jobs) in order to minimize the total
flowtime (F) and the total tardiness of the jobs (T).

The two objectives F and T are computed by the following
equations:

ଵ݂ ൌ ܨ	 ൌ 	෍Cଷሾ୨ሿ

୬

୨ୀଵ

ଶ݂ ൌ ܶ ൌ෍݉ܽݔ ቄ0, ଷሾ௝ሿܥ	 െ ݀୨ቅ

୬

୨ୀଵ

where, Cଷሾ௝ሿ is the completion time of job j at the third stage.

Cଷሾ௝ሿ	is calculated by the following equation:

ଷሾ௝ሿܥ ൌ max ቄܥଶሾ௝ሿ, Cଷሾ௝ିଵሿቅ ൅	3ݏሾ௝ିଵ,௝ሿ ൅ , ሾ௝ሿݐܽ

where, ܥଵሾ௝ሿ	and	Cଶሾ௝ሿ are the completion times of job j at the first

and second stage, respectively. j-1 is the immediately preceding
job of job j in a sequence. ܥଵሾ௝ሿ and ܥଶሾ௝ሿ are calculated by the

following equations:

ଵሾ௝ሿܥ ൌ max௞ୀଵ,…,௠ ቐ෍1ݏሾ௞,௜ିଵ,௜ሿ ൅ ሾ௝,௞ሿݐ

௝

௜ୀଵ

ቑ	

ଶሾ௝ሿܥ ൌ ݔܽ݉ ቄܥଵሾ௝ሿ, ଶሾ௝ିଵሿቅܥ ൅	2ݏሾ௝ିଵ,௝ሿ ൅ .	ሾ௝ሿݐݐ

The optimized objectives are very important in manufacture
systems. The first objective F is related to minimizing work-in-
process inventories, while the second objective T is related to job
due dates (customer service). These objectives are often of
conflicting nature, usually there is not a single solution s
optimizing F and T at once. Optimality in multi-objective
optimization problems is therefore understood in the sense of
Pareto-optimality, and the resolution of multi-objective
optimization problems lies in the identification of all solutions
belonging to the Pareto or efficient set, containing all alternatives
s which are not dominated by any other alternative s'. To properly
compare two solutions in a bi-objective minimization problem,
the following definitions are used:

 A solution s dominates s' if the point (f1(s), f2(s)) dominates
(f1(s'), f2(s')), that is, fi(s) ≤ fi(s') for i=1, 2, and fi(s) < fi(s')
for at least one i.

 A solution s is Pareto-optimal (or efficient) if there is no s'
such that (f1(s'), f2(s')) dominates (f1(s), f2(s)).

In Figure 1, we present two schedules (solutions) for an instance
of the 3sAFS problem with n = 4 jobs. Dark blocks denote the
required setup times. In this instance the first stage has m = 2
machines (M1 and M2). The transportation and assembly
machines are Mt and Ma, respectively. The due date of jobs are
d1 = 20, d2 = 15, d3 = 43 and d3 = 33. The processing times of jobs

430

and the setups times are showed in the Figure 1. For this instance,
the set of Pareto optimal solutions is formed by the following four
job schedules: s1 = {2, 1, 4, 3}, s2 = {4, 2, 1, 3}, s3 = {3, 4, 2, 1}
and s4 = {4, 3, 2, 1}. The objective values of these schedules are
(F(s1),T(s1)) = (114, 6), (F(s2), T(s2)) = (108, 16), (F(s3), T(s3)) =
(106, 28) and (F(s4), T(s4)) = (104, 29), respectively. Note that
the schedules s1 and s4 (showed in Figure 1) provide the minimum
value of the total tardiness (T) and the total flowtime (F),
respectively. Figure 2 shows the Pareto optimal front for the
considered instance. Note that, the objectives F and T are
conflicting, that is, there is not a single schedule that minimizes F
and T at once.

s1 = {2, 1, 4, 3}

s4 = {4, 3, 2, 1}

Figure 1: Two schedules for an instance of the 3sAFS problem.

Figure 2: Pareto optimal front for an instance with n=4 jobs.

The goal of the bi-objective 3sAFS problem, addressed in this
paper, is to determine the set of the Pareto-optimal permutation
schedules in order to minimize F and T.

3. NSGA-II WITH ITERATED GREEDY
In this section we describe the proposed hybrid algorithm that
combines the standard NSGA-II [8] with Iterated Greedy (IG)
strategy. The proposed algorithm is named NSGA2-IG and is
showed in Figure 3. The pseudocode description of NSGA2-IG is
presented in Algorithm 1. The algorithm has three input
parameters, N (size of a population), d (parameter used in the IG
procedure) and MaxCPUTime (an amount of CPU time used as
stopping criterion).

Initially (iteration t = 0), two solution populations Pt and Qt, each
of size N, are created. The solutions are generated randomly and
by using a constructive heuristic.

The IG procedure begins with a non-dominated solution s selected
randomly from Pt, executes a greedy local search and returns a

population D’ of non-dominated solutions. At the iteration t = 0,
the IG procedure is not executed (D’ = ).

The three populations Pt, Qt and D’ are combined to form a
population Rt of size 2N + |D’|, where |Pt| = |Qt| = N. Next, a non-
dominated sorting is used to classify the entire population Rt =
PtQtD’. Once, the non-dominated sorting is over, the
population Rt becomes subdivided in k fronts (F1, F2,…, Fk). All
elements of the same front have the same non-domination rank.
The best N solutions of the best non-dominated fronts are chosen
to be the next generation parent solutions Pt+1. The N members of
the parent population Pt+1 are chosen from the first l non-
dominated fronts F1, F2,…, Fl-1, Fl (l ≤ k), such that |F1 F2…
Fl-1|<N. If |F1F2…Fl | = N, the parent population is Pt+1 =
F1F2…Fl, and the solutions of Fl+1…Fk are rejected. If
|F1  F2…Fl | > N, the solutions of the last front Fl are sorted
using the crowded distance comparison operator in descending
order. The worst |F1F2…Fl | – N solutions of front Fl are
rejected. The solutions of Fl+1…Fk are also rejected. The new
population Pt+1 is now used for selection, crossover and mutation
operators and to create a child population Qt+1 of size N. At next
iteration (t=1), the IG procedure is executed. IG begins with a
solution s selected randomly from F1 (F1  Pt).

The above mentioned mechanism is continued until the stopping
criterion is satisfied. The overall non-dominated solutions are kept
as the final result.

Algorithm 1. NSGA2-IG(N, d, MaxCPUTime)
Inputs:

N: Population size
d: Parameter used in the IG strategy
MaxCPUTime: Maximum CPU time that algorithm run

Output:
D: Set of non-dominated solutions

Begin
t  0; // iteration counter
Pt  ; //population of N solutions
Qt  ; //population of N child solutions
D’  ; //non-dominated solutions found by IG
Rt  ; //R=PtQtD’, population to be classified
CPUTime  0;
Pt  GenerateInitialPopulation(N);
Qt  GenerateInitialPopulation(N);
while (CPUtime < MaxCPUTime) do

if (t ≥ 1) then
s  SolutionSelectedRandomly(F1);
D’  IG(s, d); //IG method

end-if
Rt  Pt  Qt  D’;
F1,F2...Fk  Non_DominatedSorting(Rt);
CrowdingDistanceSorting(Rt);
Pt+1  Choose_The_Best_N_Solutions(Rt);
Qt+1SelectionCrossoverMutation(Pt+1,N);
t  t+1;
updateCPUTime(CPUTime);

end_while
D  F1;
Return D;

End

In the next subsections, we describe in detail the population
initialization phase, selection, crossover, mutation and the Iterated
Greedy intensification.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

M1

M2 4

Mt

Ma 1

1

3

4

3

31

42

2

2 1 3

Stage 1

Stage 2

Stage 3 42

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

M1

M2 4

Mt

Ma 1

Stage 2

Stage 3 234

1234

123

1234Stage 1

(114, 6)

(108, 16)

(106, 28)(104, 29)

5

10

15

20

25

30

102 104 106 108 110 112 114 116

T

F

431

Figure 3. NSGA2-IG basic iteration.

3.1 Initialization
A solution (sequence of n jobs) is represented by an array with n
elements. The NSGA2-IG algorithm begins with a population
with 2N solutions. Part of this population is generated by the
multi-objective partial enumeration heuristic (MOPE) proposed
by Arroyo and Armentano [5]. The other part of the population
was generated randomly.

MOPE heuristic is inspired on the NEH heuristics proposed by
Nawaz [20]. MOPE uses the Pareto dominance concept to
maintain not just one incomplete partial solution at each iteration
(as in NEH), but a whole set of non-dominated partial solutions
generated during the job insertion process. To minimize the
combination of objectives total flowtime and total tardiness, the
MOPE heuristic uses the following dispatching rules:

SPT (shortest processing time): the jobs are arranged in increasing
order of the total processing time on the three stages.

TLB (tardiness lower bound): the jobs are arranged in decreasing
order of a tardiness lower bound of job i [5].

The MOPE heuristic generates Nh (<2N) non-dominated solutions.
Then, 2N - Nh solutions are generated randomly.

3.2 Selection, Crossover and Mutation
To create a child population Qt, the following operators are
executed: selection, recombination and mutation.

From two parent solutions, two child solutions are created. Each
parent solution is selected from population Pt by using the binary
tournament technique. This technique consists in choosing
randomly two solutions of the population and the best one is
selected. The solutions belonging to smaller fonts are always
better. When comparing two solutions belonging to the same
front, the one with the bigger crowding distance wins.

The crossover operator creates offspring solutions by coalescing
two parents solutions. The aim is to generate better children, i.e.
to generate better solutions after the crossover. Many different
general and specific crossover operators have been proposed for
the flowshop scheduling problems in the literature. In this paper,
we use two effective operators: Two-Point Crossover (TPX) [13]
and Similar Block 2-Point Order Crossover (SB2OX) [24].

The mutation operator used here is the interchange operator. This
operator randomly choses two points along the child chromosome
and swaps with each other and genes (jobs) in these two points are

reversed. In each child solution, two swaps are performed with a
mutation probability.

3.3 Iterated Greedy Intensification
To accelerate the convergence speed of the NSGA-II algorithm,
we employ an intensification procedure based on the Iterated
Greedy (IG) heuristic. IG is a simple method which has been
applied to different sorts of single-objective scheduling problems.
The first application of IG for flowshop scheduling problems was
given by Ruiz and Stützle [25]. Minella, et al. [19] propose an
adaptation of IG for multi-objective flowshop scheduling
problems. Arroyo et al. [6] used the same intensification
procedure in a multi-objective VNS heuristic to solve a single
machine scheduling problem.

In this paper, the intensification procedure based on IG begins
from a solution s selected randomly from the best set of non-
dominated solutions (front F1 obtained by the non-dominated
sorting strategy). The pseudocode description of the used IG
intensification is showed in Algorithm 2. The procedure is
composed of two stages: destruction and construction. In the
destruction stage, d jobs (selected randomly) are removed from s
and a partial solution sp (of size n-d) is obtained. The removed
jobs are stored in J (where J[i], i=1,...,d, are the removed jobs).
The construction stage has d steps. In step i=1, (n-d+1) partial
solutions are constructed by inserting job J[1] in all possible
positions of sp. From the (n-d+1) partial solutions, the set Di of
non-dominated partial solutions are selected. In the next step, new
solutions (of size n-d+2) are obtained by inserting job J[2] in each
partial non-dominated solutions. From the solutions constructed in
each step, the non-dominated solutions are always selected. In
step d, a set D’ of complete non-dominated solutions is
determined. Figure 4 illustrates the idea of the greedy
intensification procedure that starts from a solution s with n = 4
jobs and considering d =2.

Algorithm 2. IG (s, d)
Inputs:

s: solution chosen randomly from F1
d: number of jobs to be removed from s

Output:
D’: A set of non-dominated solutions obtained from s

begin
J  
//Destruction stage

for (i  1 to d)
J[i] remove a randomly selected job from s;

sp  s; //partial solution with n-d jobs
//Construction stage:

D’  {sp}
//Construction of non-dominated solution:

for (i  1 to d)
Di  ;
for (each partial solution s’ of D’)

Ds’  non-dominated solutions obtained
after inserting job J[i] in all
possible positions of s’;

Di  non-dominated solution Di  Ds’;
end-for
D’  Di;

end-for
Return D’;

end

Qt

Pt IG Pt

Qt

D’

D’ F1

F2

Fk

Non-
dominated
sorting

Rejected

F1

F2

Crowding
distance
sorting

Pt+1

Selection, crossover and mutation

s

Rt

Fl

432

Figure 4. Iterated Greedy Intensification.

4. COMPUTATIONAL EXPERIMENTS
In this work, we analyze the efficiency of the IG intensification
procedure used in the NSGA-II algorithm proposed by Deb et al.
[8]. To solve the bi-objective three-stage assembly flowshop
scheduling problem addressed in this work, we compare the
hybrid NSGA2-IG algorithm with the standard NSGA-II and with
a single-objective GRASP algorithm proposed by [7]. All
algorithms were coded in C++ and executed on an Intel(R) Core
Quad Q9400 2.67GHz and 8 GB of RAM.

The single-objective GRASP algorithm is based on the
minimization of different weighted utility functions (fw = w1F +
w2T, where w1 + w2 = 1). To determinate a set of non-dominated
solutions, the GRASP algorithm was executed with different
weight vectors (w1, w2). We used the following eleven weights:
(w1, w2) = (0, 1), (0.1, 0.9), (0.2, 0.8), (0.3, 0.7),…,(0.9, 0.1) and
(1, 0). In each execution, a single solution was obtained. We
selected the non-dominated solutions from the eleven obtained
solutions.

In each execution of the algorithms NSGA2-IG, NSGA-II and
GRASP, we use the same stopping criterion which is based on an
amount of CPU time. This time was fixed in 110nm
milliseconds.

4.1 Benchmark Instances for the Problem
The instances of the problem were generated randomly according
to Liefooghe et al. [16]. We considered test problems with number
of jobs n  {30, 50, 80, 100, 200} and number of machines (at
first stage) m  {5, 10, 20}. The processing times are generated
randomly, according to a uniform distribution: tij, ttj, taj  U[0,
99]. The setup times are uniformly distributed in the range [0–49].
The due dates for every jobs were generated randomly, with
uniform distribution, over the interval [3p,	(n+2)p], where p is
the average value of previously generated processing times. We
use the factor 3 because the 3sAFS problem can be considered as
a flowshop with three machines. Thus, a due date di roughly lies
between the average completion date of the first scheduled job
and the average completion date of the last scheduled job [16].
For each configuration nm, 10 instances were generated.
Therefore, a total of 150 instances were tested.

4.2 Performance Measures
In this work, to assess the quality of the non-dominated solutions
attained by the three algorithms GRASP, NSGA-II and NSGA2-
IG, two multi-objective performance measures are used: distance
metric and hypervolume indicator.

We denoted by D1, D2 and D3 the sets of non-dominated solutions
(approximated Pareto fronts) obtained by the algorithms GRASP,
NSGA-II and NSGA2-IG, respectively. We measure the quality of
each set Di (i =1,2,3) with relation to the reference set (Ref)

constituted by gathering all non-dominated solutions obtained by
the three algorithms, that is, Ref is the set of approximated non-
dominated solutions obtained from (D1D2 D3). The Ref set is
the best known Pareto-optimal front.

The used performance measures are defined as follow:

Average distance: measures the proximity between the solutions
s’Di and the solutions s  Ref. It also measures the solutions
spreading on set Di [14]. This metric is defined as follows:





Refs

Dsiav ssd
Ref

Dd
i

)',(min
||

1
100)('

,
)'()(

,
)'()(

max)',(where,
2

22

1

11
















sfsfsfsf

ssd

and i is the difference between the biggest and smallest value of
the objective fi, considering the solutions of set Ref. Smaller
values of dav(Di) correspond to higher quality of the solutions in
Di.

Hypervolume indicator: measures the covered or dominated area
by set Di. In this paper, this metric is defined as follows:

)(

)()(
100)(*

RefH

DHRefH
DH i

i




where, H(X) is the hypervolume (area) of the solution space
dominated by the solutions of the set X, i.e. the portion of the
objective space that is dominated by X. Note that, we considered
the relative percentage deviation of H(Di) with relation to H(Ref).
Smaller values of H*(Di) correspond to higher quality of the
solutions in Di. The hypervolume indicator was introduced by
Zitzler and Thiele [27].

4.3 Parameters of the Algorithms
The parameters of the algorithms NSGA-II and NGSA2-IG were
experimentally fine-tuned. The algorithm GRASP was
implemented following the original paper [7].

The best results of the standard NGSA-II were achieved using the
following parameters: Population size N = 100. Crossover
operator: TPX and SB2OX (to generate a child solution, a
crossover operator is chosen randomly). Crossover probability:
100%. Mutation probability 30%.

Figure 5. Means plot and Tukeys HSD intervals with 95% confidence

level - Calibration of the mutation probability of the NSGA-II.

1 2 3 4

1 3 2 4

2 1 3 1 2 3 1 3 2

4 2 1 3 2 4 1 3 2 1 4 3 2 1 3 4 4 1 3 2 1 4 3 2 1 3 4 2 1 3 2 4

Non-dominated solutions

s

sp J
Destruction

Construction

Mutation Probability

H
yp

er
vo

lu
m

e
In

di
ca

to
r

(H
*)

20% 30% 40% 50% 60%
7,4

9,4

11,4

13,4

15,4

433

Figure 5 shows the performance of the NSGA-II algorithm
(regarding the hypervolume indicator) for different mutation
probabilities (20%, 30%, 40% and 50%). We performed the non-
parametric Kruskal-Wallis Test [18] to validate the obtained
results. The statistical analysis indicates that the obtained results
are not significantly different for the five mutation probability
values. However, we can see that the lowest average hypervolume
was obtained for mutation probability 30%.

The NSGA2-IG uses the same parameters of NSGA-II. For the
parameter d used the Iterated Greedy intensification, we tested
different values. The best results were achieved using d =4 (for
instances with n ≤100) and d = 2 (for instances with n = 200).

4.4 Obtained Results
The non-dominated solutions obtained by the proposed hybrid
algorithm NSGA2-IG are compared with the non-dominated
solutions obtained by the other tested algorithms (GRASP and
NSGA-II). To solve each test problem, the algorithms were run 10
times for all the 150 instances of the 3sAFS problem. The sets D1,
D2 and D3 contain the non-dominated solutions found among all
the runs of the algorithms GRASP, NSGA-II and NSGA2-IG,
respectively. For each instance, the reference set Ref is non-
dominated solutions obtained from (D1D2 D3).

We note that, for all the 150 instances tested, the algorithms
NSGA2-IG and GRASP determine 94.66% and 5.49% of the
reference solutions, respectively. The NSGA-II algorithm does
not determine any reference solution.

The distance and hypervolume measures are calculated for each
set Di. In Table 1, results attained by the algorithms in relation to
the average distance metric are presented. In this Table, the results
(average values) are grouped according to the number of jobs and
number of machines (nm) of the instances.

We can see that, for all groups of instances the NSGA2-IG
algorithm is the one that produces lower average distances, that is,
closer to zero. Then the proposed algorithm is notoriously better
than the standard NSGA-II and GRASP. We can see also that the
algorithm GRASP performs better than NSGA-II.

The distance metric measures the proximity between the solutions
of a set Di and the solutions of set Ref. Therefore, the higher the
percentage of solutions of Di in the Ref set, the lower tends to be
the values of the distance metrics. The values of the distance
metrics tend to be smaller, but those values also depend of the
distance between Di solutions and solutions belonging to Ref set
obtained by other algorithms.

Table 2 presents the comparison of the algorithms regarding the
hypervolume indicator. In this Table we can see again that
NSGA2-IG algorithm presents lower average values of the
relative percentage deviation of the hypervolume (H*) for all
group of instances.

4.5 Statistical Analysis
In order to validate the obtained results, we apply again a
statistical analysis using the average distance (dav) and
hypervolume (H*) measures as response variables.

First, to verify if the observed differences between the obtained
results are statistically significant, we performed an analysis of
variance (ANOVA) [18]. The three main assumptions of ANOVA
were checked: normality, homoscedasticity and independence.
Since the normality test was not satisfied, we performed the non-
parametric Kruskal-Wallis Test. This test compares between the

medians of the three algorithms to determine if there is a
significant difference. The Kruskal-Wallis results (not shown in
detail due to reasons of space) indicate that there is statistically
significant difference between the obtained results at a 95%
confidence level. It was observed that the computed P-value is
less than 0.05 which shows that exist significant difference
between the algorithms. The Kruskal Wallis Test does not specify
which algorithms are different. So, we use a non-parametric
Multiple Comparisons test to compare each pair of means with a
95% confidence level.

Table 1. Average distance (dav) results.

n m GRASP NSGA-II NSGA2_IG

30 5 7.21 23.52 1.05

30 10 6.92 26.29 0,67

30 20 8.52 25.53 0.61

50 5 13.48 27.65 0.50

50 10 13.11 24.82 0.26

50 20 16.98 31.16 0.21

80 5 14.41 24.64 0.55

80 10 20.36 32.21 0.27

80 20 19.51 36.34 0.09

100 5 16.93 25.81 0.25

100 10 14.80 29.30 0.19

100 20 22.82 40.17 0.22

200 5 10.77 19.45 0.31

200 10 13.59 22.18 0.16

200 20 17.92 25.26 0.06

Average 14.49 27.62 0.36

Table 2. Hypervolume indicator (H*) results.

n m GRASP NSGA-II NSGA2_IG

30 5 13.75 37.68 3.66
30 10 15.92 36.15 3.74
30 20 16.63 34.48 3.81

50 5 23.25 43.07 3.82
50 10 18.28 39.27 3.25
50 20 22.46 36.88 3.28
80 5 19.34 39.68 2.89
80 10 28.00 43.45 2.70
80 20 23.12 40.88 2.59

100 5 22.90 41.37 2.77
100 10 19.71 40.10 2.06
100 20 23.55 41.34 2.03
200 5 15.29 38.62 2.03
200 10 19.60 34.96 2.17
200 20 23.24 29.03 2.18

Average 20.34 38.46 2.87

The Tables 3 and 4 show the result of the Multiple Comparisons
test regarding the average distance and hypervolume indicator
metrics, respectively. The first column of these Tables shows the
pairs of algorithms being compared. The "Difference" column
displays the sample mean of the first algorithm minus that of the
second. The "+/- Limits" column shows an uncertainty interval for

434

the difference. Any pair of algorithms for which the absolute
value of the difference exceeds the limit is statistically significant
at the selected confidence level 95% and is indicated by an
asterisk (*) in the "Significant" column. In Tables 3 and 4 we can
see that there are significant differences between all the pairs of
algorithms. The same statistical analysis can be displayed in
Figures 6 and 7.

Table 3. Multiple Comparisons test - Average Distance.

Contrast Significant Difference +/- Limits

GRASP  NSGA-II * -13.1333 3.07722

GRASP  NSGA2_IG * 14.1287 3.07722

NSGA-II  NSGA2_IG * 27.262 3.07722

Table 4. Multiple Comparisons test - Hypervolume Indicator.

Contrast Significant Difference +/- Limits

GRASP  NSGA-II * -18.1287 1.46216

GRASP  NSGA2_IG * 18.6296 1.46216

NSGA-II  NSGA2_IG * 36.7583 1.46216

Figure 6. Means plot and Tukeys HSD intervals with 95% confidence

level - Average Distance metric (dav).

Figure 7. Means plot and Tukeys HSD intervals with 95% confidence

level - Hypervolume Indicator (H*).

Figures 6 and 7 show the means plot and Tukey's Honestly
Signifiant Difference (HSD) intervals at 95% confidence level
from the Multiple Comparisons test for two performance
measures, respectively. Since the confidence interval of NSGA2-
IG algorithm does not overlap any of the other intervals, the mean
of NSGA2-IG is significantly different than that of the other two
algorithms. So we can state that, on average, NSGA2-IG is better
than NSGA-II and GRASP. We can see also that, on average,
GRASP is better than NSGA-II.

The statistical analysis shows that the use of IG improves
significantly the results of the basic NSGA-II algorithm.

5. CONCLUSIONS
This paper has proposed a hybrid algorithm for a bi-objective
three-stage Assembly Flowshop Scheduling problem with
sequence-dependent setup times. In order to find an
approximation of the Pareto optimal set, the hybrid algorithm
(NSGA2-IG) combines the basic NSGA-II [8] scheme with an
intensification strategy based on Iterated Greedy.

We have performed a comparative study between the proposed
algorithm and two other algorithms considering medium and large
instances of the problem. According to the obtained results and
the statistical analyses, the proposed NSGA2-IG algorithm
performed better than the two algorithms, NSGA-II and GRASP.
The results of NSGA-II were improved significantly by using IG
intensification. After the computational experiments we can
conclude that the proposed hybrid algorithm shows an excellent
performance overcoming the original NSGA-II.

6. ACKNOWLEDGMENTS
This work was supported by Fundação de Amparo à Pesquisa do
Estado de Minas Gerais (FAPEMIG), Conselho Nacional de
Desenvolvimento Científico e Tecnológico (CNPq) and
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
(CAPES).

7. REFERENCES
[1] Al-Anzi, F. S., and Allahverdi, A. 2006. A hybrid tabu

search heuristic for the two-stage assembly scheduling
problem. International Journal of Operations Research, 3, 2
(2006), 109-119.

[2] Al-Anzi, F. S., and Allahverdi, A. 2007. A self-adaptive
differential evolution heuristic for two-stage assembly
scheduling problem to minimize maximum lateness with
setup times. European Journal of Operational
Research, 182, 1 (oct. 2007) 80-94.

[3] Allahverdi, A., Ng, C. T., Cheng, T. E., and Kovalyov, M. Y.
2008. A survey of scheduling problems with setup times or
costs. European Journal of Operational Research, 187, 3
(2008), 985-1032.

[4] Andrés, C., and Hatami, S. 2011. The three stage assembly
permutation flowshop scheduling problem. In V international
conference on industrial engineering and industrial
management. (Colombia, Cartagena, September 7-9, 2011).
867-875.

[5] Arroyo, J. E. C., and Armentano, V. A. 2004. A partial
enumeration heuristic for multi-objective flowshop
scheduling problems. Journal of the Operational Research
Society, 55, 9 (sep. 2004), 1000-1007.

[6] Arroyo, J. E. C., Ottoni, R. S. and Oliveira, A. P. 2011.
Multi-objective Variable Neighborhood Search Algorithms

Algorithms

A
ve

ra
ge

 D
is

ta
nc

e
(D

av
)

GRASP NSGA-II NSGA2_IG

-2

8

18

28

38

Algorithms

H
yp

er
vo

lu
m

e
In

di
ca

to
r

(H
*)

GRASP NSGA2 NSGA2_IG

0

10

20

30

40

435

for a Single Machine Scheduling Problem with Distinct due
Windows. Electronic Notes in Theoretical Computer
Science, 281 (Dec. 2011), 5-19.

[7] Campos, S. C., Arroyo, J. E. C., and Gonçalves, L. B. 2013.
Uma heuristica grasp-vnd para o problema de
sequenciamento de tarefas num ambiente assembly flowshop
com três estágios e tempos de setup dependentes da
sequência. In Proceedings of the XLV Brazilian Symposium
of Operational Research. (Natal-RN, Brazil, Setember 16 -
19, 2013). 2147-2158.

[8] Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. A. M. T.
2002. A fast and elitist multiobjective genetic algorithm:
NSGA-II. Evolutionary Computation, IEEE Transactions
on, 6, 2 (Apr. 2002), 182-197.

[9] Deb, K., Steuer, R. E., Tewari, R., and Tewari, R. 2011. Bi-
objective portfolio optimization using a customized hybrid
NSGA-II procedure. In Proceedings of the 6th international
conference on Evolutionary Multi-criterion Optimization,
EMO 2011. (Ouro Preto-MG, Brazil, April 5-8, 2011).
Springer Berlin Heidelberg, 358-373.

[10] Garey M.R., Johnson D.S., Sethi R. 1976. The complexity of
flowshop and job shop scheduling. Mathematics and
Operations Research, 1, 2 (May. 1976), 117–29.

[11] Guo, Y., Chen, Z. R., Ruan, Y. L., and Zhang, J. 2012.
Application of NSGA-II with local search to multi-dock
cross-docking sheduling problem. In 2012 IEEE
International Conference on Systems, Man, and Cybernetics,
SMC. (Seoul, Korea, October 14-17, 2012). IEEE, 779-784.

[12] Hatami, S., Ebrahimnejad, S., Tavakkoli-Moghaddam, R.,
and Maboudian, Y. 2010. Two meta-heuristics for three-
stage assembly flowshop scheduling with sequence-
dependent setup times. The International Journal of
Advanced Manufacturing Technology, 50, 9-12 (oct. 2010),
1153-1164.

[13] Ishibuchi, H., Yoshida, T., and Murata, T. 2003. Balance
between genetic search and local search in memetic
algorithms for multiobjective permutation flowshop
scheduling. IEEE Transactions on Evolutionary
Computation, 7, 2, (Apr. 2003), 204-223.

[14] Knowles, J., and Corne, D. 2002. On metrics for comparing
nondominated sets. In Proceedings of the 2002 Congress on
Evolutionary Computation, CEC’02. (Honolulu, HI, May 12-
17, 2002). IEEE, 1, 711-716.

[15] Koulamas, C., and J Kyparisis, G. 2001. The three-stage
assembly flowshop scheduling problem. Computers &
Operations Research, 28, 7 (jun. 2001), 689-704.

[16] Liefooghe, A., Basseur, M., Humeau, J., Jourdan, L., and
Talbi, E. G. 2012. On optimizing a bi-objective flowshop
scheduling problem in an uncertain environment. Computers

& Mathematics with Applications, 64, 12 (dec. 2012), 3747-
3762.

[17] Maleki-Darounkolaei, A., Modiri, M., Tavakkoli-
Moghaddam, R., and Seyyedi, I. 2012. A three-stage
assembly flow shop scheduling problem with blocking and
sequence-dependent set up times. Journal of Industrial
Engineering International, 8, 8 (oct. 2012), 1-7.

[18] Montgomery, D. C., and Montgomery, D. C. 1997. Design
and analysis of experiments (Vol. 7). New York: Wiley.

[19] Minella, G., Ruiz, R., and Ciavotta, M. 2011. Restarted
Iterated Pareto Greedy algorithm for multi-objective
flowshop scheduling problems. Computers & Operations
Research, 38, 11 (Nov. 2011), 1521-1533.

[20] Nawaz, M., Enscore, E. E., and Ham, I. 1983. A heuristic
algorithm for the m-machine, n-job flow-shop sequencing
problem. Omega, 11, 1 (1983), 91-95.

[21] Pan, Q. K., and Ruiz, R. 2014. An effective iterated greedy
algorithm for the mixed no-idle permutation flowshop
scheduling problem. Omega, 44, (Apr. 2014), 41-50.

[22] Pires, D. F., Antunes, C. H., and Martins, A. G. 2012.
NSGA-II with local search for a multi-objective reactive
power compensation problem. International Journal of
Electrical Power & Energy Systems, 43, 1 (dec. 2012), 313-
324.

[23] Potts, C. N., Sevast'Janov, S. V., Strusevich, V. A., Van
Wassenhove, L. N., and Zwaneveld, C. M. 1995. The two-
stage assembly scheduling problem: complexity and
approximation. Operations Research, 43, 2 (Apr. 1995),
346-355.

[24] Ruiz, R., Maroto, C., and Alcaraz, J. 2005. Solving the
flowshop scheduling problem with sequence dependent setup
times using advanced metaheuristics. European Journal of
Operational Research, 165, 1 (Aug. 2005) 34-54.

[25] Ruiz, R., and Stützle, T. 2008. An iterated greedy heuristic
for the sequence dependent setup times flowshop problem
with makespan and weighted tardiness objectives. European
Journal of Operational Research, 187, 3 (jun. 2008), 1143-
1159.

[26] Tajbakhsh, Z., Fattahi, P., and Behnamian, J. 2013. Multi-
objective assembly permutation flow shop scheduling
problem: a mathematical model and a meta-heuristic
algorithm. Journal of the Operational Research Society. (set.
2013).

[27] Zitzler, E., and Thiele, L. 1998. Multiobjective optimization
using evolutionary algorithms – a comparative case study.
In Proceedings of the 5th International Conference
Amsterdam on Parallel problem solving from nature (PPSN
V). (Amsterdam, The Netherlands, September 27–30, 1998).
Springer Berlin Heidelberg, 1498, 292-301.

436

