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Abstract. This paper studies a self-organized framework for modeling dynamic 
topologies in spatially structured Evolutionary Algorithms (EAs). The model 
consists of a 2-dimensional grid of nodes where the individuals interact and 
self-organize into clusters. During the search process, the individuals move 
through the grid, following a pre-defined simple rule. In order to evaluate the 
model, a dynamic cellular Genetic Algorithm (dcGA) is built over the proposed 
topology and four different movement rules are tested. The results show that 
when the ratio between the number of nodes in the grid and the population size 
is above 4:1, the individuals self-organize into highly dynamic clusters and sig-
nificantly improve results attained by standard cGAs with static topologies on a 
set of deceptive and multimodal functions.  

1 Introduction 

In panmictic populations, every individual is allowed to interact with every other 
individual. Standard Evolutionary Algorithms (EAs) mimic this strategy for parent 
selection and recombination, but large-scale problems or deceptive functions with 
multiple local optima may require other type of population structures. In recent years, 
non-panmictic EAs [10], which restrict the interaction according to a pre-defined or 
evolving structure, are gaining increasing attention by the community.  

In non-panmictic EAs, the population structure specifies a network of acquain-
tances over which individuals can interact (i.e., mating or selection is restricted to 
neighborhoods within the network). These non-panmictic EAs are also known as 
spatially structured EAs [10], a category that includes fine-grained approaches such 
as cellular EAs (cEAs) [1] and coarse-grained approaches such as island models [2]. 
In cEAs, the population is distributed in a grid and the interaction is restricted to the 
individuals’ neighborhood. In island EAs, different subpopulations evolve isolated 
from each other and occasionally exchange individuals using a predefined strategy 
which specifies the rate and quantity of information to transfer.  
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The main disadvantage with island and cellular EAs is that their base-structures, 
which have a great influence on the algorithm performance, require extra designing 
and tuning effort. In the case of island models, this added complexity translates in 
deciding policies for the migration frequency, selection and replacement of migrants 
and the topology itself. As for traditional cEAs, they use static structures that impose 
a rigid connectivity between the individuals.  

Furthermore, even though cEAs may achieve a better management of the genetic 
diversity in the population when compared to panmictic EAs, the balance between 
exploration and exploitation may not be sufficient for problems with deceptive or 
epistatic fitness landscapes. Since the population is globally connected, information 
may spread quickly and local optima can easily take over the entire population. The 
investigation in this paper is an attempt to design a simple dynamic topology for 
cEAs, with a varying neighborhood degree and an intrinsic clustering behavior that 
approaches the cEA to an island model, keeps genetic diversity at a higher level and 
prevents sub-optimal solutions to take over the population. 

In the proposed topology, ݊ individuals are distributed in a 2-dimensional ݉ െnodes 
grid where it holds ݉  ݊. Every time-step, each individual tries to recombine with one 
of the individuals in its Moore neighborhood (if there are any). Furthermore, the struc-
ture is dynamic: in each time-step, every chromosome updates its position by moving to 
a neighboring node (if there are empty nodes in the individual’s neighborhood), accord-
ing to a pre-defined rule that selects the destination. The position update rule, which is 
implemented locally and without any knowledge on the global state of the system, can 
be based on stigmergy [5] or Brownian movements.   

When stigmergic behavior is induced by a stigmergic rule (i.e., individuals com-
municate via the environment), different niches of individuals appear and disappear at 
run-time. This clustering behavior is an emergent property of the model, and the re-
sulting cEA has certain resemblance with an island model, with dynamic clusters (or 
sub-populations) of individuals with varying size. 

We hypothesize that with this scheme the population diversity decreases at a lower 
rate (when compared to a standard topology), and, as a consequence, the performance 
of the cEA on deceptive and hard problems is improved. In this paper, the dynamic 
topology is tested on a cellular Genetic Algorithm (cGA). Four different strategies are 
described for the position update rule and the resulting algorithms are tested with a set 
of deceptive and epistatic functions that challenge EAs’ abilities to combine building-
blocks. The results show that when the ratio between the number of nodes in the grid 
and population size is above 4:1, the dynamic cGAs converge more often to the global 
optimum and significantly improve the performance of standard cGAs.  

The remaining of the paper is structured as follows: Section 2 gives a background 
review on cEAs and on dynamic alternative topologies for cEAs; Section 3 describes 
the proposed system; Section 4 describes the experiments and discusses the results; 
Section 5 concludes the paper and outlines future lines of work. 

2 Background Review 

The initial objective of spatially structured EAs was to develop a framework for stud-
ying massive parallelization. However, the need to provide traditional EAs with a 
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proper balance between exploration and exploitation and overcome standard  
EAs drawbacks, like synchronicity, rigid connectivity and strong dependence on the 
problem, motivated several lines of research that explore the potentiality of different 
population structures in maintaining genetic diversity [10]. Additionally, complex 
population structures have been studied, some of them under the knowledge provided 
by recent developments in network theory. 

In [1], Alba and Dorronsoro dynamically change the ratio that defines the neigh-
borhood of interaction. Since the ratio may affect selection pressure, the authors  
analyze the influence of its value on the balance between exploration and exploitation. 
However, the base-structure of the cellular EA is maintained throughout the run. In 
[11], Whitacre et al. focus on two important conditions missing in EA populations: a 
self-organized definition of locality and interaction epistasis. With that purpose in 
mind, they proposed a dynamic structure and concluded that the two features, when 
combined, provide behaviors not present in the traditional spatially structured EAs. 
The most noticeable change is an unprecedented capacity for sustainable coexistence 
of genetically distinct individuals within a single population. The authors state that the 
capacity for sustained genetic diversity is not imposed on the population; instead, it 
emerges as a natural consequence of the dynamics of the system. Laredo et al. [7] 
proposed a framework for EAs based on peer-to-peer networks [9]. Within a simu-
lated network, they model the dynamics of real networks and conclude that their sys-
tem is able to achieve better performance than traditional EAs on a wide range of 
problems, while being scalable and resilient to the volatility of nodes in the network. 

In order to deal with the specific issues that may affect the design and performance 
of spatially structured EAs, Fernandes et al. [3] devised a complex adaptive system to 
be used as a dynamic structure for populations. This model, which can be regarded as 
a cellular automaton [6] with short-term memory, uses stimergic communication and 
simple rules for movement on a grid of nodes, giving rise to self-organized clusters of 
particles. A noticeable feature of these clusters is that they keep evolving and chang-
ing shape, thus providing some kind of highly dynamic order. The authors demon-
strate that the proposed system has indeed emergent properties that may prove useful 
for spatially structured EAs, or other spatially structured population-based metaheu-
ristics.  

In fact, this framework has been recently used to implement a spatially structured 
Particle Swarm Optimization (PSO) algorithm, in which the particles’ interaction is 
defined by their position on the grid [4]. In this case, the position update rule is based 
on Brownian movement. Recently, Nogueras et al. [8] adapted the model in [3] to a 
spatially structured multimemetic algorithm with dynamic topology. The authors 
show that the dynamic topology maintains genetic diversity at a higher level and re-
duces the rate of convergence to local optima.  

In this paper we take a different approach and test the framework as a dynamic to-
pology for cellular Genetic Algorithms (cGAs), using position update rules that model 
Brownian movement and stigmergic behavior. The base model and the proposed 
topology are described in the following section.  
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3 Dynamic Topology 

This section gives a formal description of the network and the transition rules that 
define the proposed model for dynamic population structures. 

Let us consider a rectangular grid ܩ of size ݍ ൈ ݏ   ௨௩ of the grid isܩ Each cell .ߤ
a tuple ߟۃ௨௩, ௨௩ߟ where ,ۄ௨௩ߞ א ሼ1, … , ሽߤ  ሼ•ሽ and ߞ௨௩ א ሺܦ ൈ Գሻ  ሼ•ሽ, for some 
domain ܦ. The value ߟ௨௩ indicates the index of the individual that occupies the posi-
tion ݑۃ, ௨௩ߟ in the grid. If ۄݒ ൌ • then the corresponding position is empty. However, 
that same position may still have information, namely a mark (or clue) ߞ௨௩ , that is 
placed by the individuals and provides a form of communication between them. If ߞ௨௩= • then the position is empty and unmarked. Please note that when ݍ ൈ ݏ ൌ  the ,ߤ
topology is the standard static 2-dimensional structure.  

The marks are placed by individuals that occupied that position in the past and they 
consist of information about those individuals (captured by domain ܦ), like their 
fitness ߞ௨௩  or a copy of their genotype ݔԦ, as well as a time stamp ߞ௨௩௧  that indicates the 
iteration in which the mark was placed. The marks have a lifespan of ܭ iterations, 
after which they are deleted.  

Initially, ܩ௨௩ ൌ ሺ•,•ሻ for all ݑۃ,  Then, individuals are placed randomly on the .ۄݒ
grid (only one individual per node). Afterwards, all individuals are subject to a 
movement phase (or position update), followed by an evolutionary phase. The process 
(position update and evolutionary phase) repeats until a stop criterion is met.  

The evolutionary phase is the standard iteration of a cEA, comprising selection, re-
combination mutation and replacement. The only difference to a cEA with static 
structure is that in this case an individual may find empty nodes in its neighborhood, 
and the selection pool is restricted to the individuals that occupy adjacent nodes. If at 
a given time-step an individual has no neighbors, then there is no recombination event 
for that individual in that specific iteration.  

In the position update phase, each individual moves to an adjacent empty node. 
Adjacency is defined by the Moore neighborhood of radius ݎ, so an individual ݅ at ߩሺ݅ሻ ൌ ,ݑۃ ,ᇱݑۃ can move to an empty node ۄݒ ,ݑۃஶሺܮ for which ۄᇱݒ ,ۄݒ ,ᇱݑۃ ሻۄᇱݒ   .ݎ
If no empty position is available, the individual stays in the same node. Otherwise, it 
picks a neighboring empty node according to the marks on them. If there are no 
marks, the destination is chosen randomly amongst the free nodes.  

We consider two possibilities for the position update phase: stimergic, whereby the 
individual looks for a mark that is similar to itself; and Brownian, whereby the indi-
vidual selects an empty neighbor regardless of the marks. For the first option, let ࣨݑۃ, ۄݒ ൌ ൛ݑۃሺଵሻ, ,ۄሺଵሻݒ … , ,௪ݑۃ  ൟ be the collection of empty neighboring nodesۄ௪ݒ
and let ݅ be the individual to move. Then, the individual attempts to move to a node 
whose mark is as close as possible to its own corresponding trait (fitness or genotype) 
or to an adjacent cell picked at random if there are no marks in the neighborhood. 
This strategy leads to the self-organization of the population into dynamic clusters [3], 
[8]. In the alternative Brownian policy, the individual moves to an adjacent empty 
position picked at random. In either case, the process is repeated for the whole popu-
lation. The following section describes the results attained by dynamic cGAs with 
stigmergic and Brownian movement.  
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4 Results and Discussion 

In order to investigate their performance, the proposed dynamic topologies were tested 
on a set of functions that challenge the EAs ability to combine building-blocks and de-
mand a careful balance between exploration and exploitation: the near-deceptive order-3 
trap, the recursive epistatic H-IFF and the needle in the haystack Trident problem. 

A trap function is a piecewise-linear function defined on unitation (number of ones 
in a string), with two distinct regions in the search space, one leading to the global 
optimum and the other leading to a local optimum. The trap in this test is defined by: ܨሺݔԦሻ ൌ ൜ ݇, ݂݅ Ԧሻݔሺݑ ൌ ݇݇ െ 1 െ ,Ԧሻݔሺݑ  (1) ݁ݏ݅ݓݎ݄݁ݐ

where u(ݔԦ) is the unitation function and ݇ is the problem size (and also the fitness of 
the global optimum). With these definitions, order-3 traps are in the region between 
deceptive and non-deceptive, while order-2 are non-deceptive and order-4 are fully 
deceptive. For the experiments, an order-3 trap function was constructed by juxtapos-
ing 100 subproblems, which corresponds to 300-bit string. The fitness of the best 
solution (a string of 1Ԣs) is 300.  

Trident functions are needle in the haystack problems that exploit the ability of 
EAs to mix good but significantly different solutions. The fitness function of the Tri-
dent used in this work has two components, base and contribution: ܨሺݔԦሻ ൌbaseሺݔԦሻ  contributionሺݔԦሻ. The base depends on unitation and is described by: ܾܽ݁ݏሺݔԦሻ ൌ ԡ2. uሺݔԦሻ െ lԡ (2) 

where ݈ is the chromosome length and u(ݔԦ) is the unitation function. The contribution 
rewards certain configurations of strings that have an equal number of 0’s and 1’s. 
Let ܮ be the first half of the binary string ݔ of length ݈ and ܴ the second half. The 
contribution is described by Equation 5: ܿ݊݅ݐݑܾ݅ݎݐ݊ሺݔԦሻ ൌ ൜ 2. ݈, ܮ ൌ തܴ0,  (3) ݁ݏ݅ݓݎ݄݁ݐ

where തܴ is the bitwise negation of ܴ. The Trident accepts strings of length 2݇, where ݇  2. For this paper, 128-bit strings were used and the optimal fitness is 256.  
Finally, the H-IFF function is a recursive epistatic problem with hierachical struc-

ture. The landscape requires a search for increasingly higher-order schemata, chal-
lenging the EAs’ abilities to identify and combine good building blocks. The problem 
is defined using a recursive function. If the bit string being considered consists of all 
zeros or all ones, the fitness of the string is equal to its length; otherwise it has a fit-
ness of 0. This same criterion is then applied recursively on each half of the string, 
until it can be subdivided no further. Adding the fitness of all substrings together 
yields the fitness of the whole. Formally, the HIFF fitness function can be defined as: 

݂ሺܤሻ ൌ ቐ 1,                              ݂݅ |ܤ| ൌ |ܤ|1  ݂ሺܤሻ  ݂ሺܤோሻ, ݂݅ |ܤ|  1݂ሺܤሻ  ݂ሺܤோሻ,             ݁ݏ݅ݓݎ݄݁ݐ ܽ݊݀ ሺሼܾ ൌ 0ሽ ݎ ሼܾ ൌ 1ሽሻ (4) 

where B is a block of bits ሺܾଵ … ܾሻ, |ܤ| is the size of the block (and therefore equal 
to ݊, which must be an integer power of 2), ܾ is the ith element of B, ܤ and ܤோ  are 
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the left and right halves of B. For the tests, a problem 128-bit strings has been con-
structed. The best solution has a fitness value of 1024.  

With this set of functions it is possible to test the ability of the dynamic cGAs in 
combining the raw building blocks of the initial population and escape local optima 
traps. These functions challenge standard strategies, which converge very often to 
local optima, especially in the H-IFF and trap functions. If the proposed dynamic 
topology is effective in maintaining genetic diversity, then it is expected that the rate 
of convergence to global optima is improved.  

All the cEAs used in the experiments are synchronous (i.e., the offspring are placed 
in a temporal population and replacement is done after every individual generates one 
child). Parameterization was done after [1]: the population size was set to ݊ ൌ 400; 
the recombination operator is the double point crossover with  ൌ 1.0; mutation is 
bit-flip with  ൌ 1/݈, where ݈ is the chromosome length; tournament selection. Only 
one offspring is placed in the temporary population (randomly chosen from the set of 
two children). In the replacement stage, the offspring replaces its parent if it is better.  

The stop criteria are: to find the global optimum or to achieve a maximum of 3,000,000 function evaluations. The number of evaluations required to meet the best 
solution is recorded and averaged over 50 runs. A success measure (successful runs) 
is defined as the number of runs in which the algorithm attains the global optimum. 

Four different strategies have been considered for the position update phase of the 
proposed algorithm. In the first one, which will be referred to as dynamic cGA with 
Brownian movement (݀ܿܣܩሻ the individuals ignore the marks and chose randomly 
the destination cells amongst the empty ones in their neighborhood. In the dynamic 
cGA with fitness marks (݀ܿܣܩ), the individuals deposit marks with their fitness val-
ue. A similar strategy is used by the hierarchical dynamic cGA with fitness marks ሺ݀ܿܣܩሻ, except that in this case the individual only considers a mark if the fitness 
value is better than its own fitness. Finally, in the dynamic cGA with genotype marks 
-ሻ, the individuals leave copies of their genotypes in the cells, and when choosܣܩܿ݀)
ing the destination cell, the individual computes the Hamming distance between its 
genotype and the marks. The destination cell is then the one that minimizes the dis-
tance. The radius ݎ of the Moore neighborhood and marks lifespan ܭ were set to 1. 

At every time-step, the individuals are ranked according to their fitness, so that the 
best individuals’ positions are updated first. This strategy has been devised for the ܣܩܿܦ, but in order to make fair comparisons it has been implemented in every 
cGA. In fact, some preliminary tests showed that ranking the individuals tends to 
improve the performance of the algorithms.  

In order to evaluate the efficiency of the algorithms, the dynamic cGAs are  
compared with static cGAs with Moore (cGAM) and von Neumann (cGAvN) 
neighbourhoods on a 20 ൈ 20 grid. The evolutionary phase begins only when the 
average clustering degree ݇ (the number of neighbours of an individual, including the 
individual itself) rises above 2.5. This ad hoc strategy is used for avoiding the initial 
distribution stage in which many individuals are still isolated (i.e., with none or only a 
few neighbours). Typically, the individuals start to cluster in a few generations and 
the evolutionary phase begins at a very early stage. Although the threshold is imposed 
here by a centralized decision, a local decentralized (self-organized) strategy is also 
possible. For instance, the evolutionary phase could be triggered individually,   
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Table 1.   Average best fitness values (plus standard deviation) 

 X×Y H-IFF Trident 3-trap ܿܣܩெ 20×20 877.17±90.95 243.20±38.79 ௩ே 20×20 915.84±91.86ܣܩܿ 296.58±2.07 243.20±38.79 297.70±1.71 

 ܣܩܿ݀

30×30 856.67±100.59 184.32±64.18 295.18±2.30 
40×40 905.33±99.92 235.52±47.40 296.58±1.95 
50×50 902.33±92.51 235.52±47.40 297.78±1.43 
60×60 926.67±102.08 232.96±49.68 297.76±1.70 
70×70 928.96±87.00 219.43±58.42 297.86±1.54 

 ܣܩܿ݀

30×30 871.68±109.82 194.56±64.60 294.42±2.82 
40×40 870.08±94.51 230.40±51.72 294.70±3.26 
50×50 917.76±94.67 250.88±25.34 296.54±2.19 
60×60 944.96±90.19 256.00±0.00 297.58±1.48 
70×70 954.88±85.37 256.00±0.00 298.16±1.45 

 ܣܩܿ݀

30×30 862.400±97.36 192.00±64.65 294.28±2.38 
40×40 884.80±112.17 235.52±47.40 294.76±2.60 
50×50 921.60±94.80 245.76±35.08 295.90±3.09 
60×60 940.80±93.24 253.44±18.10 296.56±2.55 
70×70 965.12±79.27 248.32±30.71 297.42±1.71 

 ܣܩܿ݀

30×30 875.84±92.10 222.72±56.72 295.88±2.16 
40×40 929.60±98.38 253.44±18.10 297.14±1.83 
50×50 924.48±92.86 250.88±25.34 297.86±1.52 
60×60 947.84±84.27 256.00±0.00 298.68±1.12 

70×70 979.84±77.28 256.00±0.00 298.74±1.28 

 
for each chromosome. However, such strategy introduces a transitory phase in which 
the population only recombines partially (steady-state). This could make a compari-
son with static strategies more difficult and potentially unfair and therefore it has been 
left for future work.   

The objectives of the first experiment are to study the performance of the dynamic 
cGAs and the effects of the grid size on their behaviour. For that purpose, grids with 
different size have been tested, starting with a 30 ൈ 30 grid. The averaged final fit-
ness value attained by each algorithm in each function is shown in Table 1. 

The first conclusion is that the Brownian version, in general, does not improve sig-
nificantly the performance of the cGAvN (the best static strategy). A dynamic topology 
per se is not sufficient to overcome the drawbacks of standard cEAs. Some kind of 
organization must take place in order to generate a better interaction between the 
individuals. When stigmergy is introduced in the model, the results are clearly im-
proved, as seen in Table 1.  

The dynamic topologies with stigmergic-based movement rules increase standard 
cGAs performance when the grid is larger than 40 ൈ 40. In general, dynamic popula-
tions with stigmergic rule moving on 60 ൈ 60  and 70 ൈ 70  grids significantly improve 
the standard cGAs. For instance, the ݀ܿܣܩ on a 70 ൈ 70 grid is significantly better than 
the standard cGAs in every function (according to Kolmogorov-Smirnov statistical tests 
with a 0.05 level of significance). The fact that smaller grids do not necessarily improve 
the static cGA performance suggests that it is not the movement of the individuals that 
makes the algorithm better in this set of functions, but instead some kind of global island-
like pattern that emerges when the grid is larger.  
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ݐ   ൌ ݐ 0 ൌ ݐ 10 ൌ ݐ 50 ൌ 75 

ݐ   ൌ 100 ݐ ൌ 101 ݐ ൌ 102 ݐ ൌ 103 

Fig. 1. Distribution of the individuals on the grid at different iterations of the search process. ݀ܿܣܩ and Trident function. 60 ൈ 60 grid.  

Figure 1 shows the distribution of the individuals at different iterations (ݐ) of the 
search process for a grid with size 60×60. The evolutionary phase begins at ݐ ൌ 50. 
Clusters of individuals emerge already at an early stage. Those clusters are highly 
dynamic and in a few generations the global pattern radically changes (please note the 
distributions between iteration ݐ ൌ 100 and ݐ ൌ 103). The topology self-organizes 
into a kind of dynamic island model, in which the communication between the clus-
ters is also an emergent property, arising from the global behavior of the system. 
After ݐ ൌ 50, when the evolutionary phase is introduced (and therefore several fitness 
values and genotypes are changing in each time-step), the clusters are sparser, but this 
an expected outcome due to the variation introduced by the evolutionary process.  

Table 2 shows the number of successful runs attained by the cGAs. Again, under 
this criterion, the dynamic versions outperform the static topologies. The similarity-
based strategy is particularly efficient, attaining the best success rates.  

The previous results show that the dynamic cGAs are able to converge more often 
to global optimum. Therefore, they have a better balance between exploration and 
exploitation for these fitness functions: with the same raw building-blocks, the dy-
namic cGAs combine more efficiently the solutions. This is probably because the 
emergent structures, with their clustering degree and dynamical behaviour, are more 
efficient at maintaining genetic diversity. In order to investigate this hypothesis,  
 

Table 2.   Number of successful runs  
 H-IFF Trident 3-trap ܿܣܩெ 11 45 2 ܿܣܩ௩ே 19 45 5 ݀ܿܣܩሺ70 ൈ 70ሻ 21 36 8 ݀ܿܣܩሺ70 ൈ 70ሻ 29 50 9 ݀ܿܣܩሺ70 ൈ 70ሻ 31 48 5 ݀ܿܣܩሺ70 ൈ 70ሻ 37 50 13 
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Fig. 2. Genetic diversity  

the algorithms were tested without mutation and the number of genes that converge 
(i.e., genes with alleles 0 or 1 in the entire population) during the run was computed 
and plotted. The results are in Figure 2. The diversity is in fact maintained at a higher 
level by the structures. Furthermore, increasing the grid increases the diversity (left-
hand graph in Figure 2).  As for the different strategies, the best strategy (similarity-
based) is also the one that maintains diversity at a higher level (right-hand graph).  

Finally, since the dynamic topologies maintain genetic diversity at a higher level, 
therefore increasing exploration and reducing the risk of convergence to local optima, 
it is expected that the convergence speed is reduced, a typical payoff for increasing 
robustness. Table 3 shows the averaged number of evaluations required by each algo-
rithm to reach the global optimum (only runs in which the global optimum has been 
found are considered). The static structures are faster, but as seen in Table 1 and  
Table 2, at the expenses of a significant drop of the performance levels.  

5 Conclusions and Future Work 

This paper investigates a dynamic cellular Genetic Algorithms (cGA) in which the 
individuals communicate via a grid of nodes and self-organized its structure on that 
grid. The global behavioral patterns emerge from local interactions defined by simple 
rules. When compared to static topologies, the dynamic structure maintains genetic 
diversity at a higher level, resulting in an improvement of the convergence rates to 
global optimum on a set of functions that defy the GAs abilities to combine building-
blocks. Such behavior is attained when the ration between the number of nodes in the 
grid and the population size is above 4:1. With these settings, the distribution of  
 

Table 3. Convergence speed (function evaluations)  

 H-IFF Trident 3-trap ܿܣܩெ 39600.00±9248.29 44035.56±5678.77 93000.00±3400.00 ܿܣܩ௩ே 48191.30±15320.04 47377.78±5265.71 100560.00±13716.21 ݀ܿܣܩ 49808.57±9093.29 55168.47±13663.58 108822.75±4795.37 ݀ܿܣܩ 114608.86±36325.71 75936.81±12991.56 266100.11±48188.63 ݀ܿܣܩ   127981.38±41261.71 95204.48±15756.53 298350.47±20739.19ܣܩܿ݀ 212348.20±20325.13 69546.29±9204.14 104568.00±27233.83 
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individuals in the grid emerges into a global island-like model, highly dynamic and 
with frequent communication between the clusters.  

Future work will be focused on the traits of the system and their effects on the be-
havior of the population and on the performance of the algorithm. Radius ݎ of the 
neighborhood and marks’ lifespan ܭ will be investigated. Different stigmergic strate-
gies will be tested, namely those that favor recombination between dissimilar individ-
uals. Finally, the experiments will be extended to other type of functions (unimodal 
and multimodal) in order to achieve a better comprehension of the structure’s working 
mechanism and potential as an alternative cGA network.  
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