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ABSTRACT

Generally, there are two objectives in the optimization of
the measurement noise covariance matrix R of Kalman fil-
ter. However, most of the traditional optimization methods
of Kalman filter only focus on one objective. In this pa-
per, we proposed a new method to optimize the parameter
R based on Multi-Objective Memetic Algorithm (MOMA).
Compared with traditional methods, it can optimize multi-
ple objectives simultaneously. In this method, the decision
vector is the diagonal elements of matrix R, the first objec-
tive function f1 is the mean of the residual vectors, and the
second objective function f2 is the degree of mismatching
between the actual value of the residual covariance with its
theoretical value. In the MOMA, the global search based on
NSGA-II is utilized to minimize the two objective function-
s, and the local search based on Simulated Annealing (SA)
is just used to minimize the f1. The experimental results
demonstrate that the Kalman filter optimized by MOMA,
namely MOMA-Kalman, can get much smaller filtering er-
ror than regular Kalman filter and other adaptive filter al-
gorithms, such as SageHusa-Kalman and Fuzzy-Kalman.

Categories and Subject Descriptors

G.1.6 [Numerical Analysis]: Optimization—global opti-

mization; I.2.8 [Artificial Intelligence]: Problem Solving,
Control Methods, and Search—control theory
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1. INTRODUCTION
Kalman Filter (KF) [1] is one of the well-known and ef-

ficient methods for estimating the state of dynamic system
from an incomplete and noisy measurement. Since it was
proposed in 1960s, Kalman filter has been widely applied in
many fields, such as navigation, signal processing, control
system and information fusion. It also has many improved
variants like Extended Kalman Filter (EKF) [2] and Un-
scented Kalman Filter (UKF) [3] which are utilized in non-
linear system. The Kalman filter works well in the condition
that the a priori statistics of the stochastic errors in both
dynamic process and measurement models are assumed to
be available, which is very difficult in practical applications,
especially the measurement noise covariance matrix R. To
solve this problem, many adaptive mechanisms are used into
Kalman filter, which is called Adaptive Kalman Filter (AK-
F). According to the filtering performance, adaptive Kalman
filter can optimize or estimate its noise statistics parameters
adaptively to adjust to the change of process or measurement
noise. Mehra [4] classified the different methods of adaptive
filter into four categories: Bayesian, maximum likelihood,
correlation and covariance matching.

The traditional adaptive Kalman filter algorithms include
Sage-Husa Kalman [5] based on maximum a posteriori prob-
ability estimation, Fuzzy Kalman [6] based on fuzzy logic
and covariance matching, Bayes adaptive filter [7] based on
Bayesian estimation, Robust Kalman [8] and so on. In re-
cent years, more and more people start to use Evolutionary
Algorithms (EA) into adaptive Kalman filter. In literature,
Szabat [9], Salvatore [10], Jatoth [11], and Mosavi [12] pub-
lished some of the earlier work on using evolutionary algo-
rithms to optimize the initial parameter value of Kalman
filter. Generally, there are two objectives in the parameter
optimization of Kalman filter. One is to reduce the filtering
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error ,and the other one is to estimate the actual value of the
parameters. However, all the adaptive Kalman filter meth-
ods mentioned above only focus on one objective. For exam-
ple, Sage-Husa Kalman focuses on the error reduction and
Fuzzy Kalman focuses on the actual parameter estimation.
Even the adaptive Kalman filter based on single-objective
evolutionary algorithm, just can optimize one objective each
time.

In this paper, we proposed to utilize multi-objective memet-
ic algorithm (MOMA) to optimize the parameterR of Kalman
filter, which can optimize the two objectives mentioned above
simultaneously. MOMA [13, 14] is the multi-objective op-
timization version of memetic algorithm (MA) [15]. It has
been successfully applied to many fields, such as knapsack
problems [16], dynamic location problems [17], art classifiers
[18], transmission network expansion planning [19] and en-
vironmental power unit commitment [20]. The MOMA used
in this paper is a combination of NSGA-II [21] and Simu-
lated Annealing (SA) [22]. In the optimization, The first
objective function f1 is the mean value of the residual vec-
tors of Kalman filter. In certain extend it symbolizes the
filtering error. The second objective function f2 is the de-
gree of mismatching between the actual value of the residual
covariance with its theoretical value. It can be used to find
the actual value of R. For the purpose of getting smaller
error under the premise that the optimized value of R is
close to its actual value, the local search based on SA just
minimizes the first objective function.

The rest of this paper is organized as follows: Section II
introduces the Kalman filter and its parameter optimization
problem. Section III introduces the new method of opti-
mizing the parameter R of Kalman filter based on multi-
objective memetic algorithm. Some simulation results are
presented in Section IV to show its performance. Finally,
Section V concludes the paper.

2. PARAMETER OPTIMIZATION OF KA-

LMAN FILTER

2.1 Kalman Filter
Kalman filter is one of the most popular algorithms in

the control area. It is always used to estimate the state
of a dynamic system. The system model and measurement
model for a simple linear discrete-time Kalman filter are
represented as:

xk = Φxk−1 + ωk (1)

zk = Hxk + νk (2)

where xk ∈ Rn is the system state vector, ωk ∈ Rn is the
system noise vector, zk ∈ Rm is the measurement vector to
system state, and νk ∈ Rm is the measurement noise vector.
Φ is the state transition matrix, which reflects the mathe-
matical or physical relationship between system state xk and
xk−1. H is the measurement matrix, which represents the
relationship between the measurement zk and system state
xk. The vector ωk and νk are both white noise sequences
with zero means and mutually independent

E[ωkω
T
i ] =

{
Q, i = k
0, i �= k

; (3)

E[νkν
T
i ] =

{
R, i = k
0, i �= k

; (4)

E[ωkν
T
i ] = 0, for all i and k. (5)

where non-negative definite matrix Q is the system noise co-
variance matrix, positive definite matrix R is the measure-
ment noise covariance matrix, E[•] represents expectation,
and superscript “T” denotes matrix transpose.

The purpose of Kalman filter is to estimate the actual
value of xk in equation (1). Based on the model equations
(1)-(5), the key five equations of discrete-time Kalman filter
is summarized as follows:

x̂−

k = Φx̂k−1; (6)

P−

k = ΦPk−1Φ
T +Q; (7)

Kk = P−

k HT (HP−

k HT +R)−1; (8)

x̂k = x̂−

k +Kk(zk −Hx̂−

k ); (9)

Pk = (I −KkH)P−

k . (10)

Equations (6)-(7) are the time update equations of Kalman
filter from step k−1 to k. These equations generate a priori
estimation of system state at step k. Equations (8)-(10) are
the measurement update equations of the algorithm. They
incorporate the measurement value zk into a priori estima-
tion to obtain an improved a posteriori estimation, which is
the output of Kalman filter at step k. In the above equation-
s, x̂k is the estimation value of the system state xk, Pk is the
error covariance matrix defined by E[(xk − x̂k)(xk − x̂k)

T ],
and weighting matrix Kk is the Kalman gain matrix. The
Kalman filter algorithm starts with an initial condition value
x̂0 and P0.

The procedure of Kalman filter algorithm is showed by
Algorithm 1.

Algorithm 1 Kalman Filter

1: Set the parameters Φ, H , Q and R;
2: Initialize the x̂0, P0, k = 1;
3: while (need to estimate the system state) do
4: Time Update:

x̂−

k = Φx̂k−1;

P−

k = ΦPk−1Φ
T +Q;

5: Get the measurement zk;
6: Measurement Update:

Kk = P−

k HT (HP−

k HT +R)−1;
x̂k = x̂−

k +Kk(zk −Hx̂−

k );
Pk = (I −KkH)P−

k ;
7: k = k + 1;
8: end while

2.2 Parameter Optimization of Kalman Filter
Kalman filter is a very powerful method to estimate the

system state. But it only works well in the condition that
the parameters Φ, H , Q and R in the equations (6)-(10) are
precisely known. Inaccurate values of these parameters will
reduce the filtering accuracy, increase the filtering error, and
even cause filter divergence. There have been many works
on optimizing these parameters.
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We can get the Φ and H by building accurate system and
measurement models. The value of Q is generally stable in
a system, although there is no direct method to get it. The
most difficult, and also important is to estimate the value
of R, because of its variability. For example in the naviga-
tion system, one very important application of Kalman filter,
once the external environment of the target which is being
navigated has changed, the value of R will change immedi-
ately. So a multi-objective memetic algorithm (MOMA) is
used in this paper to optimize the parameter R of Kalman
filter. It can minimize two objective functions simultaneous-
ly, compared to the other methods which can just minimize
only one objective function each time.

2.3 Selection of Objective Functions
In the optimization of parameter R, generally there are

two objectives. The first one is to decrease the root mean
square error (RMSE) of filtering. We use the mean of resid-
ual vectors as the first objective function [23]. For Kalman
filter, at filter step k, the residual εk is defined as follows:

εk = z̃k = zk − ẑ−k = zk −Hx̂−

k (11)

where zk is the measurement at step k, H is the measure-
ment matrix, x̂−

k is the predictive value of state vector xk,
and ẑ−k defined by Hx̂−

k is the estimation of measurement
zk. From the definition we can see that the εk includes the
new information from measurement zk. From equation (9),
if εk = 0, then the predictive value of state vector xk is the
estimation value. That means the estimation at step k−1 is
very accurate. So the residual εk symbolizes the filter error
in certain extend. Then we can define the first objective
function as follows:

f1(x) =
1

S

S∑
k=1

εTk εk (12)

where S is the total step number of filtering.
The second objective is to estimate the actual value of R.

Based on covariance-matching techniques [24], we designed
the second objective function. The basic idea behind the
covariance-matching techniques is to make the actual value
of the covariance of the residual εk consistent with its theo-
retical value. From Kalman filter equations, the theoretical
covariance of residual εk is

Ct = HP−

k HT +R. (13)

The actual covariance of residual εk is approximated by its
sample covariance

Ca =
1

M

M∑
i=1

εiε
T
i (14)

where M is the window size which is chosen empirically to
give some statistical smoothing. When filtering, if the value
of R is accurate, Ct and Ca are basically the same. So we
can define the second objective function based on the degree
of mismatching between Ct and Ca:

f2(x) =|
trace(Ca)

trace(Ct)
− 1 | (15)

where trace(•) represents calculating the trace of the matrix
in the bracket. The closer the estimation of parameter R to
its actual value, the closer the value of f2(x) to zero.

The function f1(x) defined in equation (12) and the func-
tion f2(x) defined in equation (15) are the objective func-
tions we used in the multi-objective memetic algorithm to
optimize the parameter R of Kalman filter.

3. OPTIMIZATION OF R BASED ON MUL-

TI-OBJECTIVE MEMETIC ALGORITH-

M

3.1 Multi-Objective Optimization Model
Without loss of the generality, a multi-objective optimiza-

tion problem with a set of m decision variables, a set of n
constrains and a set of k objective functions can be described
as follow:

minimize : y = f(x) = (f1(x), ..., fk(x))
subject to : e(x) = (e1(x), ..., en(x)) ≤ 0

where x = (x1, x2, ..., xm) ∈ D is the decision vector, y =
(y1, y2, ..., yk) ∈ Y is the objective vector, D denotes as the
decision space, and Y means the objective space. Generally,
for each decision vector, it satisfies the constrain functions.
In most instances, there are contradictions between objec-
tive functions. The reduction of one objective function may
cause a increase of another objective function. And gener-
ally, it’s impossible to make all the objective functions to
reach the optimal value.

In a certain sense, the problem of optimizing parame-
ter R is a kind of multi-objective optimization problem.
R is a positive definite matrix, so only the diagonal ele-
ments need to be optimized. Assume R is a m-dimensional
square matrix, so the decision vector can be assumed as
x = (r11, r22, ..., rmm), where rii(i = 1, . . . ,m) is the i-th di-
agonal element of matrix R. Then this optimization problem
can be abstracted to a multi-objective optimization problem:

minimize : y = f(x) = (f1(x), f2(x))
subject to : minR ≤ rii ≤ maxR, i = 1, 2, . . . ,m

where : x = (r11, r22, ..., rmm)

where minR and maxR are the lower limit and upper limit
to the elements of R, objective functions f1(x) and f2(x) are
defined in equation (12) and (15). In general, one possible
value of R can’t make both the f1(x) and f2(x) to reach the
minimum.

3.2 Memetic Algorithm
Memetic algorithm (MA), inspired by both Darwinian

principle of natural evolution and Dawkins’ notion of cul-
tural evolution, is a metaheuristic search method [25]. In
general, MA can be viewed as a combination of a population-
based global optimization technique and a individual-based
local heuristic search method, which improves the capabil-
ity of global optimization algorithms like GA for finding
optimal solutions in the optimization problems with high-
er convergence speed. Like GA, memetic algorithm is al-
so a population-based algorithm. Its unique aspect is that
the individuals are promoted to get some experiences from
the others in the population by a local search process be-
tween traditional evolutionary process [25]. In some prob-
lem domains, MA has been shown to be both more efficient
and more effective than traditional evolutionary algorithm
[26]. In a MA, the initial population is generated randomly,
and then the fitness of every individual is improved by local
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search. In each generation, original genetic operators, such
as selection, crossover and mutation, are applied like in the
GA, and then, local search is executed again to improve the
population quality. Algorithm 2 explains the procedure of a
simple single-objective memetic algorithm:

Algorithm 2 Simple Memetic Algorithm

1: t:=0;
2: P (t):=initPop();
3: P (t):=localSearch(P (t));
4: evaluateFitness(P (t));
5: while (stoping criteria not met) do

6: P
′

(t):=selectForVariation(P (t));

7: P
′

(t):=recombine(P
′

(t));

8: P
′

(t):=mutate(P
′

(t));

9: P
′

(t):=localSearch(P
′

(t));

10: evaluateFitness(P
′

(t));

11: P (t+ 1):=selectNewPop(P (t),P
′

(t));
12: t:=t+1;
13: end while

3.3 Multi-Objective Memetic Algorithm (M-
OMA)

In the optimization of parameter R, when the two ob-
jective functions are minimized simultaneously, we hope to
reduce the filtering error as much as we can. So the objective
function f1(x) should get more attention in the optimization
process. Multi-objective memetic algorithm (MOMA) is a
perfect choice for this purpose. Using MOMA, we can min-
imize the function f1(x) and f2(x) simultaneously at the
global search, and then only minimize f1(x) at the local
search. The MOMA we used in this paper is a combination
of NSGA-II and Simulated Annealing (SA). NSGA-II is used
for global search and SA is used for local search.

Proposed by Prof. Kalyanmoy Deb [21], NSGA-II is a very
famous algorithm for solving multi-objective optimization
problems. In the fast non-dominated sort of NSGA-II, the
individuals are sorted into each front. The individuals in
the first front are completely non-dominant and the ones
in the second front are dominated by the individuals in the
first front only and the front goes so on. Each individual
are assigned rank values as the fitness. The rank value of
the individuals in first front is 1 and the rank value of the
individuals in second front is 2 and so on. Besides of the rank
value, crowding distance is calculated for each individual to
measure how close it is to its neighbors. The mechanism
of crowding distance is utilized to improve the diversity of
the solutions. In each generation, tournament selection is
used to select parents based on the rank value and crowding
distance. And then, crossover and mutation operators are
utilized on parents to generate offsprings. At last, merger
the parents and offsprings, and select the best N individuals
based on rank value and crowding distance to generate the
population for the next generation, where N is the size of
population. The pseudo-code of MOMA based on NSGA-II
is showed by Algorithm 3.

Simulated Annealing (SA) [22] is utilized in the MOMA
proposed for local search. SA is a generic probabilistic meta-
heuristic for the global optimization problem. It comes from
annealing in metallurgy, a approach to heat and control cool-
ing of a material to increase the size of its crystals and reduce

Algorithm 3 Multi-Objective Memetic Algorithm

1: Initialize the population Pop randomly;
2: Local search by Simulated Annealing on Pop;
3: Sort Pop by non-domination sort and crowding distance;
4: while (stopping criteria not met) do
5: Generate parents P ← tournament selection on Pop;
6: Generate offspring O ← genetic operator on P ;
7: Local search by Simulated Annealing on O every five

generations;
8: Generate intermediate population I ← P ∪ O;
9: Sort I by non-domination sort and crowding dis-

tance;
10: Pop ← select previous sizePop individuals of I ;
11: end while

their defects. It has been proven that, for any given finite
problem, the probability that the SA get the global optimal
solution approaches 1 if there is enough annealing time. The
SA used in MOMA is showed by Algorithm 4.

Algorithm 4 Simulated Annealing on Pop

1: Initialize T0 = 10, kmax = 8, ratio = 0.9;
2: for i = 1 to sizePop× 0.1 do

3: x ← Pop(i), T ← 106, k ← 0;
4: while k < kmax and T > T0 do

5: x
′

← neighbour(x);

6: Δf1 ← f1(x
′

)− f1(x),Δf2 ← f2(x
′

)− f2(x);
7: if Δf1 < 0 and Δf2 < 0 then

8: x ← x,;
9: end if

10: if Δf1 < 0 and Δf2 ≥ 0 then

11: if e−
Δf2
T ≥ rand(1) then

12: x ← x,;
13: end if

14: end if

15: k ← k + 1, T ← T ∗ ratio;
16: end while

17: end for

In MOMA, the balance of global search and local search is
a very important issue [27]. Considering both the simplicity
and the balance of global search and local search, the SA
is applied to only the 10 percent best individuals of each
generation after every 5 generations of global search.

3.4 Optimization of R based on MOMA
The MOMA is an iterative algorithm and it spends a lot

of time for running. However, Kalman filter is a real-time
approach, and it has high demands on the running time.
So the optimization of parameter R using MOMA must be
in offline mode. That means the parameter R is optimized
by MOMA at first, and then the optimal value is used in a
regular Kalman filter.

The schematics of optimizing R in one generation is de-
scribed by Figure. 1. In Figure. 1, there are N Kalman
filters, representing the N individuals in a population with
different values of parameter R. Using their own parame-
ter R, the filters run on the historical data, and evaluate
the objective functions f1 and f2 based on the filter results.
Then the generation begins, including non-dominated sort,
calculating crowding distance, selection, crossover, mutation
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and local search. After the generation, the old values of R
are updated by new values. Repeat this process until the
stopping criteria is reached. At last, N optimal values of R
are obtained.

Figure 1: The process of optimizing parameter R in

one generation.

4. SIMULATION EXPERIMENTS
In this section, simulation experiments have been carried

out to compare the performance of MOMA-Kalman, whose
parameter R is optimized by multi-objective memetic algo-
rithm, with the other variants of Kalman filter.

4.1 Simulation Model Based on Target Track-
ing

The experiments are based on a simulation of rocket tar-
get tracking. Assume a rocket is doing uniformly accelerated
motion escaping from the Earth. Its acceleration is 20m/s2.
The fluctuations of engine thrust always cause some fluctu-
ations of the acceleration. A radar on the ground is tracking
the rocket and it gives the observation of the distance of the
rocket from the ground every second. The observations are
noisy. Now we need to estimate the displacement, velocity
and acceleration of the rocket every second using Kalman
filter.

So the system state at k-th second is xk = [dk, vk, ak]
T ,

where dk indicates the displacement of the rocket at k-th
second, vk indicates the velocity and ak indicates the ac-
celeration. According to the physical model of uniformly
accelerated motion, the system model is

xk =

⎡
⎣ 1 1 0.5

0 1 1
0 0 1

⎤
⎦× xk−1 + ωk−1 (16)

where ωk−1 is zero-mean Gaussian white noise with covari-
ance matrix Q = diag([0, 0, 0.1]) caused by engine thrust
fluctuations. The measurement model is

zk = [1 0 0]× xk + νk (17)

where zk is the observation of the rocket displacement at
k-th second and νk is the measurement noise with covari-
ance matrix R. The initial conditions in the simulation
are assumed to be x0 = [1000, 50, 20]T , x̂0 = [990, 0, 0]T

and the initial error covariance matrix is given by P0 =

diag([30, 20, 10]). The rocket state is estimated by Kalman
filter from 0 to 200s.

4.2 Experiment Results and Analysis
In practice, the value of R is unknown. Based on the

measurement information, MOMA-Kalman uses the multi-
objective memetic algorithm we proposed in this paper to
optimize the R at first, and then uses the optimal value into
regular Kalman filter to estimate the state of the rocket. Set
the population size of MOMA is 20, and the pareto front of
optimizing the parameter R we get is showed in Figure. 2.
From Figure. 2 we can see that, the MOMA well minimized
the objective function f1(x) and f2(x) simultaneously.

6.915 6.92 6.925 6.93 6.935 6.94 6.945 6.95 6.955
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

f1

f
2

Figure 2: The pareto front of R obtained by MOMA.

The comparison results of the MOMA-Kalman with other
Kalman filter algorithms on root mean square error(RMSE)
of filtering are listed in Table 1, where Regular-Kalman
represents the regular Kalman filter algorithm, SageHusa-
Kalman [5] is an adaptive Kalman filter based on maximum
a posteriori probability estimation, and Fuzzy-Kalman [6] is
an adaptive Kalman filter based on fuzzy logic. In MOMA-
Kalman, the initial value of R is optimized by MOMA, and
in NSGA-Kalman, the initial value of R is optimized by
NSGA-II. Each Kalman filter algorithm run 30 times, and
each time Regular-Kalman, SageHusa-Kalman and Fuzzy-
Kalman share a same initial value of R which is selected
randomly, each time MOMA-Kalman and NSGA-Kalman
stop the optimization until 500 times of evaluation. In the
experiment, MOMA-Kalman and NSGA-Kalman chose the
first individual of the pareto set as the optimal value of pa-
rameter R. However, in practical applications, the optimal
value can be chosen by actual demand. If the first objec-
tive function is paid more attention on than the second one,
then the individual which has the smallest value of f1(x)
can be chosen as the final optimal value of R. Conversely,
if the second objective function is paid more attention on,
then the individual which has the smallest value of f2(x) is
chosen.

In Table 1, the smallest error of each time is marked in
bold. It is clear that, MOMA-Kalman got the smallest error
25 times in comparison. It has been proven that the method
of optimizing the parameter R of Kalman filter by MOMA
is very effective.
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Table 1: The comparison results on root mean square error.

Run time Regular-Kalman SageHusa-Kalman Fuzzy-Kalman NSGA-Kalman MOMA-Kalman

1 6.1378 6.3661 6.1053 5.2829 5.2384

2 5.8159 6.4088 5.7881 5.4019 5.2855

3 5.8083 6.4101 5.7809 5.2729 5.2384

4 7.0481 6.3114 7.0048 5.2854 5.2854

5 5.9855 6.3841 5.9533 5.2384 5.2384

6 5.9878 6.3838 5.9555 5.6242 5.2384

7 6.6822 6.3250 6.6350 5.2851 5.2384

8 6.4088 6.3418 6.3734 5.2854 5.2855

9 5.7981 6.4117 5.7711 5.2895 5.2384

10 7.1010 6.3101 7.0559 5.2854 5.2854

11 7.4249 6.3052 7.3691 5.2384 5.2384

12 6.8134 6.3191 6.7778 5.2854 5.2854

13 5.3235 6.5312 5.2737 5.2853 5.2854

14 6.0743 6.3732 6.0437 5.3629 5.2863

15 6.2531 6.3547 6.2176 5.3003 5.2851

16 6.9887 6.3130 6.9473 5.2855 5.2854

17 6.4267 6.3405 6.3906 5.3888 5.2384

18 5.2686 6.6102 5.1176 5.2855 5.2854

19 7.2080 6.3079 7.1595 5.3271 5.2384

20 6.8654 6.3171 6.8281 5.2384 5.2384

21 5.4331 6.6228 5.2015 5.2384 5.2384

22 7.4014 6.3054 7.3463 5.2384 5.2384

23 6.3580 6.3458 6.3185 5.3163 5.2384

24 5.3481 6.5214 5.3046 5.2869 5.2384

25 6.0218 6.3795 5.9930 5.2853 5.2854

26 7.1491 6.3090 7.1025 5.2384 5.2384

27 5.6307 6.4432 5.5969 5.2839 5.2384

28 7.0224 6.3121 6.9799 5.2384 5.2384

29 7.0324 6.3118 6.9896 5.2384 5.2384

30 7.5263 6.3046 7.4673 5.2602 5.2383

mean 6.4114 6.3760 6.3616 5.2958 5.2556

variance 4.777×10−1 7.8×10−3 4.940×10−1 5.6×10−3 5.3250×10-4

The comparison results of MOMA-Kalman and Regular-
Kalman at 22-th run are visualized in Figure. 3, with the
x-coordinate being the filter time from 0 to 200s and y-
coordinate being filter error. At k-th second, the filter error
is defined by

Filter error =

√
(d̂k − dk)2 + (v̂k − vk)2 + (âk − ak)2

where dk, vk and ak are the real value of the rocket displace-
ment, velocity and acceleration at k-th second, d̂k, v̂k and
âk are the estimated value obtained by Kalman filter. From
Figure. 3, it is obvious that the MOMA-Kalman has a much
greater convergence speed than Regular-Kalman.

The comparison results on estimating the real value of
rocket displacement, velocity and acceleration are also shown
in Figure. 4, Figure. 5 and Figure. 6. From these figures we
can see, the estimates of MOMA-Kalman converge to the re-
al value much faster than the estimates of Regular-Kalman.

5. CONCLUSIONS
A new method to optimize the measurement noise covari-

ance matrix R of Kalman filter based on multi-objective
memetic algorithm (MOMA) is developed in this paper.
Compared with traditional optimization methods of Kalman
filter, which only focus on one objective function in the pro-
cess of optimization, this new method can optimize multiple
objective functions simultaneously. The experimental re-
sults based on a simulation of target tracking demonstrated
its effectiveness. The Kalman filter optimized by MOMA,
namely MOMA-Kalman, can get much smaller filtering er-
ror than regular Kalman filter, SageHusa-Kalman, Fuzzy-
Kalman and NSGA-Kalman.
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