
Revised Analysis of the (1+1) EA for the
Minimum Spanning Tree Problem

Carsten Witt
DTU Compute

Technical University of Denmark
2800 Kgs. Lyngby

Denmark

ABSTRACT

We revisit the classical analysis of the (1+1) EA for the
minimum spanning tree problem in the case that nothing
is known about the weights of the underlying graph. Here
the original upper bound on the expected running time by
Neumann and Wegener [Theor. Comput. Sci. 378(1), 32–40,
2007], which depends on the largest weight of the graph, is
of no use. The best upper bound available before in this
case is due to Reichel and Skutella [FOGA 2009, 21–28] and
is of order O(m3 log n), where m is the number of edges and
n the number of vertices. Using an adaptive drift analysis,
we show the improved bound O(m2(

√

c(G)+ log n)), where
c(G) is the circumference (length of the longest cycle) of
the graph. This is only by an asymptotic factor of at most√
n/log n away from the classical lower bound. Further-

more, an alternative fitness function leading to the bound
O(m2 log n) is proposed, and limitations of the adaptive drift
analysis are pointed out.

Categories and Subject Descriptors

F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity

General Terms

Theory, Algorithms

Keywords

Evolutionary Algorithms, Minimum Spanning Tree Prob-
lem, Runtime Analysis

1. INTRODUCTION
The running time analysis of randomized search heuris-

tics, in particular evolutionary algorithms (EAs), on prob-
lems on combinatorial optimization has advanced consid-
erably in the last decade [11]. This line of research gives
theoretically founded insight into what choice of algorithms

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

GECCO’14, July 12–16, Vancouver, BC, Canada.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2662-9/14/07. . . $15.00.

http://dx.doi.org/10.1145/2576768.2598237.

and parameters allows for efficient solution of a problem and
what choice is inefficient. One conclusion is that even very
simple EAs and local search algorithms find optimal or ap-
proximate solutions to several combinatorial optimization in
expected polynomial time. This applies to both“easy”prob-
lems from the class P of polynomial-time solvable problems
as well as (in terms of approximate solutions) to several NP -
hard problems.

Recently developed analytical tools such as multiplicative
and adaptive drift analysis [4] enable us to prove very exact
running time statements for EAs on pseudo-boolean exam-
ple functions such as OneMax and LeadingOnes [3] and
even the whole class of linear functions [15]. Here even the
exact constant in the leading term of the polynomial describ-
ing the running time is known. In contrast, results in com-
binatorial optimization are often of asymptotic nature, i. e.,
use O-notation, and are not necessarily tight, i. e., only up-
per and lower bounds on the running time are known, which
may differ by large factors. In particular, there is a collec-
tion of analyses (e. g., [2, 10, 13]) leading to polynomial lower
bounds, whereas the upper bounds are pseudo-polynomial in
that they depend on a certain problem parameter such as
the largest weight of a graph. While it is believed that the
dependence on the largest weight is only an artefact of the
analyses and there has been some progress on selected prob-
lems (outlined below), it is an outstanding problem to prove
tight bounds. With the recently developed analytical tool-
box, it is worth revisiting the combinatorial problems and
studying whether we can obtain improved bounds.

In this paper, we focus on how a simple (1+1) EA and
randomized local search (RLS) solve the well-known min-
imum spanning tree (MST) problem. This is one of the
earliest (originally published at GECCO 2004) and very in-
fluential running time results of EAs in combinatorial op-
timization. Given an undirected, weighted and connected
graph G = (V,E,w), Neumann and Wegener [10] study a
canonical fitness function returning the total edge weight of
a search point, provided it encodes a tree. Otherwise the fit-
ness functions contains penalty terms leading to trees. With
respect to the (1+1) EA, they obtain an upper bound on the
expected running time of O(m2(log n + logwmax)), where
n := |V |, m = |E|, and wmax is the largest edge weight
of the graph, and a lower bound of Ω(m2 log n). Hence, if
nothing is known about the weights, upper and lower bounds
can be arbitrarily far apart. This is in sharp contrast to the
analysis of RLS, where Reichel and Skutella [13] could show
the tight result Θ(m2 log n). Briefly speaking, a major diffi-

509

culty is introduced to the analysis due to the ability of the
(1+1) EA to exchange many edges in a step.

There is a single prior work by Reichel and Skutella [12]
which aims at removing the dependence on wmax from the
running time bound for the (1+1) EA on the MST problem.
The idea is to replace the fitness function by another one
having smaller weights but leading to the same acceptance
behavior of the (1+1) EA. In this way, it is seen that wmax

need not exceedmm/2, hence log(wmax) ≤ m lnm, which im-
plies the general upper bound O(m3 log n) on the expected
running time. Note that there still is a gap of order m be-
tween upper and lower bound.

Our contribution narrows this gap to at most
√
n/log n.

More precisely, we show the upper bound O(m2(log n +
√

c(G))), where c(G) is the circumference (length of the
longest cycle) of the underlying graph. Hence, if the graph
has circumference up to O(log2 n), the bound is asymptoti-
cally tight. The result is obtained by adaptive drift analysis
along with a carefully chosen potential function. Moreover,
the analysis reveals structural insights into the behavior of
(1+1) EA on the problem, which allow us to define an alter-
native fitness function whose set of global optima still coin-
cides with the MSTs of the graph. Somewhat surprisingly,
the expected running time can be bounded by O(m2 log n)
in this case, which corresponds to the bound for RLS and
the lower bound w. r. t. the classical fitness function.

This paper is structured as follows. In Section 2, we give
formal definitions of the algorithms and problems studied.
In Section 3, we describe the structural insights that lead to
the alternative fitness function and that are fundamental for
the forthcoming drift analysis. This analysis implies the new
result w. r. t. the original fitness function and is presented in
Section 4. Limitations of the technique, in particular why
the factor

√

c(G) could not be avoided, are discussed in
Section 5. We finish with some conclusions.

2. PRELIMINARIES
We consider two classical randomized search heuristics

called RLS and (1+1) EA, see Algorithms 1 and 2, which
are intensively studied in the theory of randomized search
heuristics [1, 8]. The search space is {0, 1}m since subsets
of edges will be encoded by their characteristic vector. The
(1+1) EA is a globally searching hillclimber, whereas RLS
samples from a neighborhood of size 2. Steps changing two
bits are crucial for the MST problem since all MSTs have the
same number of edges. The running time (synonymously,
optimization time) of the algorithms is defined as the ran-
dom number of iterations until an optimal search point has
been sampled.

Algorithm 1 (1+1) EA

t := 0.
Choose uniformly at random x0 ∈ {0, 1}m.
repeat

Create x′ by flipping each bit in xt independently with
probability 1/m.
xt+1 := x′ if f(x′) ≤ f(xt), and xt+1 := xt otherwise.
t := t+ 1.

until some stopping criterion is fulfilled.

Recall that we, throughout the paper, assume an arbi-
trary but fixed connected, undirected and weighted graph

Algorithm 2 Randomized local search (RLS)

t := 0.
Choose uniformly at random x0 ∈ {0, 1}m.
repeat

Choose b ∈ {1, 2} uniformly. Flip b bits in xt chosen
uniformly at random.
xt+1 := x′ if f(x′) ≤ f(xt), and xt+1 := xt otherwise..
t := t+ 1.

until some stopping criterion is fulfilled.

G = (V,E,w), where w : E → N, for which an MST has to
be found. We denote the edges by e1, . . . , em and their asso-
ciated weights by w1, . . . , wm. Neumann and Wegener [10]
propose the following fitness function. Let x ∈ {0, 1}m be a
search point describing a selection of edges, i. e., a subgraph
of G, by identifying one-bits with selected edges. We define
c(x) to be the number of connected components (CCs) in
this subgraph. If the current search point does not encode
a spanning tree, the first aim of the function is to reduce
the number of CCs to 1 and the second one is to arrive at
a spanning subtree, i. e., a subgraph choosing exactly n− 1
edges. These two aims are encoded in the fitness function
by appropriate penalty terms. Afterwards, the most difficult
phase of optimization begins. From the set of trees, one of
smallest total weight has to be found by mutations swapping
edges.

Let M ≥ mwmax, where wmax := max{w1, . . . , wm}, be
a number that is chosen so large that unconnected graphs
always have worse fitness than connected ones and cyclic
subgraphs worse fitness than trees. The fitness function is
defined by

f(x) = M2(c(x)−1)+M

(

m
∑

i=1

xi − (n− 1)

)

+

(

m
∑

i=1

wixi

)

.

Hence, if x encodes a tree, its weight is returned. Once a
search point of the (1+1) EA or RLS describes a tree, the al-
gorithm will never accept non-trees. It is not too difficult to
show (similar to the OneMax problem) that the algorithms
quickly arrive at trees.

Theorem 1 ([10]). The expected time until RLS or
(1+1) EA working on the fitness function f have constructed
a (not necessarily minimal) spanning tree is O(m log n).

Hence, in light of the overall bound O(m2(log n+
√

c(G)))
we want to prove, the time until a tree has been found is
asymptotically negligible. In the remainder of the paper,
we assume that (1+1) EA/RLS has already constructed a
tree and analyze the progress towards MSTs. Assuming x
to encode a tree, we denote by w(x) :=

∑m
i=1 wixi its weight

and define wopt as the weight of an MST.
Finally, we list one important drift theorem used to cap-

ture this progress. It is taken from [4] except for the trivial
adaptation to arbitrary positive smin-values, which can be
found in [5].

Theorem 2 (Multiplicative Drift). Let S ⊆ R be
a finite set of positive numbers with minimum smin > 0. Let
{X(t)}t≥0 be a sequence of random variables over S ∪ {0}.
Let T be the random first point in time t ≥ 0 for which
X(t) = 0.

510

Suppose that there exists a δ > 0 such that

E(X(t) −X(t+1) | X(t) = s) ≥ δs

for all s ∈ S with Pr(X(t) = s) > 0. Then for all s0 ∈ S

with Pr(X(0) = s0) > 0,

E(T | X(0) = s0) ≤ ln(s0/smin) + 1

δ
.

Moreover, it holds that Pr(T > (ln(s0/smin) + r)/δ)) ≤ e−r

for any r > 0.

3. LOCAL SEARCH, STRUCTURAL

PROPERTIES OF SPANNING TREES,

AND ALTERNATIVE FITNESS

FUNCTIONS
Once the (1+1) EA has created a search point describing

a spanning tree, it is necessary for an improvement to flip
some one-bits, corresponding to the removal of edges, and
the same number of zero-bits, corresponding to the inclusion
of edges; otherwise the resulting graph would not contain
n − 1 edges. RLS is dependent on steps flipping exactly
two bits, and these yield a relative progress towards the
optimum, as the following lemma describes.

Lemma 3 ([10]). Let x be a search point describing a
non-minimum spanning tree. Then there exist some k ∈
{1, . . . , n−1} and k accepted 2-bit flips such that the average
weight decrease of these flips is at least (w(x)− wopt)/k.

The multiplicative drift theorem (Theorem 2) can now
be used to prove that the final phase of optimization, i. e.,
until RLS and (1+1) EA have converted an arbitrary tree
to an MST, takes time O(m2(logn + logwmax)). The key
arguments are that a two-bit flip has probability Ω(1/m2),
which accounts for the factor O(m2), and that w(x)−wopt ≤
mwmax. Taking the logarithm, the last bound accounts for
the factor log n + logwmax. (Note that logm = O(log n)
since m ≤ n2.)

The proof of Lemma 3 goes back to the following struc-
tural result.

Lemma 4 ([9]). Let T be a minimum spanning tree and
S be an arbitrary (possibly also minimal) spanning tree. Then
there exists a bijection Φ: T \S → S \ T such that for every
edge e ∈ T \S, Φ(e) closes a cycle in S and w(e) ≤ w(Φ(e)).

The previous two lemmas were also used in the prior work
by Reichel and Skutella [12] that aims at removing the de-
pendence on wmax from the running time bound for the
(1+1) EA. As already mentioned, they replace the objective
function by another one with bounded weights but leading
to the same acceptance behavior of the algorithm. Since the
acceptance behavior of RLS and (1+1) EA only depends on
the ordering of fitness values of the search points considered
for selection (they are so-called ranking-based algorithms),
the following definition, inspired by [12], comes in handy.
It also takes into account the maximum Hamming distance
H(x, x′) of two search points compared in a selection step.

Definition 5. Let d ∈ {1, . . . , n}. Two pseudo-boolean
functions f, g ∈ {0, 1}n → R are called neighborhood-d
rank-equivalent, for short neighborhood-d equivalent, if for
all x, x′ such that H(x, x′) ≤ d, it holds sgn(f(x)− f(x′)) =
sgn(g(x)− g(x′)).

The formulation that for all x, x′ we have sgn(f(x) −
f(x′)) = sgn(g(x)− g(x′)) is equivalent to that for all x, x′

we have f(x) ≤ f(x′) if and only if g(x) ≤ g(x′). We pre-
fer the first formulation since it immediately points out that
equal function values are also preserved.

The observation made in the following lemma implies for
RLS that wmax may be replaced by m on any MST prob-
lem. This result is proved in [13]. Roughly speaking, it
is sufficient to replace every weight wi of the linear weight
function w(x) by the rank of the i-th weight in the increas-
ing sequence (with equals weights getting equal ranks). For
the sake of completeness, we supply the simple arguments
here.

Lemma 6. Let f(x) = fmxm + · · · + f1x1 be a linear
function and assume w. l. o. g. that fm ≥ · · · ≥ f1 > 0.
Then f and the function r(x) = rmxm + · · · + r1x1, where
ri := |{f1, . . . , fi}|, are neighborhood-2 equivalent.

Proof. Let x ∈ {0, 1}n be arbitrary but fixed. Let x′ be
another search point satisfying H(x, x′) ≤ 1. Consider the
function r from this lemma. If H(x, x′) = 1, then f(x′) >
f(x) if and only if r(x′) > r(x) since all weights are posi-
tive in both functions. Analogously the case f(x′) < f(x)
and r(x′) < r(x) is treated. The case f(x′) = f(x) is not
possible.

Suppose now H(x, x′) = 2 and let i > j be the two indices
where the search points differ. If i and j are both 0-bits or
1-bits in x, we argue as before. Otherwise, f(x′) > f(x) if i
is a 0-bit, j a 1-bit in x and fi > fj . By construction of the
ri, r(x

′) > r(x) follows. Analogously, f(x′) < f(x) implies
r(x′) < r(x). Finally, the case f(x′) = f(x) is equivalent to
fi = fj . Then also ri = rj and r(x′) = r(x) follows.

The linear function r(x) from Lemma 6 can be under-
stood as a “surrogate function” on which RLS can be run
instead of w(x) when searching for MSTs, without changing
its stochastic behavior. As a result, the O(logwmax + log n)
factor from the running time bound is replaced by the log-
arithm of the largest r-value, i. e., log(r1 + · · · + rm) ≤
log((m2 +m)/2), which is O(logm) = O(log n). This com-
pletes the argument from [13] and proves that the running
time of RLS, which only considers neighborhoods of size at
most 2, is O(m2 log n). Note that this matches the lower
bound from [10].

The structure of the function r(x) from Lemma 6 allows
us further insights on the optimization process during the
search for MSTs, which in the end will lead to the alternative
fitness function for the (1+1) EA. We start with another
definition.

Definition 7. Two linear functions f(x) = fmxm+· · ·+
f1x1 and g(x) = gmxm + · · · + g1x1 are called weight-rank
equivalent if for all i, j ∈ {1, . . . , n} it holds sgn(fi − fj) =
sgn(gi − gj).

The function r(x) from Lemma 6 is the unique weight-
rank equivalent function to w(x) which minimizes the max-
imal weight in natural numbers. Interestingly, the func-
tion r(x) makes sense as a “surrogate” function also for
the (1+1) EA on the MST problem even though it is not
necessarily neighborhood-d equivalent to the actual fitness
function for d > 2. In fact, every function that is weight-
rank equivalent to the classical fitness function for the MST
(assuming trees as search points) preserves the location of
global optima, as the following lemma shows.

511

Lemma 8. Suppose g(x) = gmxm + · · ·+ g1x1 is weight-
rank equivalent to the function w(x) = wmxm + · · ·+ w1x1

obtained from an MST instance. Let xopt describe a min-
imum spanning tree with respect to the weight function w.
Then for every x ∈ {0, 1}m describing a spanning tree it
holds g(x) ≥ g(xopt) =: gopt. Moreover, g(x) = gopt if and
only if x describes an MST w. r. t. w.

If x does not describe an MST, there exists some k ∈
{1, . . . , n−1} and k accepted 2-bit flips such that the average
weight decrease of these flips is at least (g(x)− gopt)/k.

Proof. The analysis from Lemma 6 shows that two func-
tions being weight rank-equivalent are also neighborhood-2
rank-equivalent. Hence, improving 2-bit flips with respect
to w are improving 2-bit flips with respect to g and vice
versa. Lemma 4 is in force with respect to the g-weights
and thereby also Lemma 3. In particular, non-optimal trees
(w. r. t. w) must have a larger g-value than minimum span-
ning trees (w. r. t. w).

All minimum spanning trees w. r. t. w have the same w-
value and can be converted into each other by two-bit flips
due to Lemma 4. Hence, they must all have the same g-
value, too.

Hence, if the search for minimum spanning trees takes
place on the graph with weight function g instead of f , and
additionally g(x) ≥ g(xopt) + 1 is guaranteed for non-MSTs
x (to maintain smin = 1 in Theorem 2), we can redo the anal-
ysis by Neumann and Wegener [10] to obtain the following
result.

Theorem 9. Given an undirected weighted connected
graph G = (V,E,w), let the fitness function g : {0, 1}m → R

be defined by

g(x) = M2(c(x)− 1) +M

(

m
∑

i=1

xi − (n− 1)

)

+
m
∑

i=1

xi · rank(wi),

where M := m2 and rank(wi) denotes the rank of weight wi

in the increasingly sorted sequence. The expected time un-
til the (1+1) EA finds an optimum for g(x) is bounded by
O(m2 log n), and every such optimum describes an MST
in G.

The “surrogate” function g from the preceding theorem
can be used instead of the classical function f and guar-
antees polynomial running time. However, it is based on
non-trivial problem knowledge about the MST problem. In
fact, the required structural results from Lemma 4 are shown
using the ideas underlying the correctness proof of Kruskal’s
algorithm, which also considers the ranks of the edge weights
only. See also the characterization of the set of MSTs by
weight ranks in Section 6 of [14]. So with this level of prob-
lem knowledge, no evolutionary algorithm would have to be
applied.

Otherwise, without knowing Kruskal’s algorithm or re-
lated structural insights, one would probably have come up
with the original fitness function f as defined in [10]. There-
fore, it is still interesting to analyze whether the time to
find an optimum for f (in case of large weights) is less than
the O(m3 log n) bound that was obtained by Reichel and
Skutella [12]. This is dealt with in the next section.

4. IMPROVED UPPER BOUND FOR THE

(1+1) EA
In this section, we show our improved upper bound on the

running time of the (1+1) EA for the MST problem, using
the classical fitness function f . In the following theorem, the
circumference (length of the longest cycle) of an undirected
graph is denoted by c(G). If G is acyclic (in which case the
MST problem is trivial anyway), we define c(G) := 0.

Theorem 10. Given an arbitrary MST instance, the run-
ning time of the (1+1) EA on the corresponding fitness func-

tion f is upper bounded by O(m2(log n +
√

c(G))) both in
expectation and with probability 1 − O(n−c) for any con-
stant c > 0.

To prove the theorem, we conduct an adaptive drift anal-
ysis, where the underlying potential function h(x), to be
minimized, depends on both the weight function w and the
circumference c(G). The exact definition of the potential
function is inspired by the techniques developed in [15] and
further applied in [6] and [7]. More precisely, we apply drift
analysis using a potential function that will be defined below
in accordance with the definition of weight-rank equivalence.
However, this is not a straightforward application of the
above-mentioned literature but includes non-trivial modifi-
cations in the potential function and the drift analysis due
to the characteristics of the underlying MST problem.

Once having defined the potential function, the idea is to
analyze the potential X(t) := h(x(t)) of the random search

point x(t) maintained by the (1+1) EA on f at time t. We

first bound its expected one-step change E(X(t) −X(t+1) |
X(t)), i. e., the expected decrease of distance from time t to
time t + 1. The following lemma states this bound as well
as a bound on the maximum value of the potential func-
tion, which is required in the multiplicative drift theorem
(Theorem 2).

Lemma 11.

1. E(X(t) −X(t+1) | X(t)) ≥ X(t)

2e2m2 .

2. ln(X(t)/smin) ≤ O(log n) +
√

2ec(G).

Deferring the definition of h and the proof of the previous
lemma, we obtain our theorem.

Proof of Theorem 10. We will argue later that h(x) =
0 if x encodes an MST and h(x) ≥ smin for some smin > 0
otherwise. The expected running time now follows immedi-
ately by plugging the two statements of Lemma 11 into The-
orem 2. The tail bound is obtained by setting r = c lnn.

In the following, we unroll the proofs of the drift state-
ments. The proof of Lemma 11 relies on the analysis of the
one-step drift of the potential function h : {0, 1}m → R. We
now introduce the setup required to define h(x). Without
loss of generality, we assume wm ≥ · · · ≥ w1 > 0 and write
search points as xm . . . x1, calling xm the leftmost and x1

the rightmost bit. To reduce the number of cases needed
in the forthcoming drift analysis, we assume that for all
i, j ∈ [m] := {1, . . . , m}

i > j ⇒ wi = wj ∨ wi − wj ≥ W ∗

for some W ∗ defined below. This holds without loss of gen-
erality since we can simply multiply all (integral) weights

512

by W ∗ without changing the acceptance behavior of the
(1+1) EA.

Definition 12. Let an undirected weighted graph G be
given and let x∗ denote an arbitrary but fixed MST. For
i ∈ [m], let

γi := (1 + Φ)i−1 ,

where

Φ :=

√

2ec(G)

m

Based on this, let

gi := min {γi, gi−1 +wi − wi−1}
for all 1 < i ≤ m, g1 := γ1 := 1 and g(x) :=

∑m
i=1 gixi.

Finally, let the potential function h : {0, 1}m → R be defined
by

h(x) := g(x)− g(x∗).

For any i ∈ [m], we also define:

• κ(i) := max{j ≤ i | gj = γj}, the most significant
index right of i (possibly i itself) capping according to
the sequence γi,

• η(i) := min{j ≥ i | gj = γj}, the least significant
index left of i (possibly i itself) capping according to
the sequence γi,

• L(i) := {m, . . . , κ(i)}, the indices left of κ(i),

• R(i) := {κ(i) − 1, . . . , 1}, the indices right of κ(i).

The idea of the potential function, reflected by the mini-
mum operator in the definition of gi, is to cap the original
weights at γi in case they are “too steeply increasing” and
to rebuild the slope of original weights otherwise by letting
gi − gi−1 = wi − wi−1. The variable κ(i) is intuitively a
“breaking point”and denotes the most significant index right
of i where gj equals γj . The intuition is that the potential
function will underestimate the progress made at indices be-
ing at least as significant as i. In all less significant indices
(those in R(i)), we will pessimistically assume that they con-
tribute a loss, and the choice of κ(i) guarantees that this loss
is overestimated.

Clearly, w(x) and g(x) are weight-rank equivalent. Hence,
by Lemma 8, the set of search points x where h(x) = 0 equals
the set of MSTs with respect to w. We now list another
useful property related to the κ(i), which means that the gi-
weights are constant between two different κ-indices if W ∗ is
chosen large enough (more details below). This will simplify
the case analysis in the main proof.

Lemma 13. If W ∗ ≥ γm then for any i ∈ [m] : gi = γκ(i)

Proof. Recall that for any i ≥ 2 there only are the two
cases wi − wi−1 = 0 and wi − wi−1 ≥ W ∗ ≥ γm. If wi −
wi−1 ≥ γm then gi−1 + wi − wi−1 ≥ 1 + γm, hence the
minimum in the definition of gi is obtained at γi, implying
i = κ(i). In the other case, since γi > γi−1 ≥ gi−1, the
minimum is taken at gi−1 and the claim follows (inductively
decreasing i until it equals κ(i)).

From now on, assume W ∗ to be sufficiently large for the
previous lemma to hold. We obtain the following observa-
tion.

Observation 14. Sort the set of all different κ-values de-
creasingly as κℓ > · · · > κ1. Then for j ∈ {2, . . . , ℓ} we have
gκj

> gκj−1 = gκj−2 = · · · = gκj−1 , i. e., there is a plateau
of constant g-weights between two subsequent κ-indices and
an increase in g-weight at the next κ-index.

The following lemma allows us to set smin = Φ in the
multiplicative drift theorem.

Lemma 15. For any x ∈ {0, 1}m, h(x) = 0 or h(x) ≥ Φ.

Proof. Since g(x) and w(x) are weight-rank equivalent,
Lemma 8 is in force. The non-negativity now follows from
the lemmma since h(x) = g(x)−g(x∗) for an arbitrary MST
x∗ w. r. t. w. Moreover, if x is not optimal, g(x) and thus
h(x) can be written as the sum of k positive differences of
edges weights (resulting from the edge swaps). Each such
difference is at least γ2 − γ1 = Φ.

As mentioned above, we will analyze the stochastic pro-

cess X
(t)
t≥0 where X(t) = h(x(t)) for all t, and define ∆t :=

X(t) − X(t+1). Recall that we are interested in the first
point in time t where X(t) = 0 holds. The one-step drift
E(∆t | X(t)) of the potential function will be worked out
conditioned on certain events depending on two flipping bits.
The following notions prepare the definition of these events.

Definition 16. Given x(t) ∈ {0, 1}n, denote by x′ the

random search point created by mutation of x(t) (before se-
lection). We define

• I := {i ∈ [m] | x(t)
i = 1} the one-bits in x(t),

• I∗ := {i ∈ I | x′
i = 0} the one-bits flipping to 0,

• Z := {i ∈ [m] | x(t)
i = 0} the zero-bits in x(t),

• Z∗ := {i ∈ Z | x′
i = 1} the zero-bits flipping to 1.

Note that the random sets I∗ and Z∗ are disjoint and that
the remaining bits in [m] contribute nothing to the ∆t-value.

Obviously, for ∆t 6= 0 it is necessary that x(t+1) 6= x(t).
We fix an arbitrary search point x(t) and let A be the event
that x(t+1) 6= x(t). The event A requires that

I∗ 6= ∅ and
∑

j∈I∗

wj −
∑

j∈Z∗

wj ≥ 0.

Hence, for A to occur it is necessary that for at least one
i ∈ I∗

∑

j∈I∗

wj −
∑

j∈Z∗∩L(i)

wj ≥ 0,

since we only ignore the loss due to the bits in R(i). We
decompose the event A according to two indices i and j,
where i denotes the leftmost flipping one-bit and and j the
leftmost flipping zero-bit right of η(i).

Definition 17. The event Ai,j, where i, j ∈ [m], occurs
iff the following five conditions hold simultaneously.

1. I∗ 6= ∅ and Z∗ 6= ∅.
2. i = max I∗.

3. j = max(Z∗ ∩ {1, . . . , η(i)− 1}).
4.
∑

k∈I∗ wk −∑k∈Z∗∩L(i) wk ≥ 0.

5. A spanning tree is obtained by flipping the bits from
I∗ ∪ Z∗ in x(t).

513

Obviously, all events Ai,j are disjoint. Note that each
accepted mutation must flip as many zero-bits as one-bits
to maintain spanning trees. In particular, each accepted
mutation flips at least one pair of bits (i, j), where i is a
one-bit, j a zero-bit and j weighs at most as much as i. If
bit j weights strictly less, then j is right of i. Otherwise, j
must be of same weight of i and hence in η(i)− 1, . . . , κ(i).
Hence, the disjoint union of the events Ai,j is a superset of A
(in other words, is necessary for A). The key inequality used
to bound the one-step drift is stated in the following lemma.

Lemma 18. E(∆t | Ai,j) ≥ gi−gj
2e

for all i, j ∈ [m] such
that Pr(Ai,j) > 0 and all t ≥ 0.

Before we prove Lemma 18, let us show how it can be used
to prove Lemma 11.

Proof of Lemma 11. We still fix an arbitrary search
point x(t), denote by X(t) = h(x(t)) its potential and in-
vestigate the following step. As observed above, in the step
the potential remains either unchanged or a certain event
Ai,j occurs. The total drift can then be expressed as

E(X(t) −X(t+1) | X(t))

=
∑

i∈I,j∈Z∩{1,...,η(i)−1},Pr(Ai,j>0)

E(∆t | Ai,j) · Pr(Ai,j).

Using Lemma 18, the last expression is at least

∑

i∈I,j∈Z∩{1,...,η(i)−1},Pr(Ai,j)>0

gi − gj
2e

Pr(Ai,j).

Note that Pr(Ai,j) ≥ (1/m2)(1 − 1/m)m−2 ≥ 1/(em2) if
Ai,j is possible since it is sufficient to flip bits i and j and
not to flip the rest to accept the mutation. Note also that
gi − gj ≥ 0 since j ≤ η(i) − 1, so that we may omit terms
from the sum to obtain a lower bound.

For every accepted two-bit flip there is an event Ai,j cor-
responding to the two flipping bits. By Lemma 8, there
are k accepted two-bit flips (i1, ji), . . . , (ik, jk), where jr ≤
η(ir)− 1 for r ∈ [k]. Consequently,

E(X(t) −X(t+1) | X(t)) ≥
k
∑

r=1

(gir − gjr)Pr(Air,jr)

≥
k
∑

r=1

(gir − gjr)

2e

1

em2

=
g(X(t))− g(x∗)

2e2m2
,

where the equality holds since the ir denote the one-bits
in X(t) \ x∗ and the jr the one-bits in x∗ \X(t). Hence, we
get

E(X(t) −X(t+1) | X(t)) ≥ h(X(t))

2e2m2
,

which proves the first statement of Lemma 11.
For the second statement of Lemma 11, we use that for

every t it holds X(t) ≤∑m
i=1 γi. Using the geometric series

and the inequality 1 + x ≤ ex, the latter is at most
(

1 +

√
2ec(G)

m

)m

√
2ec(G)

m

≤ mem
√

2ec(G)/m

√

2ec(G)
≤ me

√
2ec(G).

From this we obtain

ln(X(0)) ≤
√

2ec(G) + lnm.

Finally, ln(smin) = ln(Φ) ≥ ln(1/m), which altogether

proves ln(X(0)/ln(smin)) ≤
√

2ec(G) +O(log n).

The still outstanding proof of Lemma 18 requires a careful
analysis of the one-step drift, taking into account the specific
structure of the drift function.

Proof of Lemma 18. Recall that we want to condition
on the event Ai,j (Definition 17), where i is the leftmost
flipping one-bit and j a flipping zero-bit right of η(i). More-
over, recall the notions introduced in Definitions 12 and 16.
Let

∆L(i) :=

∑

k∈I∗

gk −
∑

ℓ∈Z∗∩L(i)

gℓ

 · 1A,

∆R(i) :=

∑

k∈Z∗∩R(i)

gk

 · 1A,

where 1A denotes the indicator random variable of event A.
Recall that ∆t = 0 if A does not occur. Otherwise, ∆t =
∑

k∈I∗ gk−
∑

ℓ∈Z∗ gℓ. Hence, we have ∆t = (∆L(i)−∆R(i))
regardless of i. By linearity of expectation, we obtain

E(∆t | Ai,j) = E(∆L(i) | Ai,j)− E(∆R(i) | Ai,j). (1)

We first show that (∆L(i) | Ai,j) is a nonnegative random
variable, i. e., the probability of any negative outcome is 0.
To prove this, assume that Ai,j holds, which implies that no
bit left of i flips to 0. We inspect the two sums from the
definition of ∆L(i). Since only spanning trees are accepted,
any accepted mutation changes as many zero- as one-bits.
Hence, it must hold that |I∗| ≥ |Z∗ ∩ L(i)|. Pessimistically
(with the aim of proving a lower bound on ∆L(i)), we assume
that equality holds for the size of the two sets. Then there
are r pairs (k1, ℓ1), . . . , (kr, ℓr), where ks ∈ I∗ and ℓs ∈
Z∗ ∩ L(i), such that

(∆L(i) | Ai,j) =

(

r
∑

s=1

gks − gℓs

)

· 1A.

Note that for any s we have ℓs ≥ κ(i) and ks ≤ i since i
is the leftmost flipping one-bit. By definition,

gk − gℓ ≥ wk − wℓ for k < ℓ, (2)

gk − gℓ = wk − wℓ = 0 for i ≥ k > ℓ ≥ κ(i). (3)

Hence,

(∆L(i) | Ai,j) =

(

r
∑

s=1

gks − gℓs

)

· 1A

≥
(

r
∑

s=1

wks − wℓs

)

· 1A

=

∑

k∈I∗

wk −
∑

ℓ∈Z∗∩L(i)

wℓ

 · 1A ≥ 0

where the first inequality uses (2) and (3) and the last in-
equality holds by definition of Ai,j .

514

Now let Si,j be the event that |Z∗ ∩ L(i) \ {j}| = 0, that
is, that no bit in L(i) (possibly except j) flips to 1. We have

E(∆L(i) | Ai,j) = E(∆L(i) | Ai,j ∩ Si,j) · Pr(Si,j | Ai,j)

+E(∆L(i) | Ai,j ∩ S̄i) · Pr(S̄i | Ai,j)

by the law of total probability. Since the random variable
(∆L(i) | Ai,j) cannot have any negative outcomes, all these
conditional expectations are non-negative as well. From (1)
we thus derive

E(∆t | Ai,j) ≥ E(∆L(i) | Ai,j ∩ Si,j) · Pr(Si,j | Ai,j)

− E(∆R(i) | Ai,j). (4)

We will now bound the terms from (4) from below to
obtain our result. For (Si,j | Ai,j) to occur, it is sufficient
that all bits in L(i) except i and j do not flip (note that bits
i and j flip by assumption). Consequently, Pr(Si,j | Ai,j) ≥
(1 − 1/m)m−2 ≥ e−1. According to the definition of Ai,j ,
the mutation flipping only i and j is accepted. Hence, we
estimate E(∆L(i) | Ai,j ∩ Si,j) ≥ gi − gj . Altogether,

E(∆L(i) | Ai,j ∩ Si,j) · Pr(Si,j | Ai,j) ≥ gi − gj
e

. (5)

Finally, we need a bound on E(∆R(i)), which is determined
by the bits in R(i) that flip to 1. Here we distinguish two
cases with respect to j.

Case 1: j < κ(i). By definition of Ai,j , not all bits
in Z ∩ R(i) but only those of index at most at j can flip
to 1, and bit j is forced to flip. Since only spanning trees
are accepted, each flipping zero-bit requires another one-bit
to flip to 0. If only bit k ∈ Z was flipped to 1, the resulting
search point would contain a cycle, say edges e1, . . . , eℓ, one
of which is denoted by bit k. For a spanning tree to be
obtained, it is necessary that one of the bits associated with
edges e1, . . . , eℓ flips to 0 simultaneously with k flipping to 1.

Clearly, ℓ ≤ c(G). Event Ai,j already occurs if only bits i
and j flip. Moreover, bits are flipped independently. Hence,
on Ai,j , the probability that k ∈ Z∩R(i)∩{1, . . . , j−1} flips

is bounded from above by 1
m

· c(G)
m

= c(G)

m2 . Pessimistically,
we assume that A occurs in such a mutation. By linearity
of expectation, it follows that

E(∆R(i) | Ai,j) ≤
j−1
∑

k=1

c(G)

m2
gk.

Along with (4) and (5), we get

E(∆t | Ai,j) ≥ gi − gj
e

− c(G)

m2

j−1
∑

k=1

gk

≥ gi − gj
e

− c(G)

m2

κ(j)−1
∑

k=1

γk + (j − κ(j))γκ(j)

 ,

(6)

where we used Lemma 13 to bound gk ≤ γk for k ≤ κ(j)−1.
Since j < κ(i), Observation 14 yields that

gi − gj = γκ(i) − γκ(j) > 0,

hence

gi − gj = (1 + Φ)κ(i) − (1 + Φ)κ(j)

≥ (1 + Φ)κ(j)((1 + Φ)κ(i)−κ(j) − 1)

≥ γκ(j)(κ(i)− κ(j))Φ, (7)

where we used Bernoulli’s inequality.
We are left with the sum over k. Plugging in the definition

of γk in the geometric series, this is estimated by

κ(j)−1
∑

k=1

γk =

κ(j)−1
∑

k=1

(1 + Φ)k−1

=
(1 + Φ)κ(j)−1 − 1

Φ
≤ γκ(j)

Φ
,

so that the term in parentheses from (6) is bounded accord-
ing to

κ(j)−1
∑

k=1

γk + (j − κ(j))γκ(j)

≤ j + 1− κ(j)

Φ
γκ(j) ≤

κ(i) − κ(j)

Φ
γκ(j),

where we used Φ < 1 and j < κ(i). Since by definition
c(G)/m2 = Φ2/(2e), we bound the whole negative term
in (6) as

c(G)

m2

κ(i) − κ(j)

Φ
γκ(j) ≤

Φγκ(j)(κ(i) − κ(j))

2e
≤ gi − gj

2e
,

using (7).
Hence, finally,

E(∆t | Ai,j) ≥ gi − gj
e

− gi − gj
2e

=
gi − gj

2e
.

Case 2: j ≥ κ(i). Then by definition of Ai,j , we get gi −
gj = 0, so we only need to prove E(∆t | Ai,j) ≥ 0. If i and j
are the only flipping bits, nothing is to show. Otherwise, we
remove i and j from I∗ and Z∗, respectively, and recompute
i and j according to event Ai,j . Possibly repeating this
process, we either arrive at a pair (i, j) satisfying Case 1,
which proves a positive drift, or run out of flipping bits,
which means that the drift is 0.

5. LIMITATIONS OF THE TECHNIQUE
The drift analysis done in the proof of Theorem 10 requires

that a result in the style of Lemma 18 can be obtained.
Roughly speaking, the lemma says that the multiplicative
drift w. r. t. the g-function is in the same order as if only
two-bit flips were allowed (more precisely, order Ω(1/m2)).

This leads to a factor O(
√

c(G)) in the running time bound
for the following reason. Each flipping zero-bit, say bit k,
must be compensated by a flipping one-bit for the spanning
tree property to be maintained. Now, if the flipping zero-bit
closes a cycle of length ℓ, there are ℓ − 1 ways of flipping a
one-bit, all of which are accepted. Pessimistically, the proof
assumes ℓ = Ω(n). In addition, it pessimistically assumes
Ω(m) different choices for the flipping zero-bit k. The math
in the analysis of Case 1 in the proof of Lemma 18 only works
under these pessimistic assumptions if subsequent gi-values
are by a factor of at least 1 + Ω(

√

c(G)/m) apart.
The situation pessimistically assumed in the drift analysis

cannot be excluded during the optimization. Consider a sub-
graph on n′ + 1 vertices, where n′ = Ω(n), and assume that
a path of length n′ through the vertices v1, . . . , vn′ , forms a
spanning tree for the subgraph. Let VL := {v1, . . . , vn′/4}
and VR := {v3n′/4, . . . , vn′} be the first resp. last n′/4 ver-

tices on the path. Each of the (n′)2/4 = Ω(m) edges between
VL and VR closes a cycle of length at least n′/4 = Ω(n),

515

which is in accordance with the pessimistic assumptions.
Hence, the analysis of the one-step drift does not yield im-
mediate room for improvement here.

Of course, looking at the scenario just described, a uni-
form flipping zero-bit would probably lead to shorter cycles
in the next steps. So a drift analysis over several steps, keep-
ing track of the stochastic change of the longest path in the
current spanning tree, might help further improve the upper
bound on the expected running time.

Finally, it seems not too difficult to obtain from the drift
analysis the bound O(m2c(G) log(n)) if the mutation proba-

bility of the (1+1) EA is reduced from 1/m to 1/(m
√

c(G)).
The lower bound by Neumann and Wegener [10] could also
be adapted to this case, altogether resulting in a tight bound
Θ(m2c(G) log n). We consider this not to be particularly in-
teresting since the decreased mutation probability simply
would result in many steps not flipping bits at all.

Conclusions

We have revisited the classical analysis of the (1+1) EA for
the minimum spanning tree problem and the case of un-
bounded edge weights. By an adaptive drift analysis, we
have obtained the bound O(m2(log n+

√

c(G))), which im-
proves the previous result from [12] by an asymptotic fac-

tor of m/
√

c(G). Furthermore, we have gained structural
insights into the problem. These allowed us to define an al-
ternative fitness function on which the running time for the
(1+1) EA matches the one of RLS and asymptotically does
not depend on the weights of the graph.

We have also pointed out reasons why the gap between
upper and lower running time bound could not be closed.
Future research on this problem seems necessary. Further-
more, there are other results in combinatorial optimization
such as the single-source shortest path problem [2], where
the best upper bound on the running time of the (1+1) EA
depends on the largest weight in the underlying problem and
the analysis from [12] does not apply. Additional insight into
the problem structure seems required to come up with any
improved bound here.

6. REFERENCES

[1] Anne Auger and Benjamin Doerr. Theory of
Randomized Search Heuristics – Foundations and
Recent Developments. World Scientific Publishing,
2011.

[2] Surender Baswana, Somenath Biswas, Benjamin
Doerr, Tobias Friedrich, Piyush P. Kurur, and Frank
Neumann. Computing single source shortest paths

using single-objective fitness functions. In Proc. of
FOGA ’09, pages 59–66. ACM Press, 2009.

[3] Süntje Böttcher, Benjamin Doerr, and Frank
Neumann. Optimal fixed and adaptive mutation rates
for the LeadingOnes problem. In Proc. of PPSN 2010,
volume 6238 of Lecture Notes in Computer Science,
pages 1–10. Springer, 2010.

[4] Benjamin Doerr and Leslie Ann Goldberg. Adaptive
drift analysis. Algorithmica, 65(1):224–250, 2013.

[5] Benjamin Doerr, Daniel Johannsen, and Carola
Winzen. Multiplicative drift analysis. Algorithmica,
64(4):673–697, 2012.

[6] Benjamin Doerr and Sebastian Pohl. Run-time
analysis of the (1+1) evolutionary algorithm

optimizing linear functions over a finite alphabet. In
Proc. of GECCO ’12, pages 1317–1324. ACM Press,
2012.

[7] Benjamin Doerr, Dirk Sudholt, and Carsten Witt.
When do evolutionary algorithms optimize separable
functions in parallel? In Proc. of FOGA ’13, pages
51–64. ACM Press, 2013.

[8] Thomas Jansen. Analyzing Evolutionary Algorithms -
The Computer Science Perspective. Natural
Computing Series. Springer, 2013.

[9] Ernst W. Mayr and C. Greg Plaxton. On the spanning
trees of weighted graphs. Combinatorica,
12(4):433–447, 1992.

[10] Frank Neumann and Ingo Wegener. Randomized local
search, evolutionary algorithms, and the minimum
spanning tree problem. Theoretical Computer Science,
378(1):32–40, 2007.

[11] Frank Neumann and Carsten Witt. Bioinspired
Computation in Combinatorial
Optimization – Algorithms and Their Computational
Complexity. Natural Computing Series. Springer, 2010.

[12] Joachim Reichel and Martin Skutella. On the size of
weights in randomized search heuristics. In Proc. of
FOGA ’09, pages 21–28. ACM Press, 2009.

[13] Joachim Reichel and Martin Skutella. Evolutionary
algorithms and matroid optimization problems.
Algorithmica, 57(1):187–206, 2010.

[14] Ingo Wegener. Simulated annealing beats metropolis
in combinatorial optimization. In Proc. of ICALP ’05,
volume 3580 of Lecture Notes in Computer Science,
pages 589–601. Springer, 2005.

[15] Carsten Witt. Tight bounds on the optimization time
of a randomized search heuristic on linear functions.
Combinatorics, Probability and Computing,
22(2):294–318, 2013.

516

