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ABSTRACT
A variety of real world applications fit into the broad def-
inition of time series classification. Using traditional ma-
chine learning approaches such as treating the time series
sequences as high dimensional vectors have faced the well
known“curse of dimensionality”problem. Recently, the field
of time series classification has seen success by using prepro-
cessing steps that discretize the time series using a Sym-
bolic Aggregate ApproXimation technique (SAX) and using
recurring subsequences (“motifs”) as features.

In this paper we explore a feature construction algorithm
based on genetic programming that uses SAX-generated mo-
tifs as the building blocks for the construction of more com-
plex features. The research shows that the constructed com-
plex features improve the classification accuracy in a statis-
tically significant manner for many applications.

Track: Evolutionary Machine Learning

Categories and Subject Descriptors
I.2.6 [Computing Methodologies]: Artificial Intelli-
gence—Learning [Knowledge acquisition]

General Terms
Algorithms

Keywords
machine learning; time-series classification; genetic pro-
gramming; evolutionary computation

1. INTRODUCTION
Many real-world applications such as motion detection in

robotics, climate change detection based on anthropogenic
measurements, and financial market predictions based on
stock price variations fit into a broad definition of time se-
ries classification. In time series classification, individual
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instances are sequences of numeric values associated with la-
bels. Using traditional machine learning approaches such as
treating the time series sequences as high-dimensional vec-
tors have faced with the well known“curse of dimensionality”
problem [25]. Most data mining techniques typically involve
some form of transformation on the existing real-valued
time-ordered data. The complex structural characteristics
of real-world time series data such as high-dimensionality,
feature correlation, and measurement-induced noise render
classic data mining algorithms ineffective and inefficient for
these representations. In contrast, symbolic transforma-
tions such as Symbolic Aggregate approXimation (SAX)
have been shown to be very effective for a large number
of time series applications [31]. SAX, in addition to per-
forming mapping from time series to discrete symbols, also
performs dimensionality reduction.

Unlike other data types, there are no “explicit” features
or signals in discretized sequence data that can help tradi-
tional machine learning algorithms learn and predict from
the data. In sequence-based classification, the immediate
goal becomes the discovery of signals or features in the se-
quence data that correlate with the desired property, as well
as discrimination between sequences that contain such prop-
erty and those that do not. Sequence data exhibit inter-
relationships in the elements that are important in under-
standing and predicting future sequences. However, finding
these relationships is proven to be an NP-hard problem [34].
When we use näıve enumerations for defining these features
they often result in poor predictions. Some algorithms that
perform well in prediction lack transparency, i.e., the dis-
criminating features generated by these methods are not eas-
ily identifiable. Recently, an evolutionary algorithm based
feature generation (EFG) technique was introduced to gen-
erate discriminating features for DNA sequence classifica-
tion [16, 17]. It was shown that the EFG-based approach was
able to generate features in human-readable manner that
biologists are interested in, while achieving good predictive
performance [16, 17].

In this paper, the SAX and EFG algorithms are combined
to produce an effective time series classification methodol-
ogy. SAX performs the high level transformation of con-
verting real-valued time series to discretized alphabet-based
sequences. EFG uses these transformed sequences to find
complex patterns as discriminating features that can be used
with any generic classifiers. We first provide a brief introduc-
tion to time series representations, SAX, and EFG in section
2. We then describe how EFG and SAX can be combined to-
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gether in sections 3 and 4. In section 5 we describe the evalu-
ation experiments that were performed on publicly available
real-world datasets. Finally, we conclude with some overall
observations and directions for future work.

2. BACKGROUND
Time series data have been analyzed in various data min-

ing tasks such as classification, clustering, indexing, and
summarization. In this paper we focus only on the clas-
sification task; however, the proposed approach is general
and can be applied to other tasks as well.

For the purposes of this research a time series is assumed
to be an ordered set of real-valued variables, and a time
series classification problem is a set of labeled time series in-
stances to be used as training data to construct a predictive
model for classifying unseen time series instances.

Most time series classification approaches first perform
some transformation that converts the real-valued ordered
data to an approximate representation of the data. Many
transformations like Discrete Fourier Transform (DFT) [12],
Discrete Wavelet Transform (DWT) [5], Piecewise Linear,
and Piecewise Constant models (PAA) [20], (APCA) [14,
19], Singular Value Decomposition (SVD), and symbolic
representations [25] have been proposed. Each of these
techniques can be considered to be approximating the sig-
nal using linear combinations of some basis functions. In
similarity-based classification of time series, a distance func-
tion or a similarity function is defined to measure the dis-
tance or similarity between a pair of sequences. Given such
a distance function, one can use existing classification meth-
ods such as k-nearest neighbor classifiers (KNNs) or support
vector machines (SVMs) with local alignment kernels [42, 7].
Time series shapelets using subsequence patterns and logical
combinations of these patterns have recently been proposed
and are gaining popularity for classification [29, 45]. Many
statistical representation based techniques such as position-
specific scoring matrix (PSSM)—also known as the position-
weight matrix (PWM)—method, which assumes symbols at
all positions are drawn independently [39, 13], the weight
array model (WAM) which relaxes assumptions of indepen-
dence by additionally modeling dependencies on a previ-
ous position [40], higher-order Markov models, which model
more dependencies and outperform PSSMs [43, 18], and
even more complex models like Bayesian networks [4, 1]
and Markov Random Fields (MRFs) [44, 2] have been suc-
cessfully employed in sequence classification. String based
kernels in SVM, the weighted position kernel (similar to po-
sitional features), and the spectrum kernel (similar to the
spectrum features) [36, 37] have been widely used in bioin-
formatics sequence classification applications.

3. METHODOLOGY

3.1 Symbolic Aggregate approXimation
SAX is a transformation technique that allows a time se-

ries of arbitrary length n to be reduced to a string of user-
defined length w, (w � n). The alphabet size is also a
user-defined integer α, where α ≥ 2. SAX performs the dis-
cretization using two distinct steps: 1) transform the data
into the Piecewise Aggregate Approximation (PAA) repre-
sentation, and 2) map the PAA representation into a discrete
string representation. SAX can be performed repeatedly via

Figure 1: PAA approximations with predetermined
breakpoints mapped to symbols. In the example
above, with n = 128, w = 8 and a = 3, the time
series is mapped to the word baabccbc [26]

a sliding window on subsequences from a longer time series,
in which case a third, optional step may be employed: nu-
merosity reduction of the data.

3.1.1 Piecewise Aggregate Approximation (PAA)
A time series T of length n can be represented in a w-

dimensional space by a vector C. The ith element of C is
calculated by the following equation:

c̄i =
w

n

n
w

i∑
j= n

w
(i−1)+1

cj (1)

First, each time series is normalized to have a mean zero
and standard deviation of one. The normalized time series
data T is then divided into w equal sized“frames”. The mean
value of the data falling within a frame is calculated and a
vector of these values becomes the reduced representation.
The representation can be visualized as an approximation
of the original time series with a linear combination of box
basis functions. PAA has been considered to be a simple yet
effective technique compared to more sophisticated ones like
DWT and DFT [21, 20].

3.1.2 Discrete Symbolization
In the symbolization step, each PAA coefficient is mapped

to a symbol based on a set of breakpoints. Ideally, we want
the distribution of symbols to be equiprobable. Since nor-
malized short time series tend to have a Gaussian distribu-
tion, we can define the breakpoints as the boundaries that
will produce equal-sized areas under the Gaussian curve [28,
26]. A symbolic transformation table could thus be created
by defining breakpoints that would result in regions of equal-
probability on the Gaussian distribution. These breakpoints
(or the z-values) may be determined by looking them up in
statistical tables. Once the breakpoints are obtained, the
mapping of a PAA coefficient to symbol is straight-forward.
Figure 1 summarizes the process.

3.1.3 Numerosity Reduction
Most time series data have a large number of values, and

one common technique is to consider a sliding window of
length n (user defined parameter) subjected to SAX. Each
subsequence of length n is normalized with mean zero and
unit standard deviation and converted to a SAX string.

534



Figure 2: Timeseries of length 128, showing over-
lapping signals starting at different positions from p
1 to 8 [26].

Thus a set of SAX strings are obtained which correspond
to the original time series. It was found that a SAX sub-
sequence Si is likely to be very similar to its neighboring
subsequences Si+1 and Si−1, especially when the sequence
is in a smooth region, as depicted in Figure 2. Typically
only the first of the repeating sequence of identical strings is
recorded to avoid artificial over-representation of patterns.
Such technique is called numerosity reduction.

As an example, suppose we have the following sequence
of SAX strings with the sliding window technique:
S = aac aac abc abb abb abb abb bac baa
With the numerosity reduction option, we would get the

following sequence instead:
Snr = aac1 abc3 abb4 bac8 baa9

The subscripts denote the offsets of the strings in the
original sequence. In some datasets and applications, in-
cluding these omitted subsequences may be useful, as they
might carry important signals. But in most datasets, it was
found that excluding these repeating subsequences resulted
in a more accurate representation and classification accu-
racy [26].

3.2 Evolutionary Feature Generation (EFG)
EFG uses a Genetic Programming (GP) algorithm to ex-

plore a large, complex space of potentially useful features
from the given training dataset [23]. Features are repre-
sented as standard GP trees, and a population of features is
evolved over time using standard GP mechanisms of muta-
tion and crossover. EFG uses a surrogate filter-based fitness
function to estimate the usefulness of the GP-generated fea-
tures, since the wrapper methodology to find effectiveness
of the features is costly. A hall of fame mechanism incre-
mentally collects the best estimated features for subsequent
use with a classifier. Next, we present details of all the evo-
lutionary elements and constructs that are used in the EFG
algorithm.

3.2.1 Feature Representation
Various researchers, as highlighted in the related work sec-

tion, have individually discovered many building blocks that
can be very effective in finding the patterns in sequence
classification. The novelty of the EFG algorithm is that
it not only defines many new building blocks, but it also
gives a structure through strongly-typed GP evolution, com-
bining various building blocks in an effective and human-
understandable manner. This structured way of searching
a vast feature space involves building a complex structure
given the constraints defined from simpler ones. Strongly-
typed GP plays the role of giving structure and guidance
to the vast search space of features. Next, we highlight the
building blocks from the simplest short subsequence known

Name Args Return
Type

and 2 non-terminal boolean boolean
or 2 non-terminal boolean boolean
not 2 non-terminal boolean boolean
matches motif boolean
matchesAtPosition motif, position boolean
positionalShift motif, position,Shift boolean
correlational motif, motif, position, close boolean
motif-* ERC-chars motif
position ERC-int Integer
shift ERC-int Integer
close ERC-int Integer
region ERC-int,ERC-int Integer
ERC-char {Symbols} Character
ERC-int {1, . . . , length} Integer

Table 1: A table of the non-terminals and terminal
nodes employed by EFG.

as a motif, which becomes the common building block to
the complex higher-order signals that can be constructed
through the algorithm. We have arranged the explanation
at various levels of complexity starting from Level 1 (the
simplest) to Level 3 (the most complex).

Level 1: Motif.
The most common building block is the presence of a

short subsequence of strings of a given length, which are
constructed as parse trees from the given alphabets. These
motifs are used as a building block in all the second level
constructs.

Level 2: Pattern Matching Functions.
Using the motifs as basic building blocks, EFG constructs

features corresponding to patterns to be matched using a
set of predefined functions, matches, matchesAtPosition,
positionalShift and correlational as indicated in Table
1. The matches captures the simple compositional pattern.
The matchesAtPosition allows constructing simple posi-
tional features from the motifs at a given position.The po-

sitionalShift allows constructing positional features that
may be displaced in either direction by a small shift given
as a parameter. The correlational operator captures the
presence of positional features adjacent to each other, within
a distance.

Level 3: Complex Higher Order Signals.
Many statistical learning approaches, such as Bayesian

networks and Markov-chain models, rely on higher order el-
ements formed from lower order signals as the discriminative
features [24]. The approach of having logical combinatorial
operators like and, or, and not acts in a similar way to con-
struct more complex features combining the simple Level
1 motifs, Level 2 elements, or even the Level 3 features to
form any level of complex patterns from simpler conjuncts
or disjuncts.
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3.2.2 Genetic Operators
As in most evolutionary algorithms, individuals have to

undergo some modifications through genetic breeding op-
erators to generate a new representation from the existing
population individual(s). Studies have shown robust evolu-
tionary algorithms incorporate both mutation and crossover
as the breeding operators [38]. In this research, we explored
forming problem-specific mutations as small, incremental
operators. These mutation operators are motif mutation,
positional mutation, shift mutation and adjacency mutation.
In this work, the standard subtree crossover, one of the most
common genetic recombination operators used in GP [23] is
employed.

3.2.3 Bloat Control
One common problem with evolving variable-length or

tree-structured individuals in EAs is that as the generation
progresses, the individuals become complex in structure or
length without any changes to fitness, commonly referred
to as “bloat”. One of the ways to control bloat is to have
structural elements that reduce the chance of forming larger
trees without much improvement to the fitness. By making
specific building blocks, such as the correlational feature,
rather than leaving it for evolution to form complex trees
with two positional features capturing adjacent positional
information is one such example. Another method that is
used in EFG to combat increase in length and complexity is
to employ a lexicographic tournament selection: if multiple
individuals have the same fitness, the selection chooses the
individual with the smaller tree depth [23].

3.2.4 Population and Generation Mechanism
The EFG algorithm creates individuals in generation 0

consisting of N randomly generated features using the well-
known ramped half-and-half generative method [23]. The
population size for GP is generally large, and we have em-
ployed a size of 10000. Instead of keeping the population
size fixed for every generation, we employed the well known
strategy of population implosion to reduce the size of popu-
lation by 10% in every generation [27].

3.2.5 Fitness Function
A surrogate fitness function, or a “filter” approach, which

is considered to be fast and effective way for feature evalu-
ation [22] is employed in EFG. Since most sequence classi-
fication data are imbalanced and have very few positives
and a large number of negatives, the goal is to improve
precision while managing the discriminating power of fea-
tures. We formulate the fitness function: Fitness(f) =
C+,f

C+
∗ | ˆC+,f − ˆC−,f |. In this equation, f refers to a feature,

C+,f and C−,f are the number of positive and negative train-
ing sequences that contain the feature f , respectively. C+

and C− are the total number of positive training sequences.
ˆC+,f and ˆC−,f are the normalized count of positive and neg-

ative sequences. This fitness function tracks the occurrence
of a feature in positive sequences, as negative sequences may
not have any common features or signals. The fitness func-
tion additionally penalizes non-discriminating features; that
is, features that are equally found in positive and negative
training sequences.

The goal is to maximize the fitness function, but the
standard fitness formulated for GP aims for minimiza-
tion [23]. So, the standard fitness of a feature is defined

by f as Standard(f) = 1/(Fitness(f)). EFG then con-
verts the standard fitness back into the GP-adjusted fitness
1/(1 + Koza(f)) to select fit individuals. Note that the GP-
adjusted fitness takes values in [0, 1].

3.2.6 Hall of Fame
Since GP is a generational EA, i.e., the parents die after

producing the offspring, there can be a “genetic drift” and
convergence to a local optimum [8]. This can result in the
loss of some of the best individuals, which can be useful dis-
criminating features for classification. Introducing elitism,
i.e., the ability to keep some of the best individuals in the
population helps to overcome this at the expense of intro-
ducing strong selection pressure. To maintain this balance
of not losing the best individuals in every generation and
not introducing elitism for strong selection pressure, exter-
nal storage has been found to be the ideal design decision [8].
The EFG algorithm will use this external storage of features
known as hall of fame, and at the end of the EA run, these
highly fit feature sets chosen from each generation become
the feature set that constitutes the solution.

4. SAX-EFG FRAMEWORK
The overall framework for employing EFG along with

SAX for time series is shown in Figure 4. SAX performs the
preprocessing to convert the time series data to a sequence
of SAX strings, and EFG does the feature generation task
while any discriminating classifier like Näıve Bayes can be
used to learn models from these features.

The mapping of time series to SAX strings requires var-
ious user-defined parameters like the sliding-window length
n, PAA frame reduction size w, and alphabet size α for dis-
cretizing. In the experiments in this paper an alphabet of
size 4 was used for all the experiments. The sliding window
size and PAA size were used from standard SAX based runs
from previous research and is mentioned along with results
in the table.

The EFG algorithm used a default motif length range of
1 to 8 characters. Ideally, a motif should be restricted to
contain only whole SAX strings. That is, in theory a motif
should not be allowed to break up a string (pattern). In our
experiments, however, we find that enforcing such restriction
via the use of N (don’t care or gap symbol) between SAX
strings results in very little difference in accuracy. This may
be due to the sparsity of the patterns, as well as the fact
that a pattern needs to be both overrepresented and dis-
criminative in order to be included in the feature set. The
shift parameter for positional matching with error is set to
3 and closeness for capturing correlation between motifs is
set to 4. The mutation and crossover parameters are also
set to default of 0.1 each and 0.7 respectively. The hall of
fame capture of features per generation is set to 250. The
EFG algorithm is run for 30 generations.

4.1 Datasets
The datasets chosen for this task are some standard time

series datasets with binary class labels from the real-world
time series data. GunPoint dataset comes from the video
surveillance domain and has two classes, containing 50 train-
ing and 150 testing examples with time series length of
150 [33]. The electrocardiogram (ECG) dataset contains
measurements of cardiac electrical activity as recorded from
electrodes at various locations on the body; each instance in
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Figure 3: The EFG algorithm with the SAX algorithm

Dataset Time Series Train Test
Length Size Size

GunPoint 150 50 150
ECG200 96 100 100
Coffee 286 28 28

Lightning2 637 60 61
SonyAIBOSurface 70 20 601

Table 2: Dataset characteristics giving time series
length, training and test size.

the ECG database contains the measurements recorded by
one electrode during one heartbeat [30]. The Coffee dataset
comes from food spectrograms domain [32]. The Lightning2
dataset comes from the geographic and satellite-based mon-
itoring domain [11]. The SonyAIBOSurface dataset comes
from the robotics and surface detection domain [41]. Table 2
gives the details of each dataset in terms of the time series
length, training data size and the testing data size.

5. EXPERIMENTS

5.1 Comparing Time Series Algorithms
For our method, the SAX parameters like the sliding win-

dow length n and the PAA reduction length w are set based
on previous studies done on SAX and outlined in Table 3.
The choice of an alphabet of size 4 was a self-imposed restric-
tion to allow some additional comparisons with our DNA
sequence research. In future work, this can be changed and
explored with higher numbers.

It has been shown that for time series classification, 1NN
on the raw time series using standard distance measures
like Euclidean Distance (L2) or Dynamic Time Warping
(DTW) [3] outperforms many more sophisticated classi-
fiers [10]. Therefore, to follow literature standard, we com-
pare our approach to 1NN as the classifier, with the following
variations: (1) Euclidean Distance as the distance measure
on the raw data, (2) DTW as the distance measure on the
raw data, (3) SAX as the representation using the same
parameters as EFG-SAX (the column labeled SAX), and
(4) trained SAX as the representation where the best pa-
rameters are learned from the training set for each dataset
(the column labeled SAX-BEST). In addition to the 1NN
methods, we also compare with the shapelet and the logical
shapelet algorithms.

During the testing phase, the same parameters of SAX
are applied to the time series for SAX conversion and the
trained model is used for predicting. The error rate mea-
sured as (1−accuracy), the standard metric used in all time

series studies, is used as the comparison metric. Accuracy
is defined as the percentage of correct predictions.

The implementations using Euclidean Distance (L2),
DTW, and SAX were obtained from the authors [26, 3].
The shapelet and logical shapelet were obtained from the
work [29, 45]. EFG implementation was also obtained from
the authors [16]. The SAX-BEST, SAX and EFG have pa-
rameters of sliding window size, segment size and the al-
phabet size for each experiment in the Table 3 and both
the shapelet methods used the best parameters as noted in
[29, 45]. All the experiments are run 30 times, comparisons
made using paired-t tests and the statistically significant re-
sults with 95% confidence are reported in bold-faced and
underlined in Table 3.

It can be observed that EFG-SAX gives performance
comparable to many time series based algorithms for most
datasets. For the Coffee and the GunPoint datasets EFG-
SAX gives the statistically significantly better results. More
importantly, it can be seen that in 4 out of 5 datasets SAX
with EFG performs better than plain SAX. We could not
run the Lightning2 dataset with either shapelet or logical
shapelet implementations due to memory related issues.

5.2 Comparing Sequence Classification Algo-
rithms

If SAX is used for discretizing the time series classification
datasets, can EFG be comparable to other techniques known
for handling discrete sequence-based data? A comparison of
EFG with feature-based, statistical and kernel methods on
some subset of datasets with the same preprocessing from
time series to symbolic discrete set using SAX will be the
next research goal. Two datasets, GunPoint and SonyAiBo-
Surface from above, which were statistically best and sightly
worse respectively were considered for this comparison. We
used an SVM with WeightedDegreePosition Kernel as the
string kernel implementation, K-mer for feature based, and
Homogeneous HMM and MSP as statistical discriminative
and generative techniques.

The kernel parameters such as motif length or order were
kept same as that of EFG at 8, while other parameters for
the SVM and the HMM were chosen using cross-validation
using a default ranges in the grid search. The implemen-
tation of the statistical methods employed for comparison
is in Java, based on the publicly-available Jstacs pack-
age [15]. The kernel-based methods are implemented using
the publicly-available Shogun toolkit [35] with the standard
SVM implementation provided in the publicly-available Lib-
SVM package [6]. The feature-based methods employed for
a baseline validation are implemented in Java. The methods
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Dataset Euclidean DTW Shapelet Logical SAX-BEST SAX EFG-SAX Rank
GunPoint 0.09 0.08 0.11 0.14 0.18 (32,4,10) 0.20 (32,4,4) 0.032 (32,4,4) 1
ECG200 0.15 0.22 0.15 0.14 0.12(32,8,4) 0.12 (32,8,4) 0.13(32,8,4) 2
Coffee 0.16 0.12 0.04 0.04 0.46(48,4,3) 0.18(48,4,4) 0.01(48,4,4) 1

Lightning2 0.29 0.17 - - 0.313 (128,8,4) 0.313 (128,8,4) 0.22(128,8,4) 2
SonyAIBOSurface 0.30 0.30 0.15 0.14 0.38 (10,8,5) 0.38 (10,8,4) 0.32 (10,8,4) 3

Table 3: Error Rate comparing EFG-SAX with the state-of-the-art algorithms and the last column giving an
overall rank in the comparison.

Methodology Feature Kernel Statistical

Datasets K-Mer EFG-SAX WD-S HMM MSP
Gun 0.07 0.032 0.05 0.12 0.04
Sony 0.52 0.32 0.52 0.47 0.39

Table 4: Error Rate comparing EFG-SAX with fea-
ture, statistical, and kernel methods

that have randomness are run 30 times, and the mean er-
ror is noted and the significance is calculated using paired-t
tests with 95% confidence intervals and shown in bold-faced
and underlined in Table 4.

Interestingly, it can be seen that SAX based discretized
symbolic representation works well with EFG as compared
to other techniques. The dataset SonyAIBOSurface, for
which SAX-EFG achieved a bit worse performance as com-
pared to using other state-of-the-art, shows even worse per-
formance using all other techniques like WD-S kernel, K-
mer, HMM and MSP.

5.3 Multi-class Time Series Classification
Finally, some of the time series applications are multi-

class in nature. EFG in general is a binary-classification-
based framework as it tries to find features which are dis-
criminating to one class as compared to the other, evident
from the fitness function. There are two broadly different
ways to address the multi-class datasets: 1) change the EFG
algorithm or the fitness function to accommodate the multi-
class discrimination using something like entropy, 2) without
changing the EFG algorithm, use machine learning strate-
gies to adapt the binary-class problems to multi-class prob-
lems. There have been many machine learning strategies to
adapt the binary-class problems to multi-class problems as
one-vs.-one or one-vs.-rest problems, creating many binary
classification problems.

In this work, we use the second approach and adapt the
one-vs.-one strategy in the methodology to create many bi-
nary classification problems. We create binary classification
models using EFG features for these and combine the models
using simple vote mechanism in an ensemble.

The dataset adopted for experimentation is the cylinder-
bell-funnel (CBF) time series data [9]. The time series for
CBF is defined from the following equations, where c(t), b(t)
and f(t) define cylinder, bell, and funnel respectively.

c(t) = (6 + η) ∗ χ[a, b](t) + ε(t) (2)

b(t) = (6 + η) ∗ χ[a, b](t) ∗ (t− a)/(b− a) + ε(t) (3)

f(t) = (6 + η) ∗ χ[a, b](t) ∗ (b− t)/(b− a) + ε(t) (4)

χ[a, b](t) =

 0, t < a
1, a < t < b
0, t > b

 (5)

Figure 4 illustrates instances of CBF, showing the cylin-
der class having a plateau from a to b, the bell class having
a gradual increase from a to b and the funnel class having
sudden increase at a and gradual decrease to b. The time se-
ries is of length 128 and is considered a model characterizing
the properties of temporal domains. Various characteristics
of CBF such as random amplitude variation as a result of η,
random noise as a result of ε and large variations at start and
end make it really suitable as a model complex classification
problem [9].

The implementation of EFG-SAX was trained on three
models for cylinder-bell, cylinder-funnel, and bell-funnel us-
ing EFG-SAX as before with a Näıve Bayes classifier. The
voting ensemble using average function for the probability
estimate was chosen to combine the outputs for each mod-
els and give classification and confidence to the unseen test
data.

We compare EFG-SAX with the following methods: 1NN
with Euclidean Distance on the raw data, 1NN with DTW
on the raw data, 1NN with SAX using the same parame-
ters as EFG-SAX, 1NN with SAX using trained alphabet
size, and two shapelet methods. The results are shown in
Table 5. The methods that have randomness are run 30
times, and the mean error is noted and the significance is
calculated using paired-t tests with 95% confidence intervals
and shown in bold-faced underlined. EFG-SAX outperforms
all the traditional time series classification algorithms in a
significant way, recording the lowest error rate.

6. CONCLUSION
In this paper, the SAX-EFG framework for time series

classification was implemented and studied. It is clear that
for binary classification applications, the EFG-SAX frame-
work performs better or close to the best algorithms for time
series classification.

It was also interesting to note that EFG-SAX outperforms
the traditional feature, kernel, and statistical methods with
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Figure 4: Showing Cylinder, Bell and Funnel as
three classes from top to bottom as time series.

same SAX based discretization confirming the generic na-
ture of EFG to find more complex patterns in sequences. Fi-
nally, applying EFG for multi-class algorithms using ensem-
ble methodology with one-vs.-one shows relative strength of
EFG in finding discriminative features and enhancing the
ensemble classification accuracy. In future, we also want to
study in-depth the correlation between the discriminative
features found in the discretized sequences to the real-valued
patterns in the time series.
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Poims: positional oligomer importance matrices -
understanding support vector machine-based signal
detectors. In ISMB, pages 6–14, 2008.

[38] W. M. Spears. Crossover or mutation. In FOGA,
pages 221–237, 1992.

[39] R. Staden. Methods to locate signals in nucleic acid
sequences. Nucl. Acids Res., 12(1):505–519, 1984.

[40] L. Taher, P. Meinicke, and B. Morgensten. On splice
site prediction using weight array models: a
comparison of smoothing techniques. J. of Physics:
Conference Series, 90(1):012004, 2007.

[41] D. L. Vail, M. M. Veloso, and J. D. Lafferty.
Conditional random fields for activity recognition. In
Proceedings of the 6th international joint conference
on Autonomous agents and multiagent systems, page
235. ACM, 2007.

[42] V. N. Vapnik. The Nature of Statistical Learning
Theory. Springer, 1995.

[43] E. P. Xing, M. I. Jordan, R. M. Karp, and S. Russell.
A hierarchical Bayesian Markovian model for motifs in
biopolymer sequences. In S. Becker, S. Thrun, and
O. K., editors, Advances in Neural Information
Processing Systems, pages 200–207, 2002.

[44] O. Yakhnenko, A. Silvescu, and V. Honavar.
Discriminatively trained Markov model for sequence
classification. In IEEE Intl Conf on Data Mining
(ICDM), pages 1–8, November 2005.

[45] L. Ye and E. Keogh. Time series shapelets: A new
primitive for data mining. In Proceedings of the 15th
ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’09,
pages 947–956, 2009.

540



 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
     Shift: move down by 23.83 points
     Normalise (advanced option): 'original'
      

        
     32
            
       D:20140603152236
       792.0000
       US Letter
       Blank
       612.0000
          

     Tall
     1
     0
     No
     795
     352
     Fixed
     Down
     23.8320
     0.0000
            
                
         Both
         10
         AllDoc
         10
              

       CurrentAVDoc
          

     Uniform
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2 2.0
     Quite Imposing Plus 2
     1
      

        
     7
     8
     7
     8
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
     Shift: move left by 7.20 points
     Normalise (advanced option): 'original'
      

        
     32
            
       D:20140603152236
       792.0000
       US Letter
       Blank
       612.0000
          

     Tall
     1
     0
     No
     795
     352
    
     Fixed
     Left
     7.2000
     0.0000
            
                
         Both
         10
         AllDoc
         10
              

       CurrentAVDoc
          

     Uniform
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2 2.0
     Quite Imposing Plus 2
     1
      

        
     7
     8
     7
     8
      

   1
  

 HistoryList_V1
 qi2base





