
Towards a Method for Automatic Algorithm

Configuration: A Design Evaluation Using Tuners

Elizabeth Montero and Maŕıa-Cristina Riff�

Department of Computer Science
Universidad Técnica Federico Santa Maŕıa

Valparáıso, Chile
{Elizabeth.Montero,Maria-Cristina.Riff}@inf.utfsm.cl

Abstract. Metaheuristic design is an incremental and difficult task. It
is usually iterative and requires several evaluations of the code to obtain
an algorithm with good performance. In this work, we analyse the design
of metaheuristics by detecting components which are strictly necessary
to obtain a good performance (in term of solutions quality). We use a
collective strategy where the information generated by a tuner is used
to detect the components usefulness. We evaluate this strategy with two
well-known tuners EVOCA and I-RACE to analyse which one is more
suitable and provides better results to make this components detection.
The goal is to help the designer either to evaluate during the design
process different options of the code or to simplify her/his final code
without a loss in the quality of the solutions.

Keywords: Automated algorithm tuning, automated algorithm config-
uration, metaheuristics.

1 Introduction

In order to obtain a metaheuristic with good performance, we have to make
several design decisions. The design process is usually iterative, and at each
step, the involved components must be evaluated. On the other hand, the final
code of the metaheuristic can be extremely complex. Thus, analysing and un-
derstanding its results becomes difficult, and this is often a very time consuming
task. Unexperienced designers usually tend to include more and more compo-
nents during the iterative design process of a metaheuristic, without evaluating
the usefulness of previously incorporated ones. We propose to have interme-
diate refining steps, during the design process, in order to help the designer
to obtain a simpler design with similar performance. Our motivation is to as-
sist the designer to make good decisions in order to produce an efficient meta-
heuristic (e.g. in terms of the solutions quality). In this paper, we study the
information produced by the tuners, and compare their ability in helping the
designer. We briefly revise published works related to this subject in section 2.

� This work is supported by the Fondecyt project 1120781 and Postdoctoral Fondecyt
project 3130754. Maŕıa Cristina Riff is partially supported by the Centro Cient́ıfico
Tecnológico de Valparáıso (CCTVal) No. FB0821.

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 90–99, 2014.
c© Springer International Publishing Switzerland 2014



Towards a Method for Automatic Algorithm Configuration 91

In section 3, we introduce the general problem when designing metaheuristics and
give a general idea on how design should be achieved. As a particular instance of
this idea, we show how we can use the Evolutionary Calibrator (EVOCA) [13]
and I-RACE [3] tuners that can work with categorical and numerical parame-
ters [10]. We provide details on how to use a collective strategy based on these
tuners in section 4. To evaluate our proposal, we use two well-known metaheuris-
tics: A genetic algorithm that solves the NK-landscapes problems (NK-GA) [11],
and a more complex one which is an artificial immune system algorithm that
solves multiobjective problems (MOAIS-HV) [12]. These metaheuristics have
already shown good performance to solve these kind of problems. Moreover,
MOAIS-HV has a quite complex implementation and uses several components
with several explicit and implicit parameters (not detailed in its description),
which makes it a very interesting case for our work. We give brief description
of both NK-GA and MOIAS-HV in section 5, as well as the results of a set of
experiments to evaluate our solution. This section also provide a statistical com-
parison between the results obtained using EVOCA and I-RACE tuners. It is
important to remark that our goal is not to find the best solution to the problem
to be solved, but to focus on the way to detect the components that are strictly
required from the ones that are unnecessary. Finally, we present the conclusions
and future work in section 6. The contributions of this paper are: A general
iterative method to select the best components and simplify the metaheuristic
code, a comparison of the suitability of the EVOCA and I-RACE tuners to help
into designing by refining of metaheuristics, and an in-depth analysis of the data
generated by both tuners which can be used to make better decisions during the
design process.

2 Related Work

Our approach shares much of its motivation with existing work on automated pa-
rameter tuning and algorithm configuration [5]. In automated parameter tuning
the design space is defined by an algorithm whose behavior is controlled by a set
of parameters, and the task is to find performance-optimizing settings of these
parameters. For this, various methods can be used ranging from well-known nu-
merical optimization procedures such as gradient-free CMA-ES algorithm [7] to
discrete approaches based on experimental design methods [2], response-surface
models [1] or stochastic local search procedures [8]. In automated algorithm con-
figuration, the design space is defined by an algorithm scheme that contains a
number of instantiable components, along with a discrete set of concrete choices
for each of these. It can be mapped as a tuning problem, in which categori-
cal parameters are used to select a set of components to instantiate the given
scheme. However, only ParamILS and a genetic programming procedure applied
to the configuration of local search algorithms for SAT [6] have been obtained
promising results. Our approach is also related to the hyperheuristic methods [4].
When designing hyperheuristics, the goal is to find a good design with sufficient
quality, and not to find the best algorithm. It is very useful to tackle real-world
problems which must be quickly solved.



92 E. Montero and M.-C. Riff

3 The Problem When Designing Metaheuristics

We can identify two problems when designing metaheuristics: The On-the-fly
design problem and the post-design problem or refining problem. The first one
occurs during the design process and is about the decisions to make when build-
ing efficient metaheuristics. Some of these decisions are related to the compo-
nents or procedures to append to the algorithm to improve its performance. The
On-the-fly Metaheuristic Design problem (OMD) can be stated as follows: given
an intermediate design step, the current code of a metaheuristic M , and a set
of candidate components S = {C1, . . . , Cn} to be included in M . The OMD
consists in finding a code M ′ for the metaheuristic using the selected compo-
nents among the already included and the new candidates, in order to improve
the performance of M . Unlike parameter control strategies, OMD problem is
focused on how solution tool is constructed by selecting useful components from
a set of possible options, like in a hyperheuristic approach.

The second problem occurs during post-design of the metaheuristic when we
are interested in simplifying its code without performance loss.

Fig. 1. Illustration of the designing problems

The Refining Metaheuristic Design problem (RMD) can be stated as follows:
given M , a target algorithm or metaheuristic, a set of parameters for the al-
gorithm and a set of input data. The RMD consists in finding a reduced code
for the metaheuristic which gives, at least, the same performance with the same
input data than M . Figure 1 illustrates both problems. For the OMD problem
(doted lines), when we are building My Code we evaluate the inclusion of new
components to improve its performance. After this evaluation a current code
Ccode is obtained, which can follows a new procedure of inclusion of new com-
ponents. For the RMD problem when the code is finished it follows an evaluation
step in order to identify, when this is possible, an alternative code which uses a
reduced number of its components but has at least the same performance.

4 Strategy to Use Tuners for Designing Metaheuristics

Collective Strategy : The key idea in the collective strategy is to generate a
competition between the components that we are evaluating. The role of the
tuner is to help us in the decision process. In this work we map RMD and
OMD to a configuration problem, where new parameters are introduced to the
algorithm in order to identify alternative designs for M . More formally,



Towards a Method for Automatic Algorithm Configuration 93

Definition 1. Given a metaheuristic code M , an instance of the problems con-
sists in a 6-tuple P = (M,S,Θ,Π, κmax,M

′), where S is the set of new binary
parameters introduced in M that allows to either turn on or off some compo-
nents. M ′ is the modified version of M that includes S. Θ is the configurations
space for M ′. Π is the set of input problem instances, g(θ,Π) is a function that
computes the expected gain (e.g., the quality of the solutions) of running M ′ us-
ing instance π ∈ Π when using configuration θ. κmax is a time out after which
all instances of M ′ will be terminated if they are still running.
Any configuration θ ∈ Θ is a candidate configuration of P . The gain of a candi-
date configuration θ is given by:

GP (θ) = meanπ∈Π(g(θ, π)) (1)

This definition considers the mean of gain induced by g(θ, π), but any other
statistic could be used instead (e.g. median, variance). Given GM , the gain of
metaheuristic M using its best parameter configuration, an alternative code
defined by the configuration θ∗ has a value GP (θ) such that:

GP (θ
∗) ≥ GM (2)

In this definition for the OMD problem M is the current code and M ′ also
includes the alternative components to be evaluated. For the RMD M is the
final metaheuristic code. We define the collective strategy as the evaluation of
the metaheuristic M ′ using different parameter configurations. For this strategy,
we use the tuner to obtain the P1, P2, . . . , Pk binary values that indicate which
of the k components must be turned on in the M ′ code. The evaluation of the
performance of the algorithm with its best set of parameters values is used to
decide whether or not the algorithm can be modified.

Definition 2. GivenM a metaheuristic with a performance GM andM1, . . . ,Ml

alternative algorithms with performances GM1(θ1), . . . , GMl
(θl) for a maximiza-

tion problem. Mi belongs to the set of alternative designs Sd if and only if
GMi(θi) ≥ GM . We define Mi as the best alternative design such that
GMi(θi) ≥ GMj (θj), ∀Mi,Mj ∈ Sd, i �= j

When two or more best alternative designs are identified, the decision will be to
use the simplest one. When we use the collective strategy during the post-design
we are looking for a possible alternative code that allows the metaheuristic M ′

to solve the problems as M does with at least the same performance, but using
a reduced number of its initial components. Given its stochastic nature, it is
noteworthy to mention that the refined algorithm could show better performance
than the initial one. When we use the collective strategy during the design we
are looking for a code M ′ which has better performance than M and is composed
by a new set of components.

4.1 How to Use Tuners during the Design Process

The designer usually follows an incremental procedure for the components se-
lection. At the beginning, the designer has a first set of components that he/she



94 E. Montero and M.-C. Riff

believes to be some good candidates to include in the code. The typical question
is therefore: Which of these components are more suitable to be included in my
code?. In other words, which of these components do have the best performance
to solve my problem. Using the collective strategy, the designer can determine
which are the best code alternatives according to the information provided by
the calibrator when using these components. Let’s call CCode the current code,
which corresponds to the best one obtained by this evaluation. Then, the de-
signer can add to the CCode a set of new components that he/she thinks they
could improve the metaheuristic. A new evaluation is made with the collective
strategy to determine which components among the previously selected and the
new ones allows the algorithm to have the best performance, that is which is the
best alternative for the new CCode. Note that all the components can be turn
on or off during the evaluation and therefore, previous selected ones may be dis-
carded at this step. This is mainly because some new components could do the
same search than previous selected ones, but more efficiently. The same process
is repeated until the designer does not have more components to add. The final
CCode is then the best one determined by the collective strategy. Figure 2 shows
an example where 4 components (C1, C2, C3, C4) are initially considered to be
included into the code. The information provided by the calibrator allows to
select a CCode that includes (C1, C2) as the best alternative. Then, in a second
step, the designer considers to include components (C5, C6, C7) into the code.
The evaluation of the tuner suggests to include components (C6, C7), but in this
case to discard C1 which has been selected in the previous step. The design pro-
cess continues until obtaining a Final Code of high quality. Many other design
options can be considered. For instance, the inclusion of a component associated
to a particular method could be easily evaluated together. Moreover, it is also
possible to consider the inclusion of a component that was previously discarded
before and to evaluate its inclusion at the current time of the design process.

Components
selection

Components
selection

Components
selection

Evaluation

TUNER

Initial Components

C1,C2,C3,C4

CCode
(C1,C2)

Evaluation

TUNER

New Components

C5,C6,C7

CCode
(C2,C6,C7)

Evaluation

TUNER

New Components

C8,C9

Final Code
(C2,C6,C9)

Parameters Parameters Parameters

Fig. 2. Example for using the Collective Strategy

5 Experiments

The purpose of these experiments is to analyse different scenarios of using the col-
lective strategy. Any tuning method able to calibrate categorical parameters can



Towards a Method for Automatic Algorithm Configuration 95

be used by our framework: sampling,model-based, screening ormeta-evolutionary
methods [5]. In our studyweconsider the following I-RACE [2] and theEVOCA[13]
tuners.

I-RACE or Iterated F-Race: Iterated F-Race1. is an iterative version of F-Race
algorithm [2]. At each iteration, Iterated F-Race uses a number of surviving
candidate parameter configurations to bias the sample of new candidate con-
figurations. Iterated F-Race follows the framework of model-based search: (1)
construct a candidate solution based on some probability model; (2) evaluate all
candidates and (3) update the probability model of biasing the next sample.

The EVOlutionary CAlibrator: EVOCA2 is itself an evolutionary algorithm that
works with a population of parameter configurations. It uses two operators.
Wheel-crossover constructs one child from the whole population. The child re-
places the worst individual in the current population. The mutation operator is
a hill climbing procedure. The child generated by mutation replaces the second
worst individual in the current population, when finding a better individual.

5.1 Experiments with NK-GA

For these experiments we use a genetic algorithm that solves unrestricted NK
landscape problems [9], proposed in [11].

NK-GA: This genetic algorithm (GA) evolves a population of fixed-length bi-
nary strings. New solutions are created by applying variation operators to the
population of selected solutions. The algorithm has three genetic operators bit-
flip mutation, uniform crossover and two-point crossover.

Test Suite: We perform our experiments using a set of unrestricted NK land-
scape instances with k ranging from k = 2 to k = 6. A total number of 15
problem categories are considered. The minimization of the number of evalua-
tions required by the genetic algorithm to solve all the instances is considered as
a criteria to evaluate the parameter configuration. We consider a budget of 3500
runs for both tuners. We focus here on the use of the three genetic operators:
Uniform crossover(U), two-points crossover (T) and bit-flip mutation (M). We
run each tuner 20 times and we show the best 5 results as well as the execution
time in table 1. For both tuners, the set of alternative designs Sd includes com-
binations that use less components than the original algorithm. They solve all
the instances. Thus, using both tuners we can identify that both crossover com-
ponents are not necessary to the algorithm for solving the 15 categories of the
problem. We can also remark that using only one or two components instead of
the three initial ones neither implies a significant increase of the number of eval-
uations nor of the execution time. In conclusion, both the uniform crossover and
the two-points crossover are not strictly necessary to the algorithm performance.
Similar results were obtained using a reduced number of NK-GA evaluations.

1 I-RACE is available from CRAN , http://cran.r-project.org
2 EVOCA is available in our website comet.informaticae.org

http://cran.r-project.org
comet.informaticae.org


96 E. Montero and M.-C. Riff

Table 1. Algorithms selected by EVOCA and I-RACE

EVOCA I-RACE
Average Average Average Average Average Average

solved success Evaluations Time [s] solved success Evaluations Time [s]

UM 15 100 116.2 0.01 UTM 15 100 106.3 0.01
M 15 100 121.0 0.01 UTM 15 100 113.1 0.01
UTM 15 100 125.6 0.01 UTM 15 100 122.5 0.01
TM 15 100 131.4 0.01 M 15 100 137.4 0.01
UM 15 100 144.5 0.01 UM 15 100 141.1 0.01

5.2 Experiments with MOAIS-HV

We now use the MOAIS-HV algorithm proposed in [12] to solve multiobjective
optimization problems, to show the effectiveness of our proposal.

MOAIS-HV: The main idea of MOAIS-HV is to maintain an online population
of antigens and antibodies. In this case antigens are considered to be good qual-
ity solutions and antibodies are the bad ones. The antigens are cloned and a
mutation operator is applied. The mutated clones and the best antigens found
are merged and the size of the main population is maintained by discarding
individuals that contribute the least to maximize the hypervolume.

Test Suite: In this case, we want to analyze the design of the MOAIS-HV’s
hypermutation process. In MOAIS-HV, hypermutation is applied to each vari-
able according to a probability value. Each time a variable has to be mutated,
the probability is recomputed. This probability indicates a trade-off between the
Global Gaussian (G) and the Local Gaussian (L). The probability changes as the
algorithm goes on and the hypermutation will perform more/less local searches.
The changing probability criteria is based on the computation of a complex for-
mula that uses explicit and some implicit values which are obtained by other
procedures on the code.

The goal of our experiments is to analyse if the algorithm really needs this
complex hypermutation process. We evaluate the use of the Global and the Local
mutation to obtain a good performance. We also evaluate if it is really required
to change the probability of using L during the search. For our experiments we
use well-known 2-objectives standard functions: zdt1-zdt4, zdt6 and 3 objec-
tives: dtlz1-dtlz7. These are the same functions used by the authors to introduce
MOAIS-HV. For the 2-objectives functions, we consider a population of size 100
and a maximum of 200 iterations. For the 3-objectives functions, the population
size is 200, and there is a maximum of 500 iterations. The test consists in the
maximization of the hypervolume of the previously mentioned functions. This
maximization is used to evaluate each configuration. Source code of MOAIS-
HV is also available in our website3. In this experiment, we want to evaluate
both the inclusion of the three components in the code: Global mutation(G),

3 comet.informaticae.org

comet.informaticae.org


Towards a Method for Automatic Algorithm Configuration 97

Table 2. Algorithms and their performance found by EVOCA and I-RACE

EVOCA I-RACE
Algorithm Average Average Algorithm Average Average

Hypervolume Time [s] Hypervolume Time [s]

LR 0.790047 1.29 GR 0.777034 1.73
GL 0.775806 1.32 GLR 0.789478 1.81
LR 0.786416 1.71 GLR 0.787906 1.72
LR 0.781908 1.82 GLR 0.789524 1.80
GLR 0.781233 1.80 GLR 0.784471 1.43
GLR 0.784627 1.69 GLR 0.789200 1.64
GLR 0.783951 1.68 GLR 0.789115 1.67
GLR 0.785932 1.69 GLR 0.789502 1.63
GLR 0.784209 1.68 GLR 0.785856 1.64
LR 0.787449 1.65 GLR 0.789323 1.68
GLR 0.785943 1.69 G 0.780221 1.65
GLR 0.784256 1.67 GLR 0.780044 1.67
LR 0.790048 1.66 GLR 0.786530 1.67
GL 0.784752 1.67 GLR 0.788129 1.64
LR 0.790048 1.66 GLR 0.788683 1.67

Local mutation(L) and Random mutation(R) and the method to apply them.
Thus, we initially consider a code where the mutation components have the same
fixed and equally probability to be applied. The tuning process considers all the
functions together. When using EVOCA, the relative difference to the best solu-
tion found was used to compare the performance of different test functions. For
both tuners, 12000 runs are set as maximum budget.

Analysis: Table 2 shows the algorithms found by EVOCA and I-RACE, their
execution times and the performance measured in their 15 executions. The per-
formance is the average hypervolume of 50 runs with different seeds. Differences
in performance when the same algorithms were selected are due to differences in
the parameters values tuned at each execution. For EVOCA, the best code uses
the Local and Random Mutation, and a fixed probability value. For I-RACE,
the best option uses the three mutations, also with a fixed probability value.
This code also improves the average performance of the MOAIS-HV, but less
significantly than the algorithm selected by EVOCA.

Statistical Evaluation: Table 3 shows the statistical analysis indicators obtained
usingWilcoxon test. Considering p-value=0.05, the algorithms identified by both,
EVOCAand I-RACE, outperform the original algorithm.Moreover, EVOCA’s al-
gorithm in 364 cases is better than original MOAIS-HV and I-RACE’s algorithm
in 336. Table 4 shows the performance obtained by the algorithm when solving
each function. We observe that both, the original algorithm and the algorithm
found by I-RACE, obtained the best performance in 3 functions, and the algo-
rithm defined by EVOCA shows a better performance in 6 functions. In terms
of the execution time, the algorithm selected using EVOCA and the one using
I-RACE are similar. In both cases the code obtained is much simpler than the



98 E. Montero and M.-C. Riff

Table 3. Wilcoxon ranks

MOAIS-HV - EVOCA MOAIS-HV - I-RACE

Ranks N Mean Rank Sum of Ranks N Mean Rank Sum of Ranks

Negative Ranks 364 322.80 117497.5 336 346.90 116559.0
Positive Ranks 179 168.71 30198.50 208 152.31 31681.00
Ties 57 56
Total 600 600

Statistics

Z -11.93 -11.57
Asymp. Sig. (2-tailed) 0.00 0.00

Table 4. Performance comparison

Function MOAIS-HV EVOCA’s Algorithm I-RACE’s Algorithm

zdt1 0.871372 0.868736 0.870774
zdt2 0.538028 0.535536 0.537482
zdt3 1.328516 1.326314 1.327164
zdt4 0.814616 0.825334 0.813102
zdt6 0.504312 0.504320 0.504300
dtlz1 0.314374 0.316040 0.316274
dtlz2 0.744758 0.748010 0.747234
dtlz3 0.670666 0.735176 0.741356
dtlz4 0.741330 0.749178 0.749238
dtlz5 0.434040 0.434300 0.431530
dtlz6 0.431980 0.437506 0.436822
dtlz7 1.987018 2.000120 1.999014

original one with a same or best level of performance. There is especially no
more complex formula to compute the dynamic probability for the mutations.

6 Conclusions and Future Work

In this work, we have analysed two problems about the metaheuristics design.
The On-the-fly metaheuristics design problem (OMD) occurs during the de-
sign process and the Refining Metaheuristics Design problem (RMD) which is
a post-design problem. The OMD problem, which concerns the selection of the
components and methods to include in the code is always present when designing
metaheuristics, but the RMD problem does not always necessary and strongly
depends on the designer goals. We have compared two well-known tuners to help
the designer during the evaluation process, but any tuning method able to work
with categorical parameters can be used. We have evaluated the code selected
by EVOCA and I-RACE for two metaheuristics: a genetic algorithm (NK-GA)
and an artificial immune algorithm (MOAIS-HV). Both tuners have shown to be
able to detect the most suitable components, and to produce simpler and effi-
cient algorithms. Moreover, in terms of the performance, there is not a statistical
significant difference between their identified algorithms. The results obtained
indicate the suitability of both tuners for helping the designer evaluation task



Towards a Method for Automatic Algorithm Configuration 99

and could be used in the future for including on a framework for automatic
configuration algorithms or hyperheuristics.

Acknowledgment. We thank Dr. Carlos Coello for MOAIS-HV code and Mrs.
Leslie Pérez for her support with I-RACE implementation.

References

1. Bartz-Beielstein, T.: Experimental Research in Evolutionary Computation—The
New Experimentalism. Natural Computing Series. Springer (2006)

2. Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A Racing Algorithm for
Configuring Metaheuristics. In: Proceedings of the Genetic and Evolutionary Com-
putation Conference, pp. 11–18. Morgan Kaufmann, USA (2002)

3. Birattari, M., Yuan, Z., Balaprakash, P., Stützle, T.: F-Race and Iterated F-Race:
An Overview. In: Bartz-Beielstein, T., Chiarandini, M., Paquete, L., Preuss, M.
(eds.) Experimental Methods for the Analysis of Optimization Algorithms, pp.
311–336. Springer, Heidelberg (2010)

4. Burke, E., Kendall, G., Newall, J., Hart, E., Ross, P., Schulenburg, S.: Hyper-
heuristics: An emerging direction in modern search technology. In: Glover, F.,
Kochenberger, G. (eds.) Handbook of Metaheuristics. International Series in Oper-
ations Research & Management Science, vol. 57, pp. 457–474. Springer, US (2003)

5. Eiben, A.E., Smit, S.K.: Parameter Tuning for Configuring and Analyzing Evolu-
tionary Algorithms. Swarm and Evolutionary Computation 1(1), 19–31 (2011)

6. Fukunaga, A.: Automated Discovery of Composite SAT Variable Selection Heuris-
tics. In: Proceedings of the National Conference on Artificial Intelligence (AAAI),
pp. 641–648 (2002)

7. Hansen, N., Kern, S.: Evaluating the CMA Evolution Strategy on Multimodal Test
Functions. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J.,
Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN
2004. LNCS, vol. 3242, pp. 282–291. Springer, Heidelberg (2004)

8. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: An Automatic
Algorithm Configuration Framework. Journal of Artificial Intelligence Research 36,
267–306 (2009)

9. Kauffman, S.A.: Adaptation on Rugged Fitness Landscapes. Lecture Notes in the
Sciences of Complexity 1, 527–618 (1989)

10. Montero, E., Riff, M.C., Neveu, B.: A Beginner’s Guide to Tuning Methods. Ap-
plied Soft Computing 17(0), 39–51 (2014)

11. Pelikan, M.: Analysis of Estimation of Distribution Algorithms and Genetic Algo-
rithms on NK landscapes. In: Proceedings of the 10th Annual Conference on Ge-
netic and Evolutionary Computation, GECCO, pp. 1033–1040. ACM, USA (2008)

12. Pierrard, T., Coello Coello, C.A.: A Multi-Objective Artificial Immune System
Based on Hypervolume. In: Coello Coello, C.A., Greensmith, J., Krasnogor, N.,
Liò, P., Nicosia, G., Pavone, M. (eds.) ICARIS 2012. LNCS, vol. 7597, pp. 14–27.
Springer, Heidelberg (2012)

13. Riff, M.C., Montero, E.: A New Algorithm for Reducing Metaheuristic Design
Effort. In: IEEE Congress on Evolutionary Computation (CEC 2013), Cancún,
México, pp. 3283–3290 (June 2013)


	Towards a Method for Automatic Algorithm
Configuration: A Design Evaluation Using Tuners

	1 Introduction
	2 Related Work
	3 The Problem When Designing Metaheuristics
	4 Strategy to Use Tuners for Designing Metaheuristics
	4.1 How to Use Tuners during the Design Process

	5 Experiments
	5.1 Experiments with NK-GA
	5.2 Experiments with MOAIS-HV

	6 Conclusions and Future Work
	References




