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Abstract. In this work we investigate the usage of feedforward neural
networks for defining the genotype-phenotype maps of arbitrary con-
tinuous optimization problems. A study is carried out over the neural
network parameters space, aimed at understanding their impact on the
locality and redundancy of representations thus defined. Driving such an
approach is the goal of placing problems’ genetic representations under
automated adaptation. We therefore conclude with a proof-of-concept,
showing genotype-phenotype maps being successfully self-adapted, con-
currently with the evolution of solutions for hard real-world problems.
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1 Introduction

Automated design of Evolutionary Algorithms (EAs) has been on the research
agenda of the Evolutionary Computing community for quite some years by now.
The two major approaches for finding good values for the numeric and/or sym-
bolic parameters (a.k.a. EA components) are parameter tuning and parameter
control, employed before or during the run, respectively. The current state of the
art features several techniques to find ‘optimal’ values or instances, for all pa-
rameters and components, with one notable exception: the genotype-phenotype
(G-P) mapping, a.k.a. the representation. In contrast to all other parameters
related to selection, variation, and population management, there are only a
handful of papers devoted to adapting representations. Considering the widely
acknowledged importance of having a good representation, the lack of available
techniques to ‘optimise’ it is striking. One could say that the challenge of tuning
and/or controlling the representation in an EA is the final frontier in automated
EA design.

In this paper we investigate the possibility of using adjustable genotype-
phenotype maps for continuous search spaces. In particular, we propose neu-
ral networks (NN) as the generic framework to represent representations (i.e.,
NNs as a meta-representation). This means that for a given phenotype space
Φp ⊂ IRn and a genotype space Φg ⊂ IRm the set of all possible representations
we consider is the set of all NNs mapping Φg to Φp.
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In the technical sections of the paperwe investigate this approach,with regard to
its expressiveness, and learnability. Informally, we consider a meta-representation
expressive if it is versatile enough to define a wide range of transformations, grant-
ing it the potential power to restructure arbitrary fitness landscapes into more effi-
ciently explorable genotype spaces for the underlying optimizer.As for learnability,
we are pragmatic. All we want to demonstrate at this stage, is the existence of a
learning mechanism that can change the NN during the run of the given EA, in
such a way that the EA performance (measured by solution quality) is improved.
Thus, in terms of the classic tuning-control division, we want to demonstrate the
existence of a good control mechanism for NN-based representations.

2 Related Work

A fundamental theoretical result by Liepins & Vose [7], shows that “virtually
all optimizable (by any method) real valued functions defined on a finite do-
main [are] theoretically easy for genetic algorithms given appropriately chosen
representations”. However, “the transformations required to induce favorable
representations are generally arbitrary permutations, and the space of permuta-
tions is so large that search for good ones is intractable”. Nevertheless, [7] still
calls for research into approaches that adapt representations at a meta-level.
In particular, [7] shows affine linear maps to provide sufficient representational
power to transform fully deceptive problems into easy ones.

In the over two decades since [7], a vast body of work emerged, addressing
ways to automatically adapt and control all sorts of Evolutionary Algorithm
components [4,8]. The genetic representation, and its genotype-phenotype map,
however, despite their recognized role as critical system components, have only
sporadically been addressed in the literature. De Jong, in [2], considers that
“perhaps the most difficult and least understood area of EA design is that of
adapting its internal representation.”

In a series of papers culminating in [3], Ebner, Shackleton & Shipman pro-
posed several highly-redundant G-P maps, the cellular automaton (CA) and ran-
dom boolean network (RBN) mappings, in particular, being of special relevance
to the present research. In them, chromosomes are composed of a dynamical
system’s definition (CA or RBN rule table, and also the cell connectivity graph
in the case of RBN), along with the system’s initial state. Decoding into the
phenotype space takes place by iterating the dynamical system for a number of
steps, from its initial state, according to the encoded rule table.

3 Neural Networks as Genotype-Phenotype Maps

We have chosen to use neural networks as the basis of our approach for two
reasons. First, they are global function approximators. In principle, they are ca-
pable of expressing any possible G-P map (given a sufficiently large number of
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hidden layer neurons). Second, they are learnable, even evolvable. There is much
experience and know-how about ‘optimising’ neural nets by evolution [5,11].

Formally, and following Rothlauf’s notation [9, Sec. 2.1.2], we then have that,
under an indirect representation scheme, evolution is guided by a fitness func-
tion f that is decomposed into a genotype-phenotype map fg, and a phenotype-
fitness mapping fp. Genetic operators such as recombination and mutation are
applied over genotypes xg ∈ Φg (where Φg stands for the genotypic search
space). A genotype-phenotype map fg : Φg → Φp decodes genotypes xg into
their respective phenotypes xp ∈ Φp (where Φp is the phenotypic space), and
fitness assignment takes place through fp : Φp → IR, which maps phenotypes
into fitness values. In summary, individuals in the population of genotypes are
evaluated through f = fp ◦ fg, the fitness of a genotype xg being given by
f(xg) = fp(fg(x

g)). When considering an EA that searches in a continuous
genotypic space, for solutions that decode into continuous phenotypes, we then
have that Φg ⊂ IRm, and Φp ⊂ IRn, where m and n stand, respectively, for the
dimensionalities of the considered genotypic and phenotypic spaces. A genotype-
phenotype map is then a transformation fg : IRm → IRn.

Let N be a fully connected, feedforward neural network with l layers and dk

neurons on its k-th layer (k = 1..l). If Lk is the vector representing the states of
the dk neurons in its k-th layer, then the network’s output can be determined
through

Lk
i = σ(bki +

dk−1∑

j=1

wk
ijLk−1

j ), i = 1..dk,

where bk represents the biases for neurons in the k-th layer, and wk
i the weights

given to signals neuron Lk
i gets from neurons in the preceding layer. A sigmoidal

activation function σ(y) = 1/(1 + e−y) is used throughout this paper. The net-
work’s output, Ll, is then uniquely determined through b, w, and L1, the input
vector fed to its input layer.

Without loss of generality, in the sequel we assume that the given phenotype
space is an n dimensional hypercube. (If needed, the interval [0, 1] can be mapped
with a trivial linear transformation to the actual user specified lower and upper
bounds for each variable under optimization.) Using a neural network as a G-P
map, we then obtain a setup where the number of output neurons dl = n and

the mapping itself is fg : [0, 1]d
1 → [0, 1]d

l

. To specify a given G-P mapping
network we will use the notation N (mp,ma), where mp and ma are the map
parameters1 and map arguments, defined as follows. The vector mp ∈ [−1, 1]d

contains the definition of all weights and biases in the network, while the vector
ma designates the input vector fed into the network. With this notation, we
obtain a formal framework where genotypes are map arguments to the neural
net and the representation is fg = N (mp, .). Given a genotype xg ∈ [0, 1]d

1

, the

corresponding phenotype is fg(x
g) = N (mp, x

g) ∈ [0, 1]d
l

.
As shorthand for a considered NN architecture, we will use notation such as

30-5-10, to indicate a fully connected feeedforward neural network with l = 3

1 “Map parameters” named by analogy with the strategy parameters (e.g., standard
deviations of a Gaussian mutation) traditionally used in Evolution Strategies.
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layers, having d1 = 30 neurons in its input layer, d2 = 5 neurons in the hidden
layer, and d3 = 10 neurons in the output layer (Φg = [0, 1]30, Φp ⊂ IR10).

4 Expressiveness

The expressiveness challenge facing a representation of G-P maps, is that of
ensuring the “language” used to represent representations supports the specifi-
cation of widely distinct transformations between both spaces. Given our use of
neural networks to represent G-P maps, and the knowledge that their expres-
siveness needs to be traded-off with their learnability, we will then address the
following research question:

– what is the expressiveness retained by small to medium sized neural net-
works?

We will focus our analysis on two often-studied representation properties: local-
ity and redundancy [9,1]. A representation’s locality [9, Sec. 3.3] describes how
well neighboring genotypes correspond to neighboring phenotypes. In a repre-
sentation with perfect (high) locality, all neighboring genotypes correspond to
neighboring phenotypes. Theoretical and experimental evidence [9,1] support
the view that high locality representations are important for efficient evolution-
ary search, as they do not modify the complexity of the problems they are used
for. A redundant encoding, as the name implies, provides multiple ways for a
phenotype to be encoded in the genotype. In [9, Sec. 3.1] different kinds of re-
dundancies are identified, the advantages and disadvantages of each one being
then subjected to theoretical and experimental study.

4.1 Map Characterization

We characterize here the expressive power of different NN architectures, in terms
of the locality and redundancy of the G-P maps they can define. We conduct our
analysis over the G-P map design space, by sampling random NN configurations
within given architectures.

Setup. The G-P map design space is explored by randomly sampling (with
uniform probability) NN weights and biases, in the range [−1, 1], thus providing
the definition of map parameters, mp. We follow by generating a large number
of map arguments, ma (10000, to be precise), in the range [0, 1], according to
a quasi-random distribution. Sobol sequences are used to sample the genotype
space (ma ∈ Φg), so as to obtain a more evenly spread coverage. The ma scat-
tered in the genotype space are subsequently mapped into the phenotype space.
The Euclidean metric is used to measure distances between points within both
the genotype and phenotype spaces.

The analysis conducted here is fitness function independent, but for illustra-
tion purposes (Figure 1), and for defining the phenotypic space in which distances
will be measured, we consider the well known Rastrigin function2.

2 Rastrigin: fp(x
p
1, . . . , x

p
n) = 10n+

∑n
i=1

[
(xp

i )
2 − 10 cos(2πxp

i )
]
, Φp = [−5.12, 5.12]n.
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Fig. 1. Genotype-phenotype maps de-
fined by 2-32-2 (left) and 6-2-2 (right)
neural networks. Shown: fitness land-
scapes at the genotype (bottom) and phe-
notype (middle) levels, along with posi-
tioning of the representable phenotypes
within the genotype space (top). Green
star indicates a possible input (ma) to
the G-P map, and scattered points show
solutions reachable through mutations of
fixed magnitude to either just that ma,
or also to the G-P map’s definition (mp).

Measuring locality. We characterize the locality of representations definable by
a given neural network architecture, by randomly sampling the space of possible
network configurations (mp) in that architecture. A sample of 1000 points is
taken, out of the 10000 ma given by the Sobol sequence (mentioned above),
and a mutated version generated. A mutation is always a random point along
the surface of the hypersphere centered on the original genotype, and having a
radius equal to 1% the maximum possible distance in the Φg hypercube. The
mutated ma is mapped into the phenotype space, and its distance there to
the original point’s phenotype measured. Given we wish to consider phenotype
spaces having distinct numbers of dimensions, and importantly, given the fact
that each different G-P map encodes a different subset of the phenotype space,
it becomes important to normalize phenotypic distances, in a way that makes
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them comparable. To that end, we identify the hyperrectangle that encloses
all the phenotypes identified in the initial scatter of 10000 points, and use the
maximum possible distance value there to normalize phenotype distances.

Measuring redundancy. To characterize a representation’s redundancy, we will
want to relate phenotypes to the distinct genotypes capable of encoding them.
In a representation with high locality, the extent to which dissimilar genotypes
express similar phenotypes, provides an indication of its redundancy.

Given a randomly generated NN, and the set of 10000 solutions sampled in
genotype space through a Sobol sequence (as previously described), we ran-
domly select 200 of the obtained phenotypes. For each, we perform a k-Nearest
Neighbor search, in phenotype space, for its 5 closest phenotypes. Having all
our phenotypes been obtained from known genotypes, we are then able to map
those nearest neighbors back to the genotypes that led to their expression. One
data point in our analysis is then composed of the distances in both genotype
and phenotype spaces, between a queried solution, and one of those neighbors.
Analysis of one NN is in this setup then given by 200 · 5 data points. To al-
low for comparisons of distances across NN architectures, phenotype distances
are normalized over the maximum possible distance within the hyperrectangle
enclosing the space of 10000 phenotypes obtained through the Sobol process.
Additionally, also distances in genotype space are normalized, in this case over
the maximum possible distance within the d1-dimensional hypercube.

Results. Figure 1 shows the mappings defined by two randomly defined G-P
maps (plots obtained by spreading an evenly spaced grid of 106 ma in genotype
space, mapping them to phenotype space, and evaluating them). Top panels
show the phenotypes expressible by each G-P map, color coded based on the ma

that led to their expression. The continuous color gradients observed in each case
show that nearby genotypes are being decoded into nearby phenotypes, and are
therefore evidence of two high locality representations (low locality would have
resulted in a randomization of the colors present in small neighborhoods). In
Figure 1 (top left) we see a genotype space that folds on itself as it gets mapped
onto the phenotype space, leading some of its expressible phenotypes to become
redundantly representable, as seen in the bottom and middle panels.

Figure 2 characterizes the locality of representations definable by different NN
architectures. Each of the shown distributions was obtained by analyzing 1000
randomly generated G-P maps having that architecture, and thus represents a
total of 106 measured phenotype distances. We consistently observe high locality
representations resulting from all studied NN architectures: a mutation step of
1% the maximum possible distance in genotype space is in all cases expected
to take us across a distance in phenotype space of at most ∼ 1% the maximum
possible distance among phenotypes representable by the considered G-P map.

Figure 3 characterizes the redundancy of representations definable by different
NN architectures. Each of the shown bivariate distributions was obtained by an-
alyzing 1000 randomly generated G-P maps having that architecture, and thus
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Fig. 2. Locality of representations
expressible by different sized neural
networks. Shown: empirical cumulative
distribution functions of distances in phe-
notype space between pairs of neighbor-
ing genotypes.

Fig. 3. Redundancy of representations
expressible by different sized neural net-
works. Shown: multivariate distribution
relating a phenotype’s distance to one of
its k-nearest neighbors, with the distance
at which the pair lies in genotype space.

represents a total of 106 measured phenotype and genotype distances. We clearly
see the number of neurons in the input layer as the primary factor determining the
expected degree of redundancy in NNs sampled according to a given architecture.
Nearest neighbors, which in all cases lie at approximately the same distance in
phenotype space (on average, 2 to 6% the span of possible distances in Φp), turn
out to be representable through genotypes at distances between themselves going
on average from roughly 10, to 25, and 40% the span of possible distances in Φg,
as the number of input neurons grows from 5 to 30.

Discussion. The view emerging from these results is that NN-based G-P maps,
as defined in Section 3, tend to generate high-locality representations, with a
tuneable degree of expected redundancy.

Given a random G-P map, its genotype space will most likely decode into
a limited region of the full phenotype space (as seen in Figure 1). This could
be problematic if G-P maps were to be defined off-line, for unknown search
spaces, where the risk of being unable to express the global optimum would be
considerable. In an on-line adaptation scenario, however, the G-P map is instead
at every point of the search devoting its resources to learning a representation of
a momentarily relevant portion of phenotype space, while retaining the power to
adapt itself, towards expression of newly identified superior phenotypic regions.

5 Learnability

In this section we want to establish the existence of a learning mechanism, that
can change the NN-based G-P map during the run of a given EA, in such a way
that the EA performance (measured by solution quality) is improved.
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When designing a suitable learning mechanism we face a couple of principal
decisions, namely: which learning mechanism to use, and how to measure G-P
maps’ quality, so as to steer the learning mechanism towards superior ones?
We answer these questions by employing a self-adaptation scheme, whereby the
parameter vector that specifies a G-P map, mp, is added to the chromosome
and co-evolves with the solution (ma). By the very nature of self-adaptation,
this option elegantly solves the second problem. In particular, we do not need
to specify an explicit quality measure for the G-P map. Instead, the G-P map is
evaluated implicitly: it is good if it leads to good solutions.

In neuroevolution, recombination-based EAs are known to face some difficul-
ties when optimizing NNs. This is known as the competing conventions problem
[5,11]. To avoid this problem, we decide to use a mutation-only EA.

Having made these choices, the issue of learnability addressed in this section
can now be phrased as follows:

– can a self-adaptive mechanism within a mutation-only EA effectively learn
useful G-P mappings that lead to increased EA performance?

5.1 Experimental Evaluation

We experimentally evaluate here the performance achieved by EA setups that
self-adapt G-P maps, through comparison with identical optimizer setups that
work instead directly over the phenotype space.

Setup. Our experimental validation compares, for the same problem, optimiza-
tion using a direct representation xg = xp, against optimization using an indirect
representation, where a NN-based G-P map is self-adapted in the chromosome,
together with its input, xg = [mp,ma].

We evaluate the different setups by searching for solutions to the Cassini 1 and
Messenger full problems. These are difficult, real-world problems, of spacecraft
interplanetary trajectory design. Their full specification can be found online,
in the GTOP Database [10]3. In the indirect representation experiments we
demonstrate the usage of distinct neural network architectures: in Cassini 1
we ask the optimizer to learn and exploit highly redundant encodings of the
phenotype space, by using 20-3-6 G-P maps; In Messenger full we ask it instead
to learn minimally redundant, lower dimensional projections of the problem’s 26-
dimensional phenotype space, by using 2-2-26 G-P maps.

We make use of the Improved Fast Evolutionary Programming (IFEP) algo-
rithm introduced in [12], extended with the success rate based dynamic lower
bound adaptation (DLB1) described in [6]. The optimizer was tuned as follows:
population size μ = 25, and tournament size q = 2. The strategy parameters
in individuals’ chromosomes, which parameterize their mutation operators, were
initialized to values of η = 0.03, and had initial lower bounds of η = 0.015,
adapted by DLB1, every 5 generations, using a reference success rate of A = 0.3.

3 http://www.esa.int/gsp/ACT/inf/projects/gtop/gtop.html

http://www.esa.int/gsp/ACT/inf/projects/gtop/gtop.html
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Fig. 4. Comparison of direct and indirect representations on the Cassini 1 (left) and
Messenger full (right) problems. Shown: empirical cumulative distribution functions of
the best fitness value reached in an EA run.

In each IFEP run, evolution proceeded for a total of 5000 generations. IFEP has
each parent generating two mutated offspring, one according to a Gaussian, and
another according to a Cauchy distribution4. As such, 50 solutions were gener-
ated per generation, leading to a total of 250000 fitness evaluations per run. The
indirect representation setups used bounds of mpi ∈ [−1, 1], and mai ∈ [0, 1]. For
increased fairness in the comparison between direct and indirect representations,
chromosomes were in both cases normalized at the optimizer level, into the unit
hypercube, xg ∈ [0, 1]d, and scaled back at decoding and evaluation time.

Results. Figure 4 presents the distributions of best found solutions’ fitness
values, in 100 independent EA runs performed under each optimization setup.

Both Cassini 1 and Messenger full are minimization problems. In Cassini 1 we
see a median fitness of 11.9 being found with a direct representation, and 11.2
with an indirect one. Peak performance was however lower on the indirect rep-
resentation runs: 5.3, against 5.1 for the direct representation. In Messenger full
the indirect representation improved median performance from 17.4, to 15.9, as
well as peak performance (7.9, against 8.8). We see also in it a considerable
improvement to worst case performance (from 32.0 to 25.4).

Analysis. Extending chromosomes with the definition of their own G-P maps,
naturally places a significant burden on top of the optimization process: Cassini
1 goes from being a 6-dimensional optimization problem in the direct represen-
tation case, to a 107-dimensional one when simultaneously learning a 20-3-6

G-P map. Similarly, the Messenger full problem goes from 26 to 86 dimensions
when adding a 2-2-26 G-P map. Still, as seen in Figure 4, EA performance is
matched, or even surpassed, by the G-P maps’ addition.

Back in Section 4 we saw in Figure 1 (middle panels), regarding mutation
over vectors containing [mp,ma], that it is possible to conduct a robust search
simultaneously over the G-P map’s definition, and its inputs: mutated offspring
tend to encode phenotypes in the vicinity of those of their parents. The results
reported in this section show that such variation, in an evolutionary setting,

4 The lognormal self-adaptation of strategy parameters employed by EP is not used in
the indirect representation setups to adapt the (also self-adapted) map parameters.
Instead, their variation takes place through the Gaussian (or Cauchy) mutation.
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indeed allows for the self-adaptation of G-P maps to take place concurrently
with the search for problem solutions.

6 Conclusion

We investigated the usage of neural networks as a meta-representation, suited
to the encoding of genotype-phenotype maps for arbitrary pairings of fitness
landscapes and metaheuristics that are to search on them.

Small to moderately sized feedforward neural networks were found to define,
on average, high locality representations (where structure of the phenotypic fit-
ness landscape is locally preserved in the genotype space), and having a degree
of redundancy tuneable through the number of neurons in the input layer.

An exploration into the feasibility of evolving genotype-phenotype maps, con-
currently with the problem solution, showed this to be a viable approach.
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