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Abstract. The “end-game” of evolutionary optimisation is often largely
governed by the efficiency and effectiveness of searching regions of space
known to contain high quality solutions. In a traditional EA this role is
done via mutation, which creates a tension with its other different role of
maintaining diversity. One approach to improving the efficiency of this
phase is self-adaptation of the mutation rates. This leaves the fitness
landscape unchanged, but adapts the shape of the probability distri-
bution function governing the generation of new solutions. A different
approach is the incorporation of local search – so-called Memetic Al-
gorithms. Depending on the paradigm, this approach either changes the
fitness landscape (Baldwinian learning) or causes a mapping to a reduced
subset of the previous fitness landscape (Lamarkian learning). This pa-
per explores the interaction between these two mechanisms. Initial results
suggest that the reduction in landscape gradients brought about by the
Baldwin effect can reduce the effectiveness of self-adaptation. In contrast
Lamarkian learning appears to enhance the process of self-adaptation,
with very different behaviours seen on different problems.

1 Introduction

Evolutionary Algorithms (EAs) are a class of population-based global search
heuristics that have proved highly successful in many optimisation domains [5].
Randomised mutation and crossover operators create a non-uniform probability
distribution function (pdf) over the search space for sampling new candidate so-
lutions. The shape of this pdf is governed by a parent pool selected from the cur-
rent population, the choice of recombination and mutation operators, and their
associated parameters. A broader pdf allows exploration of the search space, and
hence the ability to escape local optima. A narrower pdf allows exploitation of
hard-won information by focussing sampling in the vicinity of promising solu-
tions. The way in which the trade-off between these two factors is managed has
a major impact on both the effectiveness and efficiency of search.

One common approach is to couple the randomised nature of EAs with a more
systematic local search method to create Memetic Algorithms (MAs). This may
be done in a number of ways – see e.g. [9] for a description and taxonomy and
[11] for a recent survey. This paper will examine the simplest and most common:
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after recombination and mutation, each offspring undergoes local search for
a specified number of iterations. In a Baldwinian paradigm, akin to life-term
learning, the offspring has its fitness replaced with that of the fittest neigh-
bour found by the local search. The Lamarkian paradigm is more drastic –
both the “genome” and fitness of the offspring are replaced. Studies of these
two paradigms with the EC date back to the mid-1990s. Both process alter the
search landscape “seen” by the EA, but in different ways (see Section 2).

Another very common approach, is parameter adaptation. Typically an ini-
tially more uniform pdf is “narrowed” to focus more on promising regions of the
search space over time. In both the combinatorial and real-valued domains, the
majority of research and applications have focussed on adapting the mutation
parameters [4]. Whether adaptation is driven implicitly (e.g. via self-adaption)
or explicitly via the application or an “external” algorithm, a key factor is the
presence of some form of evidence of the utility of an operator, or parame-
ter value in generating high quality solutions from the current population. In
the self-adaptive paradigm the evidence is implicit - successful strategies are
those that produce offspring that survive, and increase their representation via
association with above average quality solutions. These approaches have been
successfully combined with a focus on adaptation at the memetic level [18,19],
but little or no attention has been paid to the potential issues even with sim-
ple “first-generation” MAs, when the action of local search potentially destroys
the link between strategies and offspring survival that is considered essential for
successful self-adaptation to occur.

This paper represents a start at understanding this issue by examining the
patterns of behaviour observed when applying a simple MA with self-adaptation
of mutation rates to some well-understood combinatorial problems, where the
“building blocks” are of different orders, so that some cannot be discovered
by local search alone. Specifically it examines the following hypotheses: H1
One-step Baldwinian learning has a “blurring” effect on the fitness landscape
that reduces the effect of different mutation rates, and hence the selection pres-
sure between them, hindering effective self-adaptation; H2 One-step Lamarkian
learning behaves differently. The mapping to a reduced search space occurring
when offspring are replaced by fitter neighbours effectively increases the selection
pressure towards lower mutation rates; H3 On problems with single-bit building
blocks, using multiple steps of local search compounds the effects seen above and
increases the selective pressure towards lower mutation rates; H4 In contrast, on
problems with higher order building blocks, the effect of multiple steps of local
search is to act as a repair function, which preserves higher mutation rates.

Section 2 provides a brief introduction to the key concepts. Section 3 describes
the algorithms, test problems, and methods used to generate and analyse results.
The results are presented in Section 4 and discussed in Section 5. Section 6 draws
conclusions and suggests future work.
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2 Background

The practice and theory of self-adaptation of mutation rates has been docu-
mented in the continuous domain since the 1960s (see, e.g., [14,3]), the binary
domain since the 1990s (see [1,20,16]) and more recently for permutations [15].
A recent survey is [10]. To achieve the necessary selection pressure it has been
found preferable to use a survivor:offspring ration of around1:5 which tallies
with previous work in Evolution Strategies. For combinatorial problems there is
evidence that the use of a continuous variable to encode for the mutation rate,
and subject to log-normal adaptation, can be outperformed by a simpler scheme
[21,16,17]. In this scheme the gene encoding for the mutation rate has a discrete
set of alleles, and when itself subject to mutation is randomly reset with a small
probability. In particular it was shown that the mechanism for adapting the en-
coded mutation rate is important – allowing the operator to work “on-itself” (as
per [2,20]) will lead to premature convergence to sub-optimal attractors. Similar
theoretical [13] and experimental (e.g. [7]) results have been found in the contin-
uous domain. Extensive experimentation revealed that in binary search spaces
different variants of self-adaptation do offer performance advantages [12], but
that a deeper understanding of the processes involved is still needed.

The field of Memetic Computation encompasses a wide range of algorithms
based on the concept of memes as methods for generating or improving individual
solutions to one or more problem instances. Ong et. al. [11] consider a more
general paradigm which uses “the notion of meme(s) as units of information
encoded in computational representations for the purposes of problem solving”.
This enticing view nevertheless requires a better understanding of the basic
processes at work before more complex systems can be built. Therefore this paper
is restricted to a simple first generational memetic algorithm where a greedy local
search mechanism is applied to each offspring after it is created by mutation in
an Evolutionary Algorithm. The number of successive neighbourhoods examined
before returning to the main EA loop is controlled by a depth parameter.

Within a memetic algorithm, one can consider the local search stage to occur
as an improvement, or developmental learning phase within the evolutionary
cycle, and it is a design choice whether the changes made to the individual
(acquired traits) should be kept in the genotype (the Lamarkian paradigm), or
whether the just resulting improved fitness should be awarded to the original
(pre-local search) member of the population (the Baldwin paradigm). In a classic
early study, Hinton and Nowlan [8] showed that the Baldwin effect could be used
to improve the evolution of artificial neural networks, and a number of researchers
have studied the relative benefits of Baldwinian versus Lamarckian algorithms.
These two approaches both alter the fitness landscape:

– The Baldwin effect is to replace the fitness of each point with that of its
fittest neighbour. To extend the landscape metaphor, this has the effect of
broadening peaks and ridges, raising the height of valleys, and generally
“blurring” the landscape structure and removing gradients and fine-grained
structural features in a process similar to noise removal in image processing.
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– The effect of Lamarkian learning is that the fitness of points in the landscape
is unchanged, but a translation occurs to the higher neighbour, so that whole
swathes of low-fitness points are effectively removed from the search space.

The aim of this paper is to examine whether the impact of these two different
transformations is to reduce the size of the effect of different search strategies,
and hence the information available to the self-adaptation process.

3 Experimental Methodology

3.1 Algorithm

The core EA used a very standard Genetic Algorithm (GA) following the pa-
rameter values suggested by previous authors. A (100,500) selection strategy
with one point crossover (with probability 0.7), and bit-flipping mutation. Local
search used a Hamming neighbourhood of distance one, with a greedy pivot rule
accepting the first improvement, and depths of 0,1,2 or 5 successive neighbour-
hoods. Note that a local search depth of 0 equates to a standard GA.

The Self-adaptation process used the scheme outlined in [16,17,21]. Each solu-
tion encodes a choice from a discrete set of values, 1.0/l∗{0.001, 0.005, 0.01, 0.05,
0.1, 0.2, 1.0, 2, 5, 10} where l is the length of the problem encoding. Prior to mu-
tating the solution encoding, the gene encoding for the mutation rate is randomly
reset with probability Psm = 0.1. Although these operators and parameter values
were taken as fairly standard from the literature, preliminary experimentation
(not show for reasons of space) suggests that the effects observed below occur
over a wide range of parameter values. One point crossover was chosen for its
positional bias which matches that of the problem encodings used.

3.2 Test Functions

The first set of problems were versions of the Royal Road fitness function [6].
In these the fitness is given by the number of blocks “aligned” to the target
string (all 1s) in a problem with L blocks, each of length K. To examine the
effect of learning as the size of the partitions (plateaus) increased, while keeping
the size of the search space the same, 60 bit problems were used with K ∈
{2, 3, 4, 5, 6, 10, 15, 20}. A well known property of these functions is that for K >
1 they possess “plateaus” of equal fitness, that represent entropic barriers to
evolutionary search. Search on these problems typically proceeds via a series
of “epochs”. During transitions the entropy of the population is reduced as the
correct alignment is found for the next block, and fixated through the population.

To understand the effect of learning on these problems, let us consider the
partition of the search space corresponding to a single block. Applying one step
of local search means that now K of the possible 2K solutions in that partition
now contribute to the global fitness instead of just 1. The effect of multiple steps
of learning will depend on whether any of the blocks have unitation of K−1. The
“Baldwin effect” on these landscapes is that the plateaus effectively grow in size



124 J. Smith

to occupy a proportion (K+1)/2K of the partition. Regardless of mutation rate,
it becomes more probable that mutation will cause a jump onto the plateau, but
higher rates are more likely to destroy previously existing blocks, unless these
can be repaired by multiple applications.

The effect of Lamarkian learning is subtly different - points with unitation in
the partition between 0 and K−2 are unchanged, but those with unitation K−1
are removed as offspring created in those regions are moved to the single sub-
solution with a unitation K. Thus the proportion of the partition corresponding
to the high-fitness values is now 1/(2k −K) which is smaller than the Baldwin
version. Thus more of these points are at Hamming distance greater than 1, so
we might expect to see the selection of higher mutation rates which are more
likely to cause jumps to points at distance 1 from the optimal sub-solution.

The second class of static problems are deceptive ones, that present a fitness
barrier, rather than an entropic one, to evolutionary progress to the global op-
timum. These so-called L “Trap” or deceptive functions of size K. This paper
will consider functions composed L contiguous sub-functions. Each of these is a
deceptive partition of size K bits, where the reward was 100/L for all 1s, other-
wise 0.88 ∗ (K − u(i))/L where u(i) is the unitation in the ith partition. Again
we used 60 bit problems and the same set of values for K.

The final problem is used to explore the interaction between learning, and self-
adaptation’s well known ability to respond automatically to changes in the fitness
landscape. Hence the third test problem used is a 200-bit variant of the unimodal
OneMax function, switching to the opposite (ZeroMax) after 25 generations:
Before the landscape shift, the effect of Baldwinian learning with depth d on
this landscape is to assign to each genome the fitness of a individual with d
more bits set to 1 - in other words the shape of the landscape is left untouched
except for those few solutions with a neighourhood H(i, j) = d of the global
optimum, where the landscape is flat. The effect of Lamarkian search is to move
each point d steps up the slope of the hill - ie. effectively to remove those points
with u(i) < d from the search space. In both cases the underlying structure of
the problem is left unchanged, so except for the more rapid convergence to the
global optimum, it is hypothesized that the self-adaptation of mutation rates
will follow a similar pattern to the GA.

These values of length used were chosen to provide similar levels and speed of
convergence for each problem given the selection regime and population sizes.

3.3 Methods for Analysis

Each configuration of EA without local search (GA), and with Baldwin (B) or
Lamarkian (L) learning with depths 1, 2 and 5 ( B-d1, ..., B-d5, L-d1 etc.) was
run 100 times on each problem, with a termination criteria of 50 generations.
After each generation of each run data was recorded for the best, worst and mean
fitness, mean and standard deviation of mutation rates in the current population,
and the total number of evaluations used.
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As this paper is primarily concerned with the effect on the learning of mutation
rates, algorithms are compared generation-by-generation, ignoring the fact that
the local search variants make more calls to the evaluation function.

In separate experiments the mean best fitness, average evaluations to solution
and success rates were compared for the seven algorithms above, and variants
using a fixed mutation rate of pm = 1/l. Where appropriate, algorithms have
been compared using statistical analysis - either at snapshots of specific genera-
tions, or averaged over the whole runs. We used SPSS v20 to conduct ANalysis
of VAriance (ANOVA) followed by appropriate post-hoc testing to look for “ho-
mogenous subsets” which fail pairwise tests for statistically significant differences
at the 95% confidence level. Results shown in the form A < {B,C} < {C,D}
mean that values for set A are significantly lower than those for sets B,C and
D. Values for B are not significantly lower than those for C but are for D.

4 Results

4.1 Benchmarking Self-Adaptation

Comparing effectiveness, by pooling results and performing ANOVA on the max-
imum fitnesses, with the function and algorithm as independent factors showed
that although there were small differences between algorithms, by 49 generations
there were no statistically significant differences between fixed and self-adaptive
mutation rates. Comparing the final mean mutation rates, those of the MA-
B-d5 algorithm were significantly higher than the other methods, which were
otherwise not significantly different.

Comparing the efficiency, as measured by when the best fitness was recorded
for each run, showed that the self-adaptive variants were always faster, more
significantly so with increased depth of local search. Lamarkian variants were
always significantly faster than their Baldwinian counterparts and increase of
depth from 0 (GA) through to 5 caused a significant increase in evaluations.

The mean best fitness results showed that there was no difference between the
fixed and adaptive mutation rates for Lamarkian search, but these were always
significantly better than the GA and Baldwinian MAs. In contrast, adding self-
adaptation to the Baldwinian MAs significantly reduced the mean best fitness
for each different depth of search.

4.2 Analysis of Evolved Behaviours on Different Functions

The next set of experiments concentrate on the effect of selection at the level of
mutation rates in the presence of different forms of local search. To this end, the
“strategy adaptation” parameter Psm was set to 0, so each member of the initial
population had its mutation rate randomly set to one of the permissible values,
and offspring inherited mutation rates unchanged from their parents. The results
are shown graphically in Figure 1, which shows how the patterns of the evolved
behaviour change between problems and algorithms. Five characteristics of the
population (best, mean, worst fitness, mean and standard deviation of mutation
rate) (y-axis) are plotted against the number of generations (x-axis).
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Fig. 1. Illustrative Evolving Behaviour: population best, mean and worst fitness (out of
100), mean (dashed line) and standard deviation(dotted) of mutation rates (probability
x 10000). Switcher (top), Royal Road with K=8 (middle) and Trap with K=4 (bottom).
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Evolution of Mutation Rates for OneMax. For both paradigms the mu-
tation rates stabilised more slowly, and to values that decrease with increasing
search depth. However for Baldwinian search, the values at generation 49 are
not significantly different to the GA. The effect of selection is much more no-
ticeable with Lamarkian learning. The mutation rates converge faster, and to
lower values than the GA - not significantly so for depth 1, but the evolved rates
for depths 2 and 5 are significantly different to the GA, and each other. The re-
duction in the standard deviation shows that this is a learned effect rather than
simple drift. To confirm this, experiments were run where the function switched
from OneMax to Zeromax after 25 generations. Figure 1 (top) shows a clear
spike in the mutation rates after the switch. The subsequent rapid recovery in
fitness, most notably for MA-L-D5, is evidence of effective self-adaption.

Results for Royal Road Functions. Figure 1 (middle) shows the evolution
of behaviour on the Royal Road function with partitions of size 8. In addition to
the difference in effectiveness of search, the key point to note is the consistently
higher, and more varied mutation rates for Lamarkian search with depth 5, a
feature that increases when the size of the sub-blocks to be optimised increased.
Mutation rates also increase with depth of Baldwinian search, but the differences
are not significant by generation 49

Results for Deceptive Functions. Figure 1 (bottom) shows the evolution of
behaviour on the deceptive function with blocks of size 4. Note the difference
in effectiveness of search. On both functions, at generation 49 the statistically
homogenous subsets are, ranked according to increasing fitness; (B-d5, GA, B-d1,
B-d2) < L-d1 < (L-d5, L-d2), where the suffix MA is omitted for brevity.

On the functions with 4-bit partitions, the Baldwin behaviour is not statisti-
cally significantly different to the GA, but there are consistently lower mutation
rates for the Lamarkian learning. This difference is significant even up to gener-
ation 49 when the best value had stopped increasing. With the trap-8 function,
the values are no longer statistically significant by generation 49 - but of course
there are far fewer sub-functions to be optimised. Considering instead the mean
mutation rates across the whole run, there is now a statistically significant dif-
ference - the values for Lamarkian learning are significantly lower than for the
GA, and then in turn for the Baldwinian learning. These values reflect the speed
of the adaptive process- higher mean values meaning slower adaptation.

5 Discussion

The first set of benchmarking comparisons confirmed that self-adaptation out-
performed a single fixed mutation rate, as expected - working just as effectively
at finding good solutions but more efficiently. Lamarkian learning improved the
mean best fitness discovered. However, the interplay between the Baldwin effect
and self-adaptation was not always beneficial - particular on the Royal Road
landscapes where the plateaus form entropic barriers to improvement and the
Baldwin effect extends those plateaus.
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On the OneMax function, the hypothesis predicted that Lamarkian learning
would demonstrate faster adaptation (H2) and to lower (H3) values of mutation
rates than the GA. This was supported by the observations. The hypothesis
H1 and H3 suggested competing effects would results from Baldwinian learning.
Results confirmed that and indeed with depth 1 a slower adaption to higher rates
than the GA was seen, an effect which diminished with increased local search
depth, but the differences were not statistically significant by the end of even
these relatively brief runs.

The results on the switcher function confirmed that self-adaptation is able
to occur effectively and efficiently with Lamarkian learning up to a depth 5,
possibly even suggesting a synergistic effect when compared to the GA alone.

On the Royal Road functions the hypothesised effects were not really seen
except for with depth 5, where as predicted by H4, the Lamarkian search main-
tains higher mutation rates - which in turn lead to the continued discovery of
sub-solutions. For example even after averaging over 100 runs, the middle right
figure of Figure 1 shows an increase in fmax around 30 generations.

On the trap functions the differences are most evident in the speed of adap-
tation: as predicted by H1 the “blurring” effect of Baldwin learning significantly
reduces the rate of adaptation to lower mutation values than the GA. In con-
trast, as predicted by H2, the rate of adaptation is faster for Lamarkian learning
than for the GA, and hence the overall mean across all generations is lower.

6 Conclusions

This paper set out to examine the interaction between two different forms
of memetic learning, and the self-adaptation of mutation rates. The primary
empirical results suggest that whereas Lamarkian learning seems to reinforce
self-adaptation, the Baldwin effect often hinders the process, sometimes with
detrimental results on the effectiveness and efficiency of the overall search. The
message of this paper is therefore perhaps unsurprising: that it is unwise to
rashly mix algorithmic adaptations that work well in isolation. Clearly further
studies are needed to model these effects so that the twin forces of memetics and
self-adaptation can be brought to bear with reliable and predictable results.
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