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ABSTRACTT 
In this paper we address a three-stage assembly flowshop 
scheduling problem where there are m machines at the first stage, 
a transportation machine at the second stage and an assembly 
machine at the third stage.  At the first stage, different parts of a 
product are manufactured independently on parallel production 
lines. At the second stage, the manufactured parts are collected 
and transferred to the next stage. At the third stage, the parts are 
assembled into final products. The objective is to schedule n jobs 
on the machines so that total flowtime and the total tardiness of 
the jobs are minimized simultaneously. This problem has many 
applications in industry and belongs to the class of NP-Hard 
combinatorial optimization problems. In order to obtain near 
Pareto optimal solutions, we propose an Elitist Non-dominated 
Sorting Genetic Algorithm (NSGA-II) coupled with Iterated 
Greedy (IG) strategy.  IG is a simple heuristic that has shown 
excellent results for different flowshop scheduling problems. A 
comparative study is presented between the results obtained using 
the standard NSGA-II, the enhanced NSGA-II with IG approach 
and a single-objective GRASP heuristic.  Experimental results on 
both medium and large size of instances show the efficiency of 
the hybrid  NSGA-II approach.   

Keywords 
Assembly Flowshop Scheduling, Multi-objective Optimization, 
Heuristics, Genetic Algorithms, Local Search. 

1. INTRODUCTION 
Jobs scheduling is a decision-making problem that occurs in 
manufacturing systems. This problem deals with the allocation of 
available resources to jobs over given time periods and the goal is 
to optimize one or more objectives (or criteria). 

The scheduling problems have been thoroughly studied since the 
mid-50 [3]. Nowadays, scheduling problems are one of the most 
studied problems. It occurs mainly by two aspects: the first one 
concerns their practical importance, with various applications in 
several industries. The second aspect is about the difficulty for 
solving the majority problems of this class (these problems belong 
to the class NP-Hard). 

The scheduling problem focused in this paper is the three-stage 
Assembly Flowshop Scheduling (3sAFS) problem. In this 

problem, n jobs (or products) are performed in three stages. At the 
first stage, the different parts of a job are manufactured 
independently on m parallel machines (each job has m parts), at 
the second stage the produced parts are collected and transferred 
from the production site to the assembly site, and at the last stage 
they are assembled into final products. At the second and third 
stages there is only a single machine. The production shop is 
composed of three stages that are disposed in series. Each job 
visits each stage in order, characterizing a permutation flowshop. 
This problem is NP-hard since its special case when m = 1 (which 
is a regular three-machine flowshop scheduling problem) is NP-
hard [10]. 

In order to make the problem real, we consider sequence 
dependent setup times on machines of the first stage, 
transportation machine and assembly machine. Setup time is 
necessary to prepare the machine (for example, tooling, cleaning, 
positioning accessories, inspection of materials, among others) 
when a job j is processed immediately after another job i. 

The 3sAFS problem addressed in this work is to find the 
processing sequence of jobs (schedule) in order to minimize 
simultaneously two objectives: the total flowtime and the total 
tardiness. The goal is to provide the decision maker with a set of 
efficient schedules (Pareto-optimal solutions) such that he may 
choose the most suitable schedule. 

In the literature, other versions of the Assembly Flowshop 
Scheduling (AFS) problem have been studied by some authors. 
Some solution approaches have been proposed to solve the single 
objective two-stage AFS (2sAFS) problem. For the maximum job 
completion time (makespan) minimization some heuristics 
methods were developed by Potts et al. [23]. Al-Anzi and 
Allahverdi [1] consider the total completion time minimization 
and propose three metaheuristics, simulated annealing, tabu 
search, and a hybrid tabu search. Maximum lateness criterion is 
minimized by Allahverdi and Al-Anzi [2]. They consider 
sequence independent setup times and propose a self-adaptive 
differential evolution heuristic. 

The single objective 3sAFS problem has been also addressed by 
some authors. For minimizing the makespan, Koulamas and 
Kyparisis [15] analyze the worst-case ratio bound for several 
constructive heuristics. Koulamas and Kyparisis [15] extended the 
2sAFS problem to 3sAFS problem with the objective of 
minimizing the makespan. For the 3sAFS problem with sequence 
dependent setup times on first and third stages, a mathematical 
MIP model for minimizing the total completion time is proposed 
by Andrés and Hatami [4]. 

The 3sAFS problem with multi-objective optimization has been 
less studied.  Some authors address bi-objectives problems but 
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they use weighted linear functions, that is, weights (preferences) 
are defined to each objective and them are combined in a linear 
function. 

To minimize the weighted sum of the mean flowtime and 
maximum tardiness in a 3sAFS problem with sequence dependent 
set up times, a tabu search and a simulated annealing 
metaheuristic were developed by Hatami et al. [12].  For the same 
problem, a Greedy Randomized Adaptive Search Procedure 
(GRASP) was proposed by Campos et al. [7]. Maleki et al.  [17] 
consider  a 3sAFS problem with blocking and sequence dependent 
setup times with the objective to minimize the weighted mean 
completion time and makespan. These authors propose a 
metaheuristic based on simulated annealing.  

Recently, Tajbakhsh et al. [26] apply multi-objective algorithms 
based on genetic algorithm and particle swarm optimization for a 
bi-objective 3sAFS problem with the objective to minimize the 
makespan and sum of the earliness and tardiness costs, 
simultaneously.  

In this paper, multi-objective optimization is understood in its 
traditional form, which involves the generation of the Pareto-
optimal or efficient solutions. To solve the bi-objective 3sAFS 
problem, we propose a hybrid algorithm based on NSGA-II 
(Elitist Non-dominated Sorting Genetic Algorithm) and Iterated 
Greedy (IG) algorithm.  

NSGA-II proposed by [8] has been widely used for solving a 
variety of multi-objective optimization problems. IG algorithm, 
proposed by [25], is a powerful heuristic that has been applied to 
all sorts of scheduling problems obtaining high quality results. 
The main feature of the IG is its simplicity which is contrary to 
sophisticated algorithms that embed problem specific knowledge 
and that usually have many control parameters. Despite its 
simplicity, IG has shown state-of-the-art results under different 
flowshop variants and objectives [21]. 

In the literature, some authors show that the performance of the 
NSGA-II algorithm can be improved by using local search 
techniques [9] [11] [22]. To the best of our knowledge this is the 
first paper that combines NSGA-II with IG. 

The rest of this paper is organized as follows. Section 2 presents 
the 3sAFS problem statement. In Section 3 we describe the 
proposed algorithm. The computational experiments and the 
statistical analyses of the obtained results are presented in Section 
4. The last Section concludes the work. 

2. PROBLEM STATEMENT 
The 3sAFS problem investigated in this work consists in 
processing (or manufacturing) n jobs (products) on three stages 
production shop.  Each job has m components (or parts) that are 
manufactured separately at the first stage (production line 
composed by m parallel machines). At the second stage, the 
produced parts of a job are collected and transported from 
production site to assembly machine.  At the third stage, the parts 
are assembled into a final product. All jobs are available to be 
processed at time zero. All machines (including transportation and 
assembly machines) process only one job at a time without 
interruption or preemption. In addition, the sequence of jobs at all 
stages is the same (only permutation schedules are considered). 

The processing time of a job j on machine k of the first stage 
is known and defined by t[j,k]. This time corresponds to the 
manufacturing time of part k. The transportation time (tt[j]), 

assembly time (at[j]) and the due date (d[j]) of a job j also are 
known. 

Between the processing of two consecutive jobs i and j, on a 
machine k of the first stage, a sequence dependent setup time 
s1[k,i,j] is considered. The setups times on the transportation and 
assembly machines are defined by s2[i,j] and s3[i,j], respectively, 
where i and j are two consecutive jobs.   

The objective of the problem is to determine a permutation 
schedule s (sequence of the jobs) in order to minimize the total 
flowtime (F) and the total tardiness of the jobs (T). 

The two objectives F and T are computed by the following 
equations: 
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where, Cଷሾ௝ሿ is the completion time of job j at the third stage. 

Cଷሾ௝ሿ	is calculated by the following equation: 

ଷሾ௝ሿܥ ൌ max ቄܥଶሾ௝ሿ, Cଷሾ௝ିଵሿቅ ൅	3ݏሾ௝ିଵ,௝ሿ ൅   , ሾ௝ሿݐܽ

where, ܥଵሾ௝ሿ	and	Cଶሾ௝ሿ are the completion times of job j at the first 

and second stage, respectively. j-1 is the immediately preceding 
job of job j in a sequence. ܥଵሾ௝ሿ and ܥଶሾ௝ሿ are calculated by the 

following equations: 
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The optimized objectives are very important in manufacture 
systems. The first objective F is related to minimizing work-in-
process inventories, while the second objective T is related to job 
due dates (customer service). These objectives are often of 
conflicting nature, usually there is not a single solution s 
optimizing F and T at once. Optimality in multi-objective 
optimization problems is therefore understood in the sense of 
Pareto-optimality, and the resolution of multi-objective 
optimization problems lies in the identification of all solutions 
belonging to the Pareto or efficient set, containing all alternatives 
s which are not dominated by any other alternative s'. To properly 
compare two solutions in a bi-objective minimization problem, 
the following definitions are used: 

 A solution s dominates s' if the point (f1(s), f2(s)) dominates 
(f1(s'), f2(s')), that is, fi(s) ≤ fi(s') for i=1, 2, and fi(s) < fi(s') 
for at least one i. 

 A solution s is Pareto-optimal (or efficient) if there is no s' 
such that (f1(s'), f2(s')) dominates (f1(s), f2(s)). 

In Figure 1, we present two schedules (solutions) for an instance 
of the 3sAFS problem with n = 4 jobs. Dark blocks denote the 
required setup times. In this instance the first stage has m = 2 
machines (M1 and M2). The transportation and assembly 
machines are Mt and Ma, respectively. The due date of jobs are  
d1 = 20, d2 = 15, d3 = 43 and d3 = 33. The processing times of jobs 
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and the setups times are showed in the Figure 1. For this instance, 
the set of Pareto optimal solutions is formed by the following four 
job schedules: s1 = {2, 1, 4, 3}, s2 = {4, 2, 1, 3}, s3 = {3, 4, 2, 1} 
and s4 = {4, 3, 2, 1}. The objective values of these schedules are 
(F(s1),T(s1)) = (114, 6), (F(s2), T(s2)) = (108, 16), (F(s3), T(s3)) = 
(106, 28) and (F(s4), T(s4)) = (104, 29), respectively.  Note that 
the schedules s1 and s4 (showed in Figure 1) provide the minimum 
value of the total tardiness (T) and the total flowtime (F), 
respectively. Figure 2 shows the Pareto optimal front for the 
considered instance. Note that, the objectives F and T are 
conflicting, that is, there is not a single schedule that minimizes F 
and T at once. 

 
s1 = {2, 1, 4, 3} 
 

 
s4 = {4, 3, 2, 1} 
 

Figure 1: Two schedules for an instance of the 3sAFS problem. 

 

 
Figure 2: Pareto optimal front for an instance with n=4 jobs. 

The goal of the bi-objective 3sAFS problem, addressed in this 
paper, is to determine the set of the Pareto-optimal permutation 
schedules in order to minimize F and T. 

3. NSGA-II WITH ITERATED GREEDY 
In this section we describe the proposed hybrid algorithm that 
combines the standard NSGA-II [8] with Iterated Greedy (IG) 
strategy. The proposed algorithm is named NSGA2-IG and is 
showed in Figure 3. The pseudocode description of NSGA2-IG is 
presented in Algorithm 1. The algorithm has three input 
parameters, N (size of a population), d (parameter used in the IG 
procedure) and MaxCPUTime (an amount of CPU time used as 
stopping criterion). 

Initially (iteration t = 0), two solution populations Pt and Qt, each 
of size N, are created. The solutions are generated randomly and 
by using a constructive heuristic. 

The IG procedure begins with a non-dominated solution s selected 
randomly from Pt, executes a greedy local search and returns a 

population D’ of non-dominated solutions. At the iteration t = 0, 
the IG procedure is not executed (D’ = ). 

The three populations Pt, Qt and D’ are combined to form a 
population Rt of size 2N + |D’|, where |Pt| = |Qt| = N. Next, a non-
dominated sorting is used to classify the entire population Rt = 
PtQtD’. Once, the non-dominated sorting is over, the 
population Rt becomes subdivided in k fronts (F1, F2,…, Fk). All 
elements of the same front have the same non-domination rank. 
The best N solutions of the best non-dominated fronts are chosen 
to be the next generation parent solutions Pt+1. The N members of 
the parent population Pt+1 are chosen from the first l non-
dominated fronts F1, F2,…, Fl-1, Fl  (l ≤ k), such that |F1 F2… 
Fl-1|<N.  If |F1F2…Fl | = N, the parent population is Pt+1 = 
F1F2…Fl, and the solutions of Fl+1…Fk are rejected. If 
|F1  F2…Fl | > N, the solutions of the last front Fl are sorted 
using the crowded distance comparison operator in descending 
order. The worst |F1F2…Fl | – N  solutions of front Fl are 
rejected. The solutions of Fl+1…Fk are also rejected. The new 
population Pt+1 is now used for selection, crossover and mutation 
operators and to create a child population Qt+1 of size N. At next 
iteration (t=1), the IG procedure is executed. IG begins with a 
solution s selected randomly from F1 (F1  Pt).  

The above mentioned mechanism is continued until the stopping 
criterion is satisfied. The overall non-dominated solutions are kept 
as the final result.  

Algorithm 1. NSGA2-IG(N, d, MaxCPUTime) 
Inputs: 

N: Population size 
d: Parameter used in the IG strategy 
MaxCPUTime: Maximum CPU time that algorithm run 

Output: 
D: Set of non-dominated solutions 

Begin 
t  0; // iteration counter 
Pt  ; //population of N solutions 
Qt  ; //population of N child solutions 
D’  ; //non-dominated solutions found by IG 
Rt  ; //R=PtQtD’, population to be classified 
CPUTime  0; 
Pt  GenerateInitialPopulation(N); 
Qt  GenerateInitialPopulation(N);  
while (CPUtime < MaxCPUTime) do 

if ( t ≥ 1) then 
s  SolutionSelectedRandomly(F1);  
D’  IG( s, d ); //IG method 

end-if 
Rt  Pt  Qt  D’; 
F1,F2...Fk  Non_DominatedSorting( Rt );  
CrowdingDistanceSorting( Rt );  
Pt+1   Choose_The_Best_N_Solutions( Rt ); 
Qt+1SelectionCrossoverMutation(Pt+1,N);   
t  t+1; 
updateCPUTime(CPUTime); 

end_while 
D  F1; 
Return D; 

End 
 

In the next subsections, we describe in detail the population 
initialization phase, selection, crossover, mutation and the Iterated 
Greedy intensification. 
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Figure 3. NSGA2-IG basic iteration. 

 

3.1 Initialization 
A solution (sequence of n jobs) is represented by an array with n 
elements. The NSGA2-IG algorithm begins with a population 
with 2N solutions. Part of this population is generated by the 
multi-objective partial enumeration heuristic (MOPE) proposed 
by Arroyo and Armentano [5]. The other part of the population 
was generated randomly.  

MOPE heuristic is inspired on the NEH heuristics proposed by 
Nawaz [20]. MOPE uses the Pareto dominance concept to 
maintain not just one incomplete partial solution at each iteration 
(as in NEH), but a whole set of non-dominated partial solutions 
generated during the job insertion process. To minimize the 
combination of objectives total flowtime and total tardiness, the 
MOPE heuristic uses the following dispatching rules:  

SPT (shortest processing time): the jobs are arranged in increasing 
order of the total processing time on the three stages.  

TLB (tardiness lower bound): the jobs are arranged in decreasing 
order of a tardiness lower bound of job i [5]. 

The MOPE heuristic generates Nh (<2N) non-dominated solutions.  
Then, 2N - Nh solutions are generated randomly. 

3.2 Selection, Crossover and Mutation 
To create a child population Qt, the following operators are 
executed: selection, recombination and mutation.  

From two parent solutions, two child solutions are created. Each 
parent solution is selected from population Pt by using the binary 
tournament technique. This technique consists in choosing 
randomly two solutions of the population and the best one is 
selected. The solutions belonging to smaller fonts are always 
better. When comparing two solutions belonging to the same 
front, the one with the bigger crowding distance wins. 

The crossover operator creates offspring solutions by coalescing 
two parents solutions. The aim is to generate better children, i.e. 
to generate better solutions after the crossover. Many different 
general and specific crossover operators have been proposed for 
the flowshop scheduling problems in the literature. In this paper, 
we use two effective operators: Two-Point Crossover (TPX) [13] 
and Similar Block 2-Point Order Crossover (SB2OX) [24].  

The mutation operator used here is the interchange operator. This 
operator randomly choses two points along the child chromosome 
and swaps with each other and genes (jobs) in these two points are 

reversed. In each child solution, two swaps are performed with a 
mutation probability. 

3.3 Iterated Greedy Intensification  
To accelerate the convergence speed of the NSGA-II algorithm, 
we employ an intensification procedure based on the Iterated 
Greedy (IG) heuristic. IG is a simple method which has been 
applied to different sorts of single-objective scheduling problems. 
The first application of IG for flowshop scheduling problems was 
given by Ruiz and Stützle [25]. Minella, et al. [19] propose an 
adaptation of IG for multi-objective flowshop scheduling 
problems. Arroyo et al. [6] used the same intensification 
procedure in a multi-objective VNS heuristic to solve a single 
machine scheduling problem. 

In this paper, the intensification procedure based on IG begins 
from a solution s selected randomly from the best set of non-
dominated solutions (front F1 obtained by the non-dominated 
sorting strategy). The pseudocode description of the used IG 
intensification is showed in Algorithm 2. The procedure is 
composed of two stages: destruction and construction. In the 
destruction stage, d jobs (selected randomly) are removed from s 
and a partial solution sp (of size n-d) is obtained. The removed 
jobs are stored in J (where J[i], i=1,...,d, are the removed jobs). 
The construction stage has d steps. In step i=1, (n-d+1) partial 
solutions are constructed by inserting job J[1] in all  possible 
positions of sp.  From the (n-d+1) partial solutions, the set Di of 
non-dominated partial solutions are selected. In the next step, new 
solutions (of size n-d+2) are obtained by inserting job J[2] in each 
partial non-dominated solutions. From the solutions constructed in 
each step, the non-dominated solutions are always selected. In 
step d, a set D’ of complete non-dominated solutions is 
determined. Figure 4 illustrates the idea of the greedy 
intensification procedure that starts from a solution s with n = 4 
jobs and considering d =2. 

 

Algorithm 2. IG (s, d) 
Inputs: 

s: solution chosen randomly from F1 
d: number of jobs to be removed from s 

Output: 
D’: A set of non-dominated solutions obtained from s 

begin 
J    
//Destruction stage 

for (i  1 to d)  
J[i] remove a randomly selected job from s;

sp  s; //partial solution with n-d jobs 
//Construction stage: 

D’  {sp} 
//Construction of non-dominated solution: 

for ( i  1 to d)  
Di  ; 
for ( each partial solution s’ of D’) 

Ds’  non-dominated solutions obtained 
after inserting job J[i] in all 
possible positions of s’;   

Di  non-dominated solution Di  Ds’; 
end-for 
D’  Di; 

end-for 
Return D’; 

end 
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Figure 4. Iterated Greedy Intensification. 

4. COMPUTATIONAL EXPERIMENTS 
In this work, we analyze the efficiency of the IG intensification 
procedure used in the NSGA-II algorithm proposed by Deb et al. 
[8]. To solve the bi-objective three-stage assembly flowshop 
scheduling problem addressed in this work, we compare the 
hybrid NSGA2-IG algorithm with the standard NSGA-II and with 
a single-objective GRASP algorithm proposed by [7]. All 
algorithms were coded in C++ and executed on an Intel(R) Core 
Quad Q9400 2.67GHz and 8 GB of RAM.  

The single-objective GRASP algorithm is based on the 
minimization of different weighted utility functions (fw = w1F + 
w2T, where w1 + w2 = 1). To determinate a set of non-dominated 
solutions, the GRASP algorithm was executed with different 
weight vectors (w1, w2). We used the following eleven weights: 
(w1, w2) = (0, 1), (0.1, 0.9), (0.2, 0.8), (0.3, 0.7),…,(0.9, 0.1) and 
(1, 0). In each execution, a single solution was obtained. We 
selected the non-dominated solutions from the eleven obtained 
solutions. 

In each execution of the algorithms NSGA2-IG, NSGA-II and 
GRASP, we use the same stopping criterion which is based on an 
amount of CPU time. This time was fixed in 110nm 
milliseconds. 

4.1 Benchmark Instances for the Problem 
The instances of the problem were generated randomly according 
to Liefooghe et al. [16]. We considered test problems with number 
of jobs n  {30, 50, 80, 100, 200} and number of machines (at 
first stage) m  {5, 10, 20}.  The processing times are generated 
randomly, according to a uniform distribution: tij, ttj, taj  U[0, 
99]. The setup times are uniformly distributed in the range [0–49]. 
The due dates for every jobs were generated randomly, with 
uniform distribution, over the interval [3p,	(n+2)p], where p is 
the average value of previously generated processing times. We 
use the factor 3 because the 3sAFS problem can be considered as 
a flowshop with three machines. Thus, a due date di roughly lies 
between the average completion date of the first scheduled job 
and the average completion date of the last scheduled job [16].  
For each configuration nm, 10 instances were generated. 
Therefore, a total of 150 instances were tested. 

4.2 Performance Measures 
In this work, to assess the quality of the non-dominated solutions 
attained by the three algorithms GRASP, NSGA-II and NSGA2-
IG, two multi-objective performance measures are used: distance 
metric and hypervolume indicator.  

We denoted by D1, D2 and D3 the sets of non-dominated solutions 
(approximated Pareto fronts) obtained by the algorithms GRASP, 
NSGA-II and NSGA2-IG, respectively. We measure the quality of 
each set Di (i =1,2,3) with relation to the reference set (Ref) 

constituted by gathering all non-dominated solutions obtained by 
the three algorithms, that is, Ref is the set of approximated non-
dominated solutions obtained from (D1D2 D3). The Ref set is 
the best known Pareto-optimal front. 

The used performance measures are defined as follow: 

Average distance:  measures the proximity between the solutions 
s’Di and the solutions s  Ref. It also measures the solutions 
spreading on set Di [14].  This metric is defined as follows: 
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and i is the difference between the biggest and smallest value of 
the objective fi, considering the solutions of set Ref. Smaller 
values of dav(Di) correspond to higher quality of the solutions in 
Di. 

Hypervolume indicator: measures the covered or dominated area 
by set Di. In this paper, this metric is defined as follows: 
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where, H(X) is the hypervolume (area) of the solution space 
dominated by the solutions of the set X, i.e. the portion of the 
objective space that is dominated by X. Note that, we considered 
the relative percentage deviation of H(Di) with relation to H(Ref). 
Smaller values of H*(Di) correspond to higher quality of the 
solutions in Di. The hypervolume indicator was introduced by 
Zitzler and Thiele [27]. 

4.3 Parameters of the Algorithms 
The parameters of the algorithms NSGA-II and NGSA2-IG were 
experimentally fine-tuned. The algorithm GRASP was 
implemented following the original paper [7]. 

The best results of the standard NGSA-II were achieved using the 
following parameters: Population size N = 100. Crossover 
operator: TPX and SB2OX (to generate a child solution, a 
crossover operator is chosen randomly). Crossover probability: 
100%. Mutation probability 30%. 

 
Figure 5. Means plot and Tukeys HSD intervals with 95% confidence 

level - Calibration of the mutation probability of the NSGA-II. 
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Figure 5 shows the performance of the NSGA-II algorithm 
(regarding the hypervolume indicator) for different mutation 
probabilities (20%, 30%, 40% and 50%). We performed the non-
parametric Kruskal-Wallis Test [18] to validate the obtained 
results. The statistical analysis indicates that the obtained results 
are not significantly different for the five mutation probability 
values. However, we can see that the lowest average hypervolume 
was obtained for mutation probability 30%. 

The NSGA2-IG uses the same parameters of NSGA-II. For the 
parameter d used the Iterated Greedy intensification, we tested 
different values. The best results were achieved using d =4 (for 
instances with n ≤100) and d = 2 (for instances with n = 200).  

4.4 Obtained Results 
The non-dominated solutions obtained by the proposed hybrid 
algorithm NSGA2-IG are compared with the non-dominated 
solutions obtained by the other tested algorithms (GRASP and 
NSGA-II). To solve each test problem, the algorithms were run 10 
times for all the 150 instances of the 3sAFS problem. The sets D1, 
D2 and D3 contain the non-dominated solutions found among all 
the runs of the algorithms GRASP, NSGA-II and NSGA2-IG, 
respectively. For each instance, the reference set Ref is non-
dominated solutions obtained from (D1D2 D3). 

We note that, for all the 150 instances tested, the algorithms 
NSGA2-IG and GRASP determine 94.66% and 5.49% of the 
reference solutions, respectively. The NSGA-II algorithm does 
not determine any reference solution. 

The distance and hypervolume measures are calculated for each 
set Di. In Table 1, results attained by the algorithms in relation to 
the average distance metric are presented. In this Table, the results 
(average values) are grouped according to the number of jobs and 
number of machines (nm) of the instances. 

We can see that, for all groups of instances the NSGA2-IG 
algorithm is the one that produces lower average distances, that is, 
closer to zero. Then the proposed algorithm is notoriously better 
than the standard NSGA-II and GRASP. We can see also that the 
algorithm GRASP performs better than NSGA-II.  

The distance metric measures the proximity between the solutions 
of a set Di and the solutions of set Ref. Therefore, the higher the 
percentage of solutions of Di in the Ref set, the lower tends to be 
the values of the distance metrics. The values of the distance 
metrics tend to be smaller, but those values also depend of the 
distance between Di solutions and solutions belonging to Ref set 
obtained by other algorithms.  

Table 2 presents the comparison of the algorithms regarding the 
hypervolume indicator. In this Table we can see again that 
NSGA2-IG algorithm presents lower average values of the 
relative percentage deviation of the hypervolume (H*) for all 
group of instances. 

4.5 Statistical Analysis 
In order to validate the obtained results, we apply again a 
statistical analysis using the average distance (dav) and 
hypervolume (H*) measures as response variables. 

First, to verify if the observed differences between the obtained 
results are statistically significant, we performed an analysis of 
variance (ANOVA) [18]. The three main assumptions of ANOVA 
were checked: normality, homoscedasticity and independence. 
Since the normality test was not satisfied, we performed the non-
parametric Kruskal-Wallis Test. This test compares between the 

medians of the three algorithms to determine if there is a 
significant difference. The Kruskal-Wallis results (not shown in 
detail due to reasons of space) indicate that there is statistically 
significant difference between the obtained results at a 95% 
confidence level. It was observed that the computed P-value is 
less than 0.05 which shows that exist significant difference 
between the algorithms. The Kruskal Wallis Test does not specify 
which algorithms are different. So, we use a non-parametric 
Multiple Comparisons test to compare each pair of means with a 
95% confidence level. 

Table 1. Average distance (dav) results. 

n m GRASP NSGA-II NSGA2_IG

30 5 7.21 23.52 1.05

30 10 6.92 26.29 0,67

30 20 8.52 25.53 0.61

50 5 13.48 27.65 0.50

50 10 13.11 24.82 0.26

50 20 16.98 31.16 0.21

80 5 14.41 24.64 0.55

80 10 20.36 32.21 0.27

80 20 19.51 36.34 0.09

100 5 16.93 25.81 0.25

100 10 14.80 29.30 0.19

100 20 22.82 40.17 0.22

200 5 10.77 19.45 0.31

200 10 13.59 22.18 0.16

200 20 17.92 25.26 0.06

Average 14.49 27.62 0.36
 

Table 2. Hypervolume indicator (H*) results. 

n m GRASP NSGA-II NSGA2_IG

30 5 13.75 37.68 3.66
30 10 15.92 36.15 3.74
30 20 16.63 34.48 3.81

50 5 23.25 43.07 3.82
50 10 18.28 39.27 3.25
50 20 22.46 36.88 3.28
80 5 19.34 39.68 2.89
80 10 28.00 43.45 2.70
80 20 23.12 40.88 2.59

100 5 22.90 41.37 2.77
100 10 19.71 40.10 2.06
100 20 23.55 41.34 2.03
200 5 15.29 38.62 2.03
200 10 19.60 34.96 2.17
200 20 23.24 29.03 2.18

Average 20.34 38.46 2.87
 

The Tables 3 and 4 show the result of the Multiple Comparisons 
test regarding the average distance and hypervolume indicator 
metrics, respectively. The first column of these Tables shows the 
pairs of algorithms being compared. The "Difference" column 
displays the sample mean of the first algorithm minus that of the 
second. The "+/- Limits" column shows an uncertainty interval for 
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the difference. Any pair of algorithms for which the absolute 
value of the difference exceeds the limit is statistically significant 
at the selected confidence level 95% and is indicated by an 
asterisk (*) in the "Significant" column. In Tables 3 and 4 we can 
see that there are significant differences between all the pairs of 
algorithms. The same statistical analysis can be displayed in 
Figures 6 and 7. 

Table 3. Multiple Comparisons test - Average Distance. 

Contrast Significant Difference +/- Limits

GRASP  NSGA-II * -13.1333 3.07722

GRASP  NSGA2_IG * 14.1287 3.07722

NSGA-II  NSGA2_IG * 27.262 3.07722

 

Table 4. Multiple Comparisons test - Hypervolume Indicator. 

Contrast Significant Difference +/- Limits

GRASP  NSGA-II * -18.1287 1.46216

GRASP  NSGA2_IG * 18.6296 1.46216

NSGA-II  NSGA2_IG * 36.7583 1.46216

 
 

 
Figure 6. Means plot and Tukeys HSD intervals with 95% confidence 

level - Average Distance metric (dav). 

 
Figure 7. Means plot and Tukeys HSD intervals with 95% confidence 

level - Hypervolume Indicator (H*). 

Figures 6 and 7 show the means plot and Tukey's Honestly 
Signifiant Difference (HSD) intervals at 95% confidence level 
from the Multiple Comparisons test for two performance 
measures, respectively. Since the confidence interval of NSGA2-
IG algorithm does not overlap any of the other intervals, the mean 
of NSGA2-IG is significantly different than that of the other two 
algorithms. So we can state that, on average, NSGA2-IG is better 
than NSGA-II and GRASP. We can see also that, on average, 
GRASP is better than NSGA-II. 

The statistical analysis shows that the use of IG improves 
significantly the results of the basic NSGA-II algorithm. 

5. CONCLUSIONS 
This paper has proposed a hybrid algorithm for a bi-objective 
three-stage Assembly Flowshop Scheduling problem with 
sequence-dependent setup times. In order to find an 
approximation of the Pareto optimal set, the hybrid algorithm 
(NSGA2-IG) combines the basic NSGA-II [8] scheme with an 
intensification strategy based on Iterated Greedy.  

We have performed a comparative study between the proposed 
algorithm and two other algorithms considering medium and large 
instances of the problem. According to the obtained results and 
the statistical analyses, the proposed NSGA2-IG algorithm 
performed better than the two algorithms, NSGA-II and GRASP.  
The results of NSGA-II were improved significantly by using IG 
intensification. After the computational experiments we can 
conclude that the proposed hybrid algorithm shows an excellent 
performance overcoming the original NSGA-II. 
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