
Parameter-less Population Pyramid

Brian W. Goldman
BEACON Center for the Study of Evolution in

Action
Michigan State University, U.S.A.
brianwgoldman@acm.org

William F. Punch
BEACON Center for the Study of Evolution in

Action
Michigan State University, U.S.A.

punch@msu.edu

ABSTRACT
Real world applications of evolutionary techniques are often
hindered by the need to determine problem specific param-
eter settings. While some previous methods have reduced
or removed the need for parameter tuning, many do so by
trading efficiency for general applicability. The Parameter-
less Population Pyramid (P3) is an evolutionary technique
that requires no parameters and is still broadly effective.
P3 strikes a balance between continuous integration of di-
versity and exploitative elitist operators, allowing it to solve
easy problems quickly and hard problems eventually. When
compared with three optimally tuned, state of the art opti-
mization techniques, P3 always finds the optimum at least
a constant factor faster across four benchmarks (Deceptive
Trap, Deceptive Step Trap, HIFF, Rastrigin). More impor-
tantly, on three randomized benchmarks (NK Landscapes,
Ising Spin Glasses, MAX-SAT), P3 has a lower order of com-
putational complexity as measured by evaluations. We also
provide outlines for expected runtime analysis of P3, set-
ting the stage for future theory based conclusions. Based on
over 1 trillion evaluations, our results suggest P3 has wide
applicability to a broad class of problems.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search

General Terms
Algorithms, Performance, Experimentation

Keywords
Linkage Learning; Local Search; Parameter-less

1. INTRODUCTION
Providing a good solution in reasonable time to a broad

class of real world black-box problems is a fundamental goal

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO’14, July 12–16, 2014, Vancouver, BC, Canada.
Copyright 2014 ACM 978-1-4503-2662-9/14/07 ...$15.00.
http://dx.doi.org/10.1145/2576768.2598350.

of evolutionary computation. Achieving this goal requires
an optimizer to make assumptions about the nature of the
problem it is solving as no optimizer can solve all problems
equally well [15]. Many genetic algorithms (GAs) introduce
evolutionary parameters which provide user control of search
assumptions. These parameters can have enormous impact
on search efficiency [3] and can have non-obvious optimal
settings which require time-consuming tuning to discover [5].
When applied to black-box problems with non-trivial evalua-
tion functions, the tuning process can be intractable, forcing
users to rely on stock values or attempt a small number of
test values.

The problem of parameter tuning has encouraged work to
remove parameters from user control in an effort to improve
out-of-the-box GA quality. In an early example, a crossover-
based GA was devised which used concurrent racing popula-
tions which removed all user specified parameters [7]. Popu-
lation racing has also been paired with more advanced evo-
lutionary system, such as Hierarchical Bayesian Optimiza-
tion [10]. Without the need to set a population size, racing
ensures the GA will take no more than a logarithmic factor
increase in evaluations beyond optimal. While experimental
evidence suggests racing is only a constant factor loss, this
method explicitly trades efficiency for applicability.

In this work we shall introduce the Parameter-less Pop-
ulation Pyramid (P3). P3 is an iterative method for con-
structing a collection of populations that requires no user
parameters. It leverages entropy based linkage detection to
learn how to efficiently mix solutions without problem spe-
cific information beyond the evaluation function. Perhaps
most importantly, unlike other parameter-less techniques
it experimentally appears to be at least a constant factor
improvement over comparable, optimally configured, opti-
mization methods.

2. THE P3 ALGORITHM
Unlike many GA techniques, P3 does not have a single

population of solutions. Instead P3 maintains a pyramid-like
structure, such that each level of the pyramid has a popu-
lation of solutions, with each level representing something
akin to different generations of evolution. Figure 1 provides
a high level summary of how P3 iteratively constructs these
populations and utilizes them to improve randomly gener-
ated solutions through hill climbing and crossover. While
P3 can be applied to any discrete value representation, we
will focus on the binary domain here for simplicity.

785

procedure Iterate-P3
Create random solution
Apply hill climber (Section 2.1)
if solution /∈ hashset then

Add solution to P0 (Section 2.2)
Add solution to hashset

for all Pi ∈ pyramid do
Mix solution with Pi (Section 2.3)
if solution’s fitness has improved then

if solution /∈ hashset then
Add solution to Pi+1

Add solution to hashset

Figure 1: One iteration of P3 optimization. pyramid
is an ordered set of populations and hashset is a set
of all solutions in pyramid.

2.1 Hill Climber
We use the First Improvement Hill Climber (FIHC),1 which

acts as follows. Consider all gene loci xi in a random order.
Evaluate the solution using all possible values of xi. If any
alternative value is a strict fitness improvement over the
original value for xi, replace xi with the improved value. It-
eration of the process continues until no such change results
in a strict fitness improvement.

To avoid wasting evaluations, FIHC keeps track of all loci
tested since the last change was made to the solution. If the
algorithm returns to the same loci without any changes, it
moves on to the next loci without performing any evalua-
tions.

FIHC solves all linear functions in O(N) time, where N
is the number of genes. This is in contrast to methods like
Steepest Ascent Hill Climber [1, 4] which require O(N2)
as changes are only accepted after all neighbor solutions are
evaluated. In general, FIHC is designed to find optima using
a minimum number of evaluations. Furthermore, because
FIHC tests loci in a random order it does not cause any
positional bias to the search.

2.2 Pyramid
As mentioned, P3 maintains a pyramid like structure of

populations with more optimized solutions in higher levels.
More specifically, a solution’s level is one higher than its
highest parent, similar to the layering done in [8].

The levels represent disjoint sets of unique solutions, such
that ∀i,j∈P,i�=jPi ∩ Pj = ∅. This relationship is maintained
constructively, such that new solutions can only be added
to a level if they do not exist in any level of the pyramid.
This uniqueness check can be achieved in constant time by
maintaining a hash of all solutions in the pyramid.

Along with storing the solutions, each level also main-
tains a table of pairwise gene value frequencies for use by
crossover. This is also built constructively, such that ini-
tially all frequencies are set to 0. Each time a solution is
added to a level, all pairs of loci are queried for their gene
values. The table is then updated, incrementing the count
for each observed pairing. This requires O(N2) operations
(no evaluations) each time a solution is added to a level

1We use the name FIHC for descriptive clarity. This algo-
rithm likely already exists in the literature under various
alternative names.

procedure Cluster-Creation
unmerged← {{0}, {1}, {2}, . . . , {N − 1}}
useful ← unmerged
while |unmerged| > 1 do

Ci, Cj ← minCi,Cj∈unmerged D(Ci, Cj)
unmerged← unmerged− {Ci, Cj}+ {Ci ∪ Cj}
useful ← useful + {Ci ∪ Cj}
if D(Ci, Cj) = 0 then

useful ← useful − {Ci, Cj}
Order useful based on cluster size, smallest first.
Remove largest cluster from useful.
return useful

Figure 2: Algorithm describing how clusters are cre-
ated using Equation 1 for each Pi. unmerged and
useful are ordered sets of sets of gene loci.

of the pyramid, but is constant in the number of solutions
currently in the level.

2.3 Crossover
P3 uses a crossover method derived from that defined for

LTGA [14] (Section 3.2); P3 uses gene value entropy to con-
struct clusters of genes that should have their values con-
served during crossover. There are two steps in defining this
type of crossover: cluster creation and cluster usage.

During cluster creation, P3 creates a binary tree of clus-
ters such that the leaves represent individual gene loci and
each internal node represent the subset of loci created by
joining the subsets encoded in its children. Using the table
of observed frequencies described in Section 2.2, Equation 1
calculates the linkage “distance” between clusters of loci us-
ing the average pairwise entropy, as given in Equation 2.

D(Ci, Cj) =
1

|Ci| · |Cj |
∑

ci∈Ci

∑
cj∈Cj

2− H(Ci) +H(Cj)

H(Ci ∪ Cj)
(1)

H(C) = −
∑
s∈S

pc(s) log(pc(s)) (2)

Figure 2 depicts the process of agglomeratively construct-
ing the linkage tree. Starting with each gene location in
separate clusters, Equation 2 is used to find which Ci and
Cj in unmerged, the set of gene clusters, have the tightest
linkage (minimum distance). These are merged to form a
new cluster Ci ∪ Cj , and the separate pieces are removed
from unmerged while useful tracks all clusters ever created
in the hierarchy. This process iterates until all locations
have been merged into a single cluster. With proper book-
keeping this algorithm will construct the linkage tree from
the frequency table in O(N2) [6].

Not all of the resulting clusters in the linkage tree are
useful for crossover. The most obvious useless cluster is one
that contains all the loci. A crossover that preserves all loci
in a solution cannot create a new individual. We further
remove clusters that are completely contained within their
direct superset, such that if D(Ci, Cj) = 0, Ci and Cj are
not used when performing crossover. D(Ci, Cj) only returns
0 when the loci in Ci perfectly predict the gene values in Cj

and vice versa. From this we can conclude that the relative
settings for those loci should never be disrupted. When used
on particularly small populations this has the potential to
greatly reduce the number of clusters used during crossover.

786

procedure Cluster-Usage
for all Ci ∈ useful do

for all d ∈ shuffled(Pi) do
Copy d’s gene values for Ci into solution
if solution was changed then

if solution’s fitness decreased then
Revert changes

break

Figure 3: Algorithm describing how clusters are
used to perform crossover.

For instance, if |Pi| = 1, no clusters exist. If |Pi| = 2 at most
two clusters exist: one for all genes where the solutions agree
and one for where they disagree.

P3 uses crossover to recombine known information in a
level of the pyramid with a candidate solution as depicted in
Figure 3. For each cluster Ci found by Cluster-Creation,
choose a random donor d from the current level such that d’s
gene values for at least one gene in Ci differs from the can-
didate solution. Copy all of d’s gene values into the solution
and evaluate the new solution. If the fitness of the candidate
has been reduced, revert the candidate’s gene values. It is
important to note that candidate changes are kept in the
case when the fitness is unaffected. This allows crossover to
drift, potentially moving through fitness plateaus.

When choosing a donor, P3 ensures there is at least one
gene value different between the donor and the candidate
solution. This can potentially require up to O(|Cj ||Pi|), but
empirically appears more efficient than allowing donations
that do not change any gene values.

To complete a single crossover event, all of the useful clus-
ters are tested, each requiring at most a single evaluation.
Clusters are tested in smallest first order, with clusters of
equal size ordered randomly. This ensures smaller building
blocks are optimized before large changes are made to the
genome, thus helping preserve diversity. This also helps pre-
vent genetic hitchhikers, which may interfere with entropy
calculations. As cluster building and application ordering
are not dependent on the position of loci in the genome,
this operator introduces no positional bias on search.

2.4 All Together
The pieces of P3 were specifically chosen to provide im-

portant complimentary capabilities. First, the hill climber
provides an efficient tool for discovering pairwise linkage, as
search only ends when no single bit change can be made
which improves fitness. Therefore crossover, which relies on
pairwise linkage, has high quality information to leverage
when determining clusters.

Similarly, by starting from a random position for each new
solution, P3 progressively reduces the chance of spurious
linkage formation due to initialization. Furthermore, these
random restarts provide exploration to balance out the hill
climber and crossover’s extreme exploitation. This also al-
lows the population to grow large enough to contain enough
diversity to solve the problem without having to know the
optimal size beforehand.

Finally, the use of levels allows P3 to perform solution fil-
tering without throwing away information. Once found, a
local optimum is stored indefinitely, preserving both its link-
age and genes for future crossovers. By splitting solutions

into levels, the linkage information and the donated genes
come from similar solution qualities. This prevents noise in
gene linkage which only exists in low quality solutions from
effecting cluster formation for high quality solutions. It also
reduces the chance that optimized solutions will overwrite
newer solutions, preserving search diversity.

P3 makes very weak assumptions about the search land-
scape. In many evolutionary systems the crossover operator
assumes linked genes are collocated in the genome. This re-
quires the user to configure genome structure based on gene
linkage information they are unlikely to have. All of P3’s
operations ignore gene ordering, allowing the user to ignore
that aspect of configuration.

In general, P3 makes two assumptions about the search
landscape: local structure and non uniform gene interdepen-
dence. For the hill climber to be effective, there should be at
least some correlation between a solution’s fitness and the
fitness of its single bit neighborhood. Stated another way,
this assumes that small changes in genotype result in small
changes in phenotype. The non uniform gene interdepen-
dence assumption is required by the crossover operator to
perform clustering. Without this assumption, the clusters
formed by crossover will detect spurious relations. The re-
sulting donation of genes between solutions will be no better
than random modification. Both assumptions are likely to
hold true for real world problems and are similarly assumed
by most evolutionary optimizers.

2.5 Contrasted With The Generational Model
A major advantage of P3’s structure is that it avoids the

need to set a fixed population size. In a generational model,
the diversity contained in the initial population represents
a bottleneck for future generations. This is true because in
most systems, especially on deceptive problems, mutation
rates are too low to create large, multi-gene substructures
after initialization. As such the generational model often
results in a race between decreasing diversity and increasing
fitness.

Premature convergence of a population causes the genera-
tional model to have two termination conditions: out of time
or out of diversity. In the former, if a smaller population size
had been used, less evaluations could have been spent sup-
porting diversity allowing more focus on exploitation. In
the latter, if a larger population size had been used, more
evaluations could have been performed increasing the like-
lihood of improving solution quality. In either case, unless
the population size is correctly set, the generational model
will likely result in waste.

In contrast, P3 has exploited all known information each
time the top of the pyramid is reached; no evaluations are
wasted on unused diversity. Similarly, because P3 does not
throw away previously optimized solutions while adding di-
versity, it avoids waste caused by premature convergence.

2.6 Order of Complexity Per Evaluation
With the exception of crossover, P3 requires no more than

O(N) computations per evaluation, implying it is limited by
the time required to evaluate a solution. In order to perform
crossover, P3 must spend O(N2) operations updating pair-
wise frequencies each time a solution is added to a level of
the pyramid. Similarly, it requires O(N2) time to rebuild the
set of crossover clusters once the frequency table has been
updated. Näıvely, this leads to the algorithm itself requir-

787

ing O(N2) time. However, multiple evaluations can occur
for each time a single individual is added to a population.

Each time a random restart occurs, at minimum N + 1
evaluations are performed. This means each time a solution
is added to P0, at least Ω(N) evaluations must be performed.
This implies that the O(N2) cost of the update to P0 can be
amortized over these evaluations, making this update O(N)
per evaluation.

To cause an update to Pi, all of the crossovers discovered
for Pi−1 must first be applied, each causing their own eval-
uation. If P3 were to näıvely use all crossovers and perform
an evaluation each time, this would cause Ω(N) evaluations.
Again, this would result in O(N) amortized cost to update
Pi. However, Section 2.3 discussed how P3 will ignore some
clusters and will also skip an evaluation if no change to the
solution was made by a cluster. As such we are currently
unable to state conclusively that updating Pi will require
O(N) operations per evaluation. That said, empirically it
appears to be true. Furthermore, it seems counterintuitive
that intentionally wasting evaluations would be considered
beneficial to runtime.

There is one more operation in P3 that may not scale
linearly with genome size per evaluation: finding a non-
identical donor. When performing crossover P3 iteratively
searches a population for a random donor with genes that
differ from the current solution for the current crossover clus-
ter. In the worst case, this operation could require |Cj ||Pi|,
where |Cj | is the number of genes in the crossover and |Pi|
is the number of solutions in the population. However, |Pi|
grows very slowly. Also, in empirical evaluation, P3’s wall
clock time per evaluation appears to scale linearly with prob-
lem size.

3. COMPARISON ALGORITHMS

3.1 Random Restart First Improvement Hill
Climber

As P3 utilizes a hill climber to perform optimization, it is
necessary to show P3’s added complexity is able to outper-
form an optimizer that uses a hill climber alone. Therefore
as the first comparison we define a complete optimization
method based on the First Improvement Hill Climber from
Section 2.1. This definition is extended to match P3’s style
of restarting. Whenever the hill climber obtains a solution
that cannot be improved using a single bit flip, a new solu-
tion is randomly generated and optimized.

If P3’s quality relies solely on starting at random points
and applying FIHC, this comparison algorithm should per-
form even better than P3. Like P3, the FHIC-alone algo-
rithm is parameter-less, makes no assumptions about gene
ordering, and will find the global optimum given a sufficient
(potentially exponential) number of evaluations.

3.2 Linkage Tree Genetic Algorithm
The closest relative to P3 in the existing literature is the

Linkage Tree Genetic Algorithm (LTGA). There have been
a number of different variations proposed to LTGA since its
original publication [13], so for comparison we have chosen to
use the variant described in the most recent publication [14].
This algorithm is also the current state of the art, outper-
forming other algorithms in black-box optimization across
numerous benchmarks.

LTGA works by iteratively improving a population of so-
lutions in a generational manner. Each generation, half of
the solutions (chosen using binary tournament selection) are
used to construct a linkage tree just as described in Sec-
tion 2.3. Each solution in the population is then crossed
with the entire population using that linkage tree, with the
results put into the next generation. This process continues
until the population fails to change between generations, sig-
naling convergence.

Unlike P3, this variant of LTGA does not make use of a
hill climber, and there is evidence that doing so results in de-
creased efficiency [1]. LTGA applies clusters in least linked
first order whereas P3 uses smallest first. Also, LTGA does
not search for donors until one containing different genes is
found. Instead, if the donated genes are identical, it sim-
ply skips the evaluation. LTGA requires a population size
parameter, maintains a fixed population size across genera-
tions, and does not prevent duplicate individuals in a pop-
ulation. LTGA does not add new genetic information after
initialization, meaning that if required diversity is not con-
tained in the original population or lost in future genera-
tions, LTGA will fail to find the global optimum.

To ensure LTGA is able to find the global optimum quickly,
we use the bisection method [4] to minimally set LTGA’s
population size parameter. To be considered successful, a
population size must result in 100 runs without premature
convergence. According to the Rule of Three [9], this bounds
LTGA’s failure rate to less than 3

100+1
≈ 3% with 95% con-

fidence. Note that runs used in setting the population are
considered testing and were not used during analysis. On
randomized problems, training was performed on a disjoint
set of problem instances.

Other variants of LTGA have more closely resembled P3 [4],
but as those variants do not appear to be in active use, we
did not use them for comparison. However, no LTGA vari-
ant has removed the population size parameter or fully ad-
dressed the problem of premature convergence. There have
also been other model based optimization techniques that
use few to no parameters. Specifically LO-LIMD [11] uses a
population size of one and a parameter free algorithm to per-
form optimization. It relies on the existence of completely
separable subproblems and noise free evaluation in order to
determine if two genes are linked through perturbation of
their values. While effective on this class of problems, most
real world problems do not fall into this category.

3.3 (1 + (λ,λ))

As a final comparison we chose the (1+(λ, λ)) algorithm [2]
which is currently the best theory based crossover method.
Unlike P3 and LTGA, (1 + (λ, λ)) does not use a popula-
tion of solutions or any model building to determine prob-
lem variable linkage. Instead it uses mutation to produce λ
offspring, selecting the best to recombine with the original
parent to produce λ more offspring using uniform crossover.
In the original work, a method for controlling the value of
λ is provided based on offspring success, meaning there are
no parameters to be set in this algorithm.

In order to make (1+(λ, λ)) a viable method of optimizing
problems with multiple local optima, we modified the orig-
inal algorithm. Primarily, if during search λ ≥ N , search is
restarted from a random individual with λ = 1. This is done
because when λ ≥ N the mutation rate is greater than or
equal to 100%, nullifying search. Furthermore, this point is

788

only reached when the algorithm has stalled for a significant
number of generations.

We also made minor modifications to improve selection
and to prevent wasting evaluations, as follows. If the best
offspring produced in a generation is a mutant offspring,
select that over any of those produced using crossover. If
there is a fitness tie between the best offspring in a gener-
ation, select the one with the maximum hamming distance
to the parent. This encourages drift over plateaus. While
the original paper discusses a “mod” version of the λ control
strategy for how to handle when offspring of equal fitness
are produced, we found this conflicted with our method of
restarting. As such we use the original control strategy.
Finally, if an offspring produced by crossover has identical
genes to either of its parents, it is not evaluated.

4. TEST PROBLEMS
All four of our optimization techniques share some inter-

esting properties for problem equivalence. All are fitness
scale invariant, in that changing the fitness values without
changing the relation between solution fitnesses will not af-
fect search. None of the methods have a bias toward creat-
ing specific gene values, in that XORing all solutions with
a fixed string before evaluation will not affect search speed.
All of the methods are gene order independent, in that the
locations of genes in the genome can be shuffled without
effecting search. Combined, these features mean that tests
on apparently simple problems can be indicative of search
behavior on a large class of actually complex problems.

In choosing test problems, we decided to use only bench-
marks with knowable global optimum. This allows us to
measure how many evaluations each method requires to con-
verge to the global optimum, as opposed to just the highest
fitness reached. This is advantageous as three of the four al-
gorithms have no hard termination condition. The remain-
ing algorithm, LTGA, uses a population parameter which
can be increased to slow convergence while simultaneously
increasing the fitness reachable before convergence. There-
fore it is difficult to say how and when to declare any of the
techniques converged unless the global optimum is found.

4.1 Single Instance Problems
Well defined test problem landscapes can help when per-

forming exact analysis of algorithms. These problems can be
thought of as testing the edge cases of optimizers, presenting
them with unnatural but interesting problem features.

The classic example for this kind of test is the Deceptive
Trap problem. For this benchmark the genome is broken up
into non-overlapping “traps” of k genes, with the fitness of
each trap given by Equation 3.

trap(t) =

{
k − 1− t, t < k

k, t = k
(3)

In this equation t represents the sum of gene values in the
trap. For each trap there is one local optimum (all bits set
to 0) and one global optimum (all bits set to 1). We chose to
use a trap size of k = 7. This problem requires exponential
time to solve unless there is some method to effectively move
complete traps between solutions, making this an excellent
crossover test problem.

However, when using a hill climber and linkage learn-
ing, the Deceptive Trap problem may be trivially solved [4].
Thus the more difficult Deceptive Step Trap problem was

defined, and is given in Equation 4.

step trap(t) =

⌊
(k − s) (mod s) + trap(t)

s

⌋
(4)

This problem leverages the original Deceptive Trap problem
definition, with the addition of fitness plateaus of config-
urable size s. This creates an enormous number of local
optima and makes detection of linkages much more chal-
lenging. We chose to use a trap size of k = 7 with plateaus
of size s = 2.

While both of these problems have difficult to solve sub-
problems, the non-overlapping nature of the solutions may
not capture challenging aspects of real world problem solv-
ing. Therefore the Hierarchical If and only If (HIFF) prob-
lem is often used to test an algorithm’s ability to handle
these characteristics [14]. In this problem the genome is
broken up hierarchically into a complete binary tree, with
each gene representing a leaf, and each internal node repre-
senting the union between all genes in that node’s subtree.
A node in the tree contributes to the fitness only if all of the
genes in its subset have the same value (IE are all 0 or are
all 1). The amount contributed is equal to the number of
bits in the subset. As a result this problem involves creating
larger and larger blocks of single value runs which only score
if the entire block is optimized.

Our final single instance problem is borrowed from the
real valued optimization domain. The Discretized Rastri-
gin problem uses the standard Rastrigin evaluation function
(Equation 5).

An+
n∑

i=1

[
x2
i −A cos(2πxi)

] ∀x ∈ [−5.12, 5.12] (5)

This function creates a highly multimodal landscape which
is completely separable and has a single global optimum.
In order to apply our algorithms to this complex problem,
we discretized the representation using 10 bit gray coded
numbers evenly distributed on the range [−5.12, 5.12).

4.2 Randomly Generated Problem Classes
By enforcing only certain characteristics of a search space

while allowing others to be generated randomly, we can
perform tests on classes of problems instead of specific in-
stances. This can improve the generality of results as ex-
periments then predict the expected quality over the entire
class. Unlike single instance problems, the challenge with
randomly generated problems is often how to know when
the global optimum is reached.

NK landscapes define a class of problems such that the fit-
ness of a single gene’s value is dependent on k other genes in
the genome. Finding the solution which maximized fitness
on an arbitrary NK landscape requires exponential time,
and are therefore a good candidate for heuristic techniques.
Nearest Neighbor NK landscapes are a subset of NK land-
scapes such that each gene is dependent on the k genes fol-
lowing it in the genome. The advantage of this subset is
that they can be solved in polynomial time [16]. For our ex-
periments we used wrapping neighborhoods, such that genes
near the end of the genome depend on genes at the start of
the genome. We chose to set k = 5.

Ising Spin Glasses are another large class of NP-Hard
problems: Given a graph describing the interactions between
vertices, set the signs of all vertices to minimize interactions.

789

Similar to NK landscapes, there is a polynomially solvable
subset of Ising problems known as 2D±J Ising Spin Glasses.
This subset restricts graph interactions to a toroidal two di-
mensional grid with edge weights of {−1,+1}. This subset
can be solved in polynomial time [12], and there are existing
tools for solving arbitrary instances.2

Our final class is a subset of the Maximum Satisfiabil-
ity (MAX-SAT) problem. This problem consists of a series
of disjunctive clauses, such that each clause contains three
problem variables, some of which are negated. While MAX-
SAT requires exponential time to solve, we have devised a
method of generating only satisfiable instances. First, a ran-
dom target solution is generated. For each clause, set the
signs of each term ensuring the target solution satisfies that
clause. To ensure there is no bias to term signs in the gener-
ated problem, there is a 1

6
probability all clause signs match

the target, a 1
6

probability two of the three signs match,

and a 4
6
probability only one sign matches. Note that it’s

possible for there to be other solutions that also satisfy all
clauses. We chose the standard clause to variable ratio of
r = 4.27.

5. EXPERIMENTAL RESULTS
In total, our experiments performed 100 runs of each opti-

mization algorithm across 7 benchmark problems, with each
run limited to 100 million evaluations. In performing data
collection, we performed over 150,000 runs, totaling approx-
imately 1.5 trillion evaluations. Of these, approximately
100,000 runs were used to optimally set the population size
of LTGA. Note that these runs are considered a training
phase, and therefore all results for LTGA use independent
runs to create a testing phase. This was the only algorithm
that received tuning. As such, LTGA should have a signif-
icant advantage over the others in that it has pre-learned
the correct population size. All of the code used to perform
our experiments as well as individual run results and anal-
ysis scripts are available from our website.3 The results are
summarized in Figure 4 and Table 1.

On all 7 problems, the First Improvement Hill Climber
and the (1 + (λ, λ)) optimizers appear to have a higher
growth complexity than P3. On all of the problems ex-
cept MAX-SAT they are also worse than LTGA. This makes
sense as all of the benchmarks are deceptive in some sense,
and neither of these techniques is designed to handle decep-
tive landscapes. The inability for the iterative hill climber
to quickly solve the problems indicates that P3’s success is
more than just performing local search.

Figure 4 does provide one misleading exception for (1 +
(λ, λ)) on the Deceptive Trap problem, where it appears to
level out at high genome sizes. This is entirely an artifact of
the extremely high variance of this algorithm on this prob-
lem. Note that many of the large problem sizes failed to
find the optimum for the majority of runs (no data element
shown for that size).

The behavior of P3 and LTGA on the four single instance
problems appears very similar, with P3 generally being lower
by a constant factor. This makes sense as LTGA’s tuning
allows it to determine a single population size sufficient to
solve that instance. However, because it uses a fixed popu-

2http://www.informatik.uni-koeln.de/spinglass/
3https://github.com/brianwgoldman/Parameter-less_
Population_Pyramid

Median Confidence Interval
Deceptive Trap, N=805, Speedup=2.936

LTGA 1,807,127 1,805,039 .. 1,808,718
P3 615,503 577,000 .. 653,504

Deceptive Step Trap, N=805, Speedup=1.107
LTGA 14,106,751 14,102,987 .. 14,109,910
P3 12,742,411 11,951,148 .. 13,777,090

HIFF, N=2048, Speedup=3.1278
LTGA 1,847,077 1,845,662 .. 1,848,951
P3 590,519 570,739 .. 608,160

Discretized Rastrigin, N=800, Speedup=1.1854
LTGA 244,086 242,815 .. 245,189
P3 205,908 201,012 .. 210,913

Nearest Neighbor NK, N=600, Speedup=4.408
LTGA 37,620,027 37,244,617 .. 37,990,772
P3 8,533,322 7,315,275 .. 9,481,271

Ising Spin Glass, N=784, Speedup=20.403
LTGA 12,677,619 12,601,917 .. 12,761,798
P3 621,347 568,100 .. 667,236

MAX-SAT, N=60, Speedup=942.50
LTGA 21,130,960 17,576,126 .. 28,314,680
P3 22,420 14,363 .. 29,161

Table 1: Comparison of the median evaluations to
success for LTGA and P3. Includes the 95% boot-
strapped confidence interval around the median, as
well as the speedup factor for P3 over LTGA.

lation size, it must set the that size large enough to ensure
all random initializations of its population contain enough
diversity to reach the global optimum. By comparison, P3 is
able to iteratively increase the population size, stopping once
enough diversity has been generated. As such we would ex-
pect P3 to do better, but not a lot better than tuned LTGA.

When applied to the randomly generated problem classes,
P3 appears to outperform LTGA by an order of complexity.
We suspect some of the cause is LTGA’s need to fix a single
population size. Specifically, during tuning LTGA must set
its population size large enough to solve all of the random
instances of that class. Therefore all instances which could
be solved more efficiently with a smaller population size are
penalized. P3 on the other hand grows with problem dif-
ficulty. As such its median evaluation time better reflects
the median difficulty of a class, whereas LTGA’s evaluation
time reflects the maximum difficulty of a class.

Of the experiments where LTGA was successful in the
median run, it failed to find the optimal solution 109 times,
or 0.8%. By comparison, P3 failed to find the optimum 3
times. All three where on Nearest Neighbor NK, two at size
550 and one at size 600. Also, P3 was able to reliably find
the optimum on Nearest Neighbor NK N = 650, N = 700
and MAX-SAT N = 65, N = 70 while LTGA was not.

Table 1 provides a detailed look at the largest problem
sizes in which LTGA was able to find the global optimum
reliably in less than 100 million evaluations. For each, we
performed a pairwise Mann-Whitney U test, all resulting in
p-values less than 10−22, with the exception of Deceptive
Step Trap which resulted in 0.00025. As such these results
are highly significant. The amount of speedup as compared
to optimally tuned LTGA ranged from 1.1 on Deceptive Step

790

103

104

105

106

107

108

101.5 102 102.5

Deceptive Trap

103

104

105

106

107

108

101.5 102 102.5

Deceptive Step Trap

103

104

105

106

107

101.5 102 102.5 103

HIFF

102

103

104

105

106

107

101 101.5 102 102.5

Discretized Rastrigin

103

104

105

106

107

101 101.5 102 102.5

Nearest Neighbor NK

102

103

104

105

106

107

108

101.5 102 102.5

Ising Spin Glass

102

103

104

105

106

107

101 101.2 101.4 101.6 101.8

MAX−SAT

1+(Lambda Lambda)

Hill Climber

LTGA

P3

Problem Size

M
ed

ia
n

E
va

lu
at

io
ns

 T
o

S
uc

ce
ss

Figure 4: Comparison of the median number of evaluations to reach the global optimum for the four different
optimization methods with respect to problem size. If the median run did not reach the global optimum no
data element is shown. Results given on a log-log scale.

Trap to 942 on MAX-SAT, but in all cases P3 outperformed
LTGA and all other comparison techniques.

As verification that our tuning for LTGA is valid, we refer
to [14], which tested the same variant of LTGA that we
used. In the section on Child Node filtering, they reported
approximately 200,000 mean evaluations to success on the
HIFF problem using N = 512. Our result of 239,365 is
of comparable quality, with P3 solving the same problem
using an average of 92,129 evaluations. The discrepancy is
likely due to the cited work using their tuning runs in their
average.

6. PROMISING THEORY
Due to P3’s persistent integration of random solutions,

it always has a non zero probability of reaching the global
optimum. Because of this (and unlike LTGA), it is possible
to derive expected running times for P3 on a number of
problems. While we do not present a rigorous solution to
any particular problem here, we wish to illuminate potential
avenues for future proofs.

The traditional One Max class, as well as all linear func-
tions, will be trivially solved by the hill climber in at most
N+1 evaluations. These come from the initial evaluation of
the random solution, plus the N evaluations required to test
each gene for improvement. While more difficult to bound,
any unimodal search space without fitness plateaus will be
solved by a single application of the hill climber. Notably
we expect a bound on Leading Ones of O(N2) evaluations.

Unlike many theory based algorithms, we believe P3 can
achieve bounds on more complex and interesting landscapes.
Consider this proof sketch on the Deceptive Trap problem.

Each restart will require at most 2N evaluations to evaluate
the random individual and optimize it to a local optimum
using the hill climber. In P0 each trap in all solutions will
either have all 1s or all 0s. As a result D(Ci, Cj) = 0 if all
Ci and Cj come from the same trap. Therefore all crossover
clusters will move only complete traps between solutions,
and once there is sufficient diversity in the population there
will be a cluster for each individual trap. When perform-
ing a crossover of a single trap there can only be a single
alternative value, meaning if the candidate solution has all
0s the donor must have all 1s, or vice versa. Therefore if
Pi contains the optimum solution for a trap in at least one
individual and has a cluster that identifies that trap, all so-
lutions produced by crossing Pi with a candidate solution
will have the optimized value of that trap. Extending to
all traps we can say that once any Pi has at least one so-
lution with the optimized version of a trap for all traps the
very next crossover with Pi will produce the global optimum.
The only remaining portion of the proof is to determine how
many evaluations are required to reach this point.

Using relaxed requirements, this can likely be extended
to any arbitrary, fully decomposable, problem. Assuming
that for sufficiently large population sizes the entropy be-
tween bits in a single subproblem is lower than the entropy
of bits between subproblems, P3 will construct a cluster ca-
pable of moving exactly one subproblem’s gene values during
crossover. As crossover cannot decrease the fitness of a solu-
tion each crossover will have a greater than zero probability
of improving subproblem solution quality. The probability
of low fitness local optima for a subproblem reaching high
pyramid levels is therefore low, which increases the proba-

791

bility of donors only having high quality solutions to sub-
problems. Combined, this is expected to create a runtime
potentially exponential in subproblem size, but polynomial
in problem size.

This proof sketch can also be extended to the HIFF prob-
lem with minor modifications. Each application of the hill
climber ensures all subproblems of size 2 will be solved. Once
P0 has a sufficient number of solutions it will correctly cross
all subproblems of size 2 independently, such that all future
solutions crossed with P0 will have all subproblems of size 4
solved. While P1 can contain solutions that do not correctly
solve some 2 bit subproblems (added before P0 reached criti-
cal mass), the probability of these solutions being selected as
donors decreases rapidly (solutions added after P0 reaches
critical mass). As such each level effectively serves to op-
timize the next largest subproblem size, leading to conver-
gence using a logarithmic number of levels.

7. CONCLUSIONS AND FUTURE WORK
While many parameter-less techniques trade the poten-

tial quality of optimal tuning for general effectiveness, P3
appears to robustly outperform all of the comparison, state
of the art, techniques across a diverse set of benchmark
problems. This is because, unlike other parameter-less tech-
niques, P3 does not duplicate effort running multiple popula-
tions, nor does it throw away learned information like many
evolutionary techniques. By striking a balance between con-
tinuously adding diversity and the extreme exploitation pro-
vided by the multiple evaluation crossover, P3 is able to solve
easy problems quickly and hard problems eventually without
any problem specific tuning.

Even when compared against LTGA, the closest relative
to P3 in current literature, P3 performs better. This is even
after LTGA was extensively tuned to each problem class, an
unrealistic proposition on any real world problem.

P3’s ability to efficiently optimize not just single problem
instance classes, but randomly generated problem classes,
without parameter tuning makes it an ideal candidate for
real world applications. Its focus on exploiting all known
information before spending time increasing diversity makes
it a great “stop anytime” algorithm.

While not yet complete, we feel that future work will be
able to provide a strong theoretical foundation for the design
of P3.

Currently, our results are limited to single objective, noise-
less, discrete valued problems. In future work we plan to
extend (or show no modification is necessary for) P3 to han-
dle problems from these classes. Doing so will help make P3
more applicable to a wider range of real world problems.

8. REFERENCES
[1] P. A. N. Bosman and D. Thierens. The roles of local

search, model building and optimal mixing in
evolutionary algorithms from a bbo perspective. In
Optimization by building and using probabilistic
models (OBUPM-2011), pages 663–670, Dublin,
Ireland, 12-16 July 2011. ACM.

[2] B. Doerr, C. Doerr, and F. Ebel. Lessons from the
black-box: fast crossover-based genetic algorithms. In
GECCO ’13: Proceeding of the fifteenth annual
conference on Genetic and evolutionary computation
conference, pages 781–788, Amsterdam, The
Netherlands, 6-10 July 2013. ACM.

[3] D. E. Goldberg, K. Deb, and J. H. Clark. Genetic
algorithms, noise, and the sizing of populations.
COMPLEX SYSTEMS, 6:333–362, 1991.

[4] B. W. Goldman and D. R. Tauritz. Linkage tree
genetic algorithms: variants and analysis. In GECCO
’12: Proceedings of the fourteenth international
conference on Genetic and evolutionary computation
conference, pages 625–632, Philadelphia,
Pennsylvania, USA, 7-11 July 2012. ACM.

[5] J. Grefenstette. Optimization of control parameters
for genetic algorithms. IEEE Trans. on Systems, Man,
and Cybernetics, SMC-16(1):122–128, 1986.

[6] I. Gronau and S. Moran. Optimal implementations of
UPGMA and other common clustering algorithms.
Information Processing Letters, 104(6):205–210, 2007.

[7] G. Harik and F. Lobo. A parameter-less genetic
algorithm. Technical Report IlliGAL 99009, Illinois
Genetic Algorithms Laboratory, University of Illinois
at Urbana-Champaign, Urbana, IL, 1999.

[8] G. S. Hornby. ALPS: the age-layered population
structure for reducing the problem of premature
convergence. In GECCO 2006: Proceedings of the 8th
annual conference on Genetic and evolutionary
computation, volume 1, pages 815–822, Seattle,
Washington, USA, 8-12 July 2006. ACM Press.

[9] B. D. Jovanovic and P. S. Levy. A look at the rule of
three. The American Statistician, 51(2):137–139, May
1997.

[10] M. Pelikan and T.-K. Lin. Parameter-less hierarchical
BOA. In Genetic and Evolutionary Computation –
GECCO-2004, Part II, volume 3103 of Lecture Notes
in Computer Science, pages 24–35, Seattle, WA, USA,
26-30 June 2004. Springer-Verlag.

[11] P. Poš́ık and S. Vańıček. Parameter-less local
optimizer with linkage identification for deterministic
order-k decomposable problems. In GECCO ’11:
Proceedings of the 13th annual conference on Genetic
and evolutionary computation, pages 577–584, Dublin,
Ireland, 12-16 July 2011. ACM.

[12] L. Saul and M. Kardar. The 2d±j ising spin glass:
exact partition functions in polynomial time. Nuclear
Physics B, 432(3):641–667, 1994.

[13] D. Thierens. The linkage tree genetic algorithm. In
Parallel Problem Solving from Nature, PPSN XI,
pages 264–273. Springer, 2010.

[14] D. Thierens and P. A. N. Bosman. Hierarchical
problem solving with the linkage tree genetic
algorithm. In GECCO ’13: Proceeding of the fifteenth
annual conference on Genetic and evolutionary
computation conference, pages 877–884, Amsterdam,
The Netherlands, 6-10 July 2013. ACM.

[15] D. H. Wolpert and W. G. Macready. No free lunch
theorems for optimization. IEEE Transactions on
Evolutionary Computation, 1(1):67–82, 1997.

[16] A. H. Wright, R. K. Thompson, and J. Zhang. The
computational complexity of N-K fitness functions.
IEEE Transactions on Evolutionary Computation,
4(4):373–379, Nov. 2000.

792

