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Abstract. In black-box function optimization, we can choose from a
wide variety of heuristic algorithms that are suited to different functions
and computation budgets. Given a particular function to be optimized,
the problem we consider in this paper is how to select the appropriate
algorithm. In general, this problem is studied in the field of algorithm
portfolios; we treat the algorithms as black boxes themselves and consider
online selection (without learning mapping from problem features to best
algorithms a priori and dynamically switching between algorithms during
the optimization run).

We study some approaches to algorithm selection and present two
original selection strategies based on the UCB1 multi-armed bandit pol-
icy applied to unbounded rewards. We benchmark our strategies on the
BBOB workshop reference functions and demonstrate that algorithm
portfolios are beneficial in practice even with some fairly simple strate-
gies, though choosing a good strategy is important.

1 Introduction

Continuous black-box optimization concerns itself with the problem of finding
a minimum value of a real-parameter function that has inaccessible analytical
form. This is a rich area of research that produced many algorithms over the
last 50 years — from the venerable Nelder-Mead simplex algorithm [1] to various
gradient descent methods to population-based methods.

However, if a function is truly “black-box” and its features are hard to predict,
the key question in the face of such variety is “which algorithm should I choose?”
We can turn for help at a common platform for performance comparison — the
currently accepted de-facto standard is the COmparing Continuous Optimisers
COCO platform [2] [3] that was originally developed for the BBOB workshop se-
ries and which provides (most importantly) a set of diverse reference benchmark
functions. But there is still a long way from previously published performance
results on reference functions to a decision about which algorithm to use on an
arbitrary function provided by the user. A method to automate the process is
certainly desirable.

The problem of algorithm selection is not new [4] and was so far popular
mainly when applied to combinatorial problem solvers [5]. In our work, we adopt
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the prism of algorithm portfolios [6]. Let us have a set of heuristic algorithms
(each suitable for a different class of problem instances). Given a problem in-
stance, we apply a selection strategy to pick and apply an algorithm from this
portfolio. We can perform the selection once or along a fixed schedule based on
features of the problem instance (offline selection), or in multiple rounds allo-
cating time to portfolio members based on their performance in previous rounds
(online selection). In successive rounds, algorithms can be either resumed from
their previous state or restarted; we take the approach of resuming them, reserv-
ing the restart schedule to be an internal matter of each algorithm.

Using algorithm portfolios for continuous black-box optimization is still a
fresh area of research. The main results so far lie either in modifications of pop-
ulation methods that combine a variety of genetic algorithms together, e.g. the
MultiEA [7], AMALGAM-SO [8] and PAP [9] methods; or in offline methods
based on exploratory landscape analysis [10] which were also recently applied
to the BBOB workshop scenario [11]. We could also draw ideas from hyper-
heuristics and adaptive strategies for operator selection within population-based
algorithms [12] [13]. A Multi-Armed Bandit scenario has been already considered
in the field of function optimization for determining online restart schedules [14].

In our work, we enforce the distinction between algorithms and selection
strategies — we regard the algorithms as black-box, completely avoiding any
modification and simply repeatedly resuming them and allowing them to make
another optimization step. This allows any already implemented state-of-art al-
gorithms to be easily combined in a single portfolio and also extends to other
than population-based methods. Furthermore, we focus on online adaptive se-
lection that selects algorithms based on their performance so far and does not
require possibly expensive or brittle feature extraction and training.

We aim to confirm whether using an algorithm portfolio is advantageous com-
pared to investing the whole budget in a single overally dominant algorithm, and
how do selection strategies influence the portfolio performance.

In section 2, we investigate algorithm selection through the paradigm of the
Multi-Armed Bandit Problem, motivating the proposed selection strategies. In
section 3, we describe the exact strategies we have compared in our experiments.
We present the experimental results in section 4 and draw our conclusions and
outline some directions for future work in section 5.

2 Algorithm Selection as Multi-armed Bandit Problem

When considering an action selection strategy that operates in an initially un-
known environment, we face the fundamental dilemma of balancing exploitative
actions maximizing the reward based on our current model of the environment
and exploratory actions that refine the model. Multi-Armed Bandit Problem [15]
is a reference statistical problem that allows abstract study of the exploration-
exploitation dilemma.
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2.1 Multi-armed Bandit Problem

In its typical formulation [16], a K-armed bandit problem is defined by a se-
quence of random rewards Xit ∈ [0, 1], i = 1, . . . ,K, t ∈ N, where i is an index of
the arm of a bandit (in other words, a gambling machine) and t denotes succes-
sive pulls of the arm. All rewards are independent random variables and rewards
of a single arm follow an identical stationary distribution, but the distribution
and expected value are originally unknown. A bandit policy π is then a function
that selects the next arm to be pulled based on the sequence of rewards up to
that point. The goal is to maximize cumulative reward over time; the policy
aims to pull the arm with highest expected reward (exploitation), but needs to
continually update its belief about which arm has the best reward (exploration).

The measure of policy performance is its “regret”, i.e. cumulative reward loss
compared to a hypothetical oracle policy. Let μi denote the true expected reward
of arm i, μ∗ the true expected reward of the optimal arm, Ti(n) the number of
times arm i has been pulled up to the n-th pull, and Rn the current regret:

Rn = nμ∗ −
K∑

i=1

E [Ti(n)]μi

It was proven early [16] that the lower asymptotic bound for the regret Rn is
Ω(lnn), and many (even very simple) policies achieve this bound.

Perhaps the simplest policy is the epsilon-greedy policy, simply choosing
the arm with the highest estimated expectation with probability 1 − ε and a
uniformly random arm with probability ε. Therefore, the ratio of exploration
and exploitation actions is fixed and uniform exploration strategy is applied.

The Upper Confidence Bound (UCB1) policy [17] implicitly negotiates
the exploration-exploitation dilemma by adding a relative measure of uncertainty
(bias) to the estimated expectation; therefore, even low-expectation arms are
occassionally explored when the uncertainty is too high compared to other arms:

πUCB1(n) = argmaxi

(
μ̂i(n) + c

√
2 lnn

Ti(n)

)
(1)

The policy quickly gained popularity as a reference Multi-Armed Bandit pol-
icy since it can be proven that the policy follows the logarithmic regret bound not
just asymptotically but also uniformly (after a burn-in period) if the parameter
c is tuned for the optimal exploration-exploitation ratio.

2.2 Action Rewards versus Optimization Performance

To apply the Multi-Armed Bandit Problem on algorithm selection, we (analo-
gously to e.g. [14]) represent each algorithm as an arm and in each algorithm
iteration decide which arm(s) to step once next. However, the key question is
how to represent the reward estimates1 used for the decision.

1 In some of the algorithm selection literature, this is termed “credit” of the algorithm.
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In the simplest form, the reward estimate μ̂ may be represented simply by
the negative of the raw value of the function in the current iteration of the
algorithm — therefore, the algorithm currently closest to the optimum will be
associated with the highest reward estimate.

This approach may be problematic if the reward needs to be bounded in a fixed
interval; a normalization strategy is proposed below in Sec. 2.3. However, when
the value does not approach the optimum smoothly, absolute value difference
may not correspond well to algorithm performance difference. The approach of
value rank [13] sidesteps the issue by ranking algorithms based on the values
they yield in each round and using that rank (normalized by linear rescaling to
[0, 1]) as the reward estimate.

An extension of these approaches is, instead of considering just the latest
normalized reward, to use an exponentially decaying average of recent normal-
ized rewards with an adaptation rate α [12], also known as the exponentially
weighted moving average (EWMA).

The Multi-Armed Bandit Problem assumes that the reward distributions are
stationary and rewards are independent. But this is clearly not the case in our
setting — as each algorithm proceeds through the functional landscape, its rate
of improvement changes and previous results are tied to its future performance.
These assumption violations may not be fatal in practice and we test the per-
formance of considered algorithms without regard to them. Furthermore, it has
been proven that the UCB1 policy can be used as-is for non-stationary distribu-
tions [18] (provided that the c parameter has been set correctly).

2.3 Raw Values and the UCB1 Policy

The UCB1 policy sums the reward estimate μ̂ with a bias term (multiplied by a
fixed constant). A key assumption here is that μ ∈ [0, 1] (being a reward expec-
tation), but our raw values are entirely unbounded and exponentially skewed. A
simple work-around is to use the value rank instead, but the actual difference
between values may be useful during the decision, therefore we also propose a
raw value normalization approach.

Every time we invoke the UCB1 policy, we re-normalize values of all arms,
taking two assumptions. First, we use values relative to the supposed optimum by
always assuming that we are just short of it, i.e. putting the fopt? = min f −Δf
where Δf = 10−8 is the target precision of COCO. Secondly, we assume that
the algorithms converge exponentially fast2, therefore differences (relative to the
supposed optimum fopt?) between 103 and 102 should be considered on the same
scale as differences between 10−6 and 10−7.

With these two assumptions, a log-rescaling process is straightforward. First,
we convert the absolute fi values to values relative to the supposed optimum
and rescale the values logarithmically:

gi = log(fi − fopt?)

2 A similar idea appears within the MetaMax algorithm [14] and is also supported by
practical observations.
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Second, we assign rewards by linear rescaling of the preprocessed values:

μi = 1− gi −minj gj
maxj gj −minj gj

3 Algorithm Selection Strategies

The strategies and reward schemes outlined above offer a wide variety of possible
combinations. To focus the scope of our research, we considered only combina-
tions already proposed in the literature, in addition to a baseline strategy and
two new applications of the UCB1 policy we propose. We performed a rough
parameter tuning of each of the considered strategies on a portfolio of seven
algorithms (see Sec. 4 and [19]); the performance is not very sensitive to exact
values of the parameters. Our main loop consist of selecting an algorithm to
step, then running it for a single iteration, then repeating the selection etc.

RR: As one baseline strategy, we used a round robin policy that samples
each algorithm equally, in their portfolio order. (This is different from a “run in
parallel” strategy in that the algorithms consume different budgets to sample a
single iteration.)

EG: The epsilon-greedy policy with ε = 0.5.
RUCB: The UCB1 policy with EWMA-recent ranks as reward estimates (μ̂i

in Equation 1), with c = 8 and adaptation rate α = 0.9.
LUCB: The UCB1 policy with EWMA-recent log-rescaled values as reward

estimates (μ̂i in Equation 1), with c = 16 and adaptation rate α = 0.7.
We also tested Probability Matching and Adaptive Pursuit [12], Threshold

Ascent [20], MetaMax variants [14] and UCB1 with Sum-of-Ranks and Area-
Under-the-Curve rewards [13]. However, their results were not competitive with
the strategies above and we cannot elaborate on them due to space limititations3.

4 Experiments and Results

To benchmark against the BBOB testbed, we used the reference COCO frame-
work [2] [3]. Our “COCOpf” extension [19] provides a common algorithm port-
folio codebase, including algorithm stepping and publication reports generation.

We use the reference portfolio of seven optimization algorithms — the CMA-
ES algorithm [21] and six numerical optimization algorithms distributed along
the SciPy software package [22]. Description and comparison of the individual
algorithms is detailed in [19].

Within the COCO framework, functions are classified based on their prop-
erties to separable, multi-modal, etc. Here, we deliberately did not adopt this
classification as we do not study the behavior of individual algorithms4, but the
behavior of strategies that depend on the performance of portfolio members.

3 Their results are included in an extended version of this paper, the raw datasets and
generated reports at http://pasky.or.cz/sci/cocopf-opt13.

4 See [19] for plots of performance of the portfolio members in the reference COCO
function classes.

http://pasky.or.cz/sci/cocopf-opt13
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Table 1. The assignment of individual COCO benchmark functions to the classes we
have devised, determined on the performance of our portfolio on the functions. Vertical
lines delineate the standard function classes used by COCO.

Class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

By solvers (s/m) m s s s m s s m m s s s s m s s s s s s s s s m
By winner (g/b) b b b b b g g b b g g g g b b g g g b b g g g b
By converg. (s/v) s s s s s v s v v v v v v v v s s s v v v v v v

Fig. 1. Typical volatile (left) and stable (right) portfolio convergence. (We distinguish
only the portfolio’s best algorithm for each considered function.)

With respect to a particular portfolio, we propose the following function clas-
sification:

– By solvers based on whether a single algorithm dominated others in perfor-
mance (single-solver), or if multiple algorithms converged similarly quickly
(multi-solver). The latter favors strategies that do not focus sharply on a
single algorithm. We consider algorithms to perform similarly if one takes at
most twice as many evaluations to reach the optimum than another.

– By winner as the clear overall winning algorithm in our portfolio is CMA,
converging first on most functions (CMA-good), but there are many functions
on which CMA actually performs relatively very poorly (CMA-bad). Splitting
functions along these lines allows us to quantify the loss caused by using a
portfolio instead of a single algorithm.

– By convergence based on the algorithm behavior before finding optimum.
In some cases, the algorithms that yield the best function values early con-
tinue to dominate throughout the convergence progression and eventually in-
deed converge first — these are the stable functions where strategies can early
focus on the best algorithms. On the other hand, especially in a landscape
rich on difficult-to-escape local optima, the pace of convergence of convential
algorithms stays the same or even slows down throughout their run, while
an algorithm (often CMA) that produced lukewarm results with smaller
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Table 2. The average rank of portfolio algorithms and strategies (computed over both)
by the order in which they converge

Solver all multi single volatile stable CMA-good CMA-bad

CMA 6.4 11.2 4.8 4.7 9.2 1.3 11.4
BFGS 9.4 4.7 11.0 7.5 12.7 12.2 6.6

L-BFGS-B 9.7 3.8 11.7 8.1 12.5 13.0 6.5
SLSQP 10.9 6.0 12.6 9.5 13.2 13.5 8.3
N.-M. 12.0 10.0 12.7 9.9 15.6 12.0 12.0
Powell 12.9 12.9 12.9 15.9 7.9 14.6 11.3
CG 13.3 6.6 15.6 13.0 13.8 15.8 10.8

LUCB 6.5 10.5 5.1 7.2 5.3 4.4 8.5
RUCB 6.8 8.2 6.3 6.5 7.2 6.5 7.1
EG 7.1 7.2 7.1 8.3 5.2 6.6 7.6
RR 9.3 11.0 8.7 9.1 9.7 8.2 10.4

budget suddenly and unexpectedly improves in a dramatic way, achieving
convergence early after5 — we term these volatile functions. These are obvi-
ously much harder for purely online strategies. We consider a function to be
volatile if the algorithm that converges first in budget |portfolio|k for some

k was not the best algorithm in budget |portfolio|k−2.

We illustrate the typical convergence progression on volatile vs. stable func-
tions in figure 16. Table 1 shows the classification of functions for our portfolio.

In all results, we show measurements with maximum function evaluation bud-
get dim · 105 and use the performance on 5D functions as at least one algorithm
converges within our budget for almost all functions in this dimension.

Table 2 shows the average final rank of each algorithm and portfolio strategy
(in terms of budget required for convergence, i.e. 1 is best) averaged over the
individual classes. Table 3 shows the average7strategy log-slowdowns in terms of
difference between budget b required for certain algorithm or strategy to converge
and budget bo required for the oracle strategy (which runs only the single best
algorithm for each function) to converge, computed as log|portfolio|(b/bo). I.e. a
slow-down of 0 means perfect performance and slow-down of 1 means that it is
as if we simply run all algorithms in parallel8.

We can observe that the LUCB strategy performs best; while in total average
it is superseded by the winner algorithm CMA, that is not very surprising as this
algorithm performs best on its own on half of the functions and portfolios will
always introduce an overhead. At the same time, the LUCB strategy exhibits

5 We did not observe a situation where the initially best algorithm temporarily loses
its first place only to eventually converge first.

6 Interested readers may find portfolio convergence graphs for all functions as well as
raw datasets at http://pasky.or.cz/sci/cocopf-opt13.

7 Within a single function, the median instance is considered. Across functions within
a class, the slowdown is averaged.

8 Functions on which no algorithm converges in the assigned budget are not included
in the average. We assign a log-slowdown of 3 to strategies not converging in time.

http://pasky.or.cz/sci/cocopf-opt13
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Table 3. The average log-slowdown of portfolio algorithms and strategies compared
to oracle strategy (i.e. the best algorithm for each function)

Solver all multi single volatile stable CMA-good CMA-bad

CMA 0.7 1.1 0.6 0.5 1.1 0.0 1.5
CG 2.3 0.8 2.7 2.3 2.3 2.8 1.7

BFGS 1.5 0.7 1.8 1.4 1.7 2.2 0.8
L-BFGS-B 1.9 0.6 2.3 1.8 1.9 2.5 1.1
Nelder-Mead 2.1 0.8 2.6 2.0 2.4 2.5 1.8

SLSQP 2.3 1.0 2.8 2.4 2.3 2.9 1.8
Powell 2.3 2.0 2.4 3.0 1.2 3.0 1.6

LUCB 0.9 0.9 0.9 1.3 0.3 1.1 0.8
RUCB 1.3 0.9 1.4 1.4 1.1 1.7 0.8
EG 1.4 1.0 1.6 1.6 1.1 2.0 0.9
RR 1.5 1.1 1.7 1.8 1.2 2.1 1.0

less performance variation (in terms of log-slowdown) from class to class, and
on stable functions it outperforms all other strategies and algorithms by a large
margin. The RUCB and EG strategies can also outdo the LUCB strategy on
function-by-function basis in some classes, as is apparent from the average ranks.

5 Discussion and Conclusion

The results demonstrate a good case for the usage of algorithm portfolios for
black-box optimization. Overally, our proposed LUCB and RUCB strategies per-
form the best, but the very simple EG strategy also performed very well. We
belive both the LUCB and EG strategies are easy to implement and can be used
as reference strategies in further research.

As expected, the portfolios were very beneficial especially in case of non-
volatile functions. More work is clearly needed to deal with volatile functions.
That will further benefit even non-volatile performance as all our strategies are
currently very explorative — investment in even bad-looking algorithms is im-
portant in cases of volatile functions. Regardless of function classes, algorithm
portfolios also offer a more stable performance than an individual algorithm in
the face of unknown (as even CMA can fail miserably on some of the functions).

We can observe a significant stratification among the tested selection strate-
gies. We can conclude that a selection strategy matters, and even a simple strat-
egy like EG will bring a big improvement over a round-robin selection strategy
which is still the de-facto standard for algorithm portfolios when they are used.

5.1 Future Work

We hope that performance can be improved by a future portfolio that is more
diverse and balanced (either thanks to more algorithms or parameter tuning to
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refocus different algorithms to specific function classes). Another step in this di-
rection is to study the influence of portfolio size and composition on preformance
of various strategies9.

Clearer measures for adaptation lag when the best algorithm changes in
volatile functions or the suitability of using function value differences in strate-
gies would be very desirable.

Many approaches to algorithm selection in terms of Multi-Armed Bandit Poli-
cies and reward assignment were proposed in the literature. We could not con-
sider them all, but we think that especially performance-modeling approaches
like modifications of the MultiEA [7] or GambleTA [23] algorithms are worth
investigating in the future.

Aside of that, we attempted to give the problem a modular structure; this
allows e.g. a full-scale comparison of reward assignment and bandit policy com-
binations on top of what has been proposed in the literature so far. Furthermore,
the usage of UCB1 is not theoretically very sound and we assume it should be
possible to develop a more suitable policy formula.

We have investigated just a purely online, black-box mode of action so far,
but there is certainly a room to grow in the direction of previously introduced
approaches. Offline learning can be combined with online methods at least to
initialize them or detect function classes. Intermediate solutions could be shared
and migrated between individual algorithms.
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18. Kocsis, L., Szepesvári, C.: Bandit based monte-carlo planning. In: Fürnkranz, J.,
Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp.
282–293. Springer, Heidelberg (2006)
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