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Abstract. Recently it was shown by Nesterov (2011) that techniques
form convex optimization can be used to successfully accelerate simple
derivative-free randomized optimization methods. The appeal of those
schemes lies in their low complexity, which is only Θ(n) per iteration—
compared to Θ(n2) for algorithms storing second-order information or
covariance matrices. From a high-level point of view, those accelerated
schemes employ correlations between successive iterates—a concept look-
ing similar to the evolution path used in Covariance Matrix Adaptation
Evolution Strategies (CMA-ES). In this contribution, we (i) implement
and empirically test a simple accelerated random search scheme (SARP).
Our study is the first to provide numerical evidence that SARP can ef-
fectively be implemented with adaptive step size control and does not
require access to gradient or advanced line search oracles. We (ii) try to
empirically verify the supposed analogy between the evolution path and
SARP. We propose an algorithm CMA-EP that uses only the evolution
path to bias the search. This algorithm can be generalized to a family
of low memory schemes, with complexity Θ(mn) per iteration, following
a recent approach by Loshchilov (2014). The study shows that the per-
formance of CMA-EP heavily depends on the spectra of the objective
function and thus it cannot accelerate as consistently as SARP.

Keywords: Gradient-free optimization, accelerated random search, evo-
lution path, adaptive step size, Covariance Matrix Adaptation, spectra.

1 Introduction

The Gradient Method [1, 2]—one of the most fundamental schemes in con-
vex optimization—has iteration complexity Θ(n), where n is the dimension. On
strongly convex functions its convergence rate is linear, depending only on the
condition number of the objective function. To overcome the difficulty imposed
by ill-conditioned problems, second-order methods like Newton’s method or first
order Quasi-Newton methods such as the BFGS scheme [3–5] are a welcome
alternative. Those schemes maintain a quadratic model of the objective func-
tion and their complexity is bounded by Ω(n2). Limited memory schemes like
L-BFGS [6, 7] trade-off linear iteration complexityΘ(mn) (wherem is a fixed pa-
rameter), versus convergence rate. Accelerated versions of the Gradient Method
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have linear complexity Θ(n) per iteration and converge with optimal rate among
all first-order methods. On strongly convex problems the convergence rate is pro-
portional to the square root of the condition number [1, 2, 8–10].

Randomized (gradient-free) schemes do not require first-order information,
they operate by only querying function values. Such schemes are nowadays a
ubiquitous tool for solving many practical problems in science and engineering
where first-order information is difficult to compute or does not exist. Among the
first proposed schemes that are still of considerable (theoretical) importance are
Adaptive Step Size Random Search (aSS) [11] and the (almost identical) well-
known (1+1)-Evolution Strategy (ES) [12] in Evolutionary Computation. More
recent schemes comprise Random Pursuit (RP) [13, 14], or Random Gradient
Descent [15]. Those schemes can be viewed as generalizations of the Gradient
Method to zeroth-order, with iteration complexity Θ(n). Likewise, analogues
of the second-order schemes try to estimate an approximation of the Hessian
by finite difference computations [16, 17] or by estimating correlations among
search directions. A very popular algorithm of this kind is the Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) [18, 19]. Limited memory variants
have been proposed in [20, 21], with iteration complexity Θ(mn). Especially, the
later variant due to Loshchilov shows excellent convergence in high dimensions
also for small values of m. Zeroth-order analogues of the accelerated gradient
schemes have been introduced [15, 22]. Those schemes massively outperform
the simple random search schemes on convex problems. This performance gain
does not come for free, as those schemes require valid bounds on the condition
number as input parameters. However, their low iteration complexity of Θ(n)
could make them a promising choice for large scale problems, where the fully-
quadratic schemes inherently fail. We focus on a very simple accelerated random
search scheme, which we call SARP.

By inspecting closely the accelerated search schemes, one could conclude that
the difference to the classical schemes can be explained by an additional “drift”
term [2, 10] that takes into account correlations of the last iterates. In the pop-
ular CMA-ES, correlations between successive iterates are accumulated in the
evolution path [23]. In this work, we are interested, if the evolution path can be
used for acceleration, competitive to the accelerated zeroth-order schemes form
convex optimization. To this end, we introduce a variant of CMA-ES, called
EP-CMA, that only uses the information stored in the evolution path to bias
the direction of the search. Similar to the approach proposed in [21], this scheme
can be generalized to a family of schemes, which we call EP-CMA-m. However,
we do not present an efficient, i.e. Θ(mn), implementation of those schemes as
this was not required here with dimension n ≤ 100 in our empirical study.

The remainder of this paper is structured as follows. In Section 2 we present
the accelerated random search scheme SARP and detail the EP-CMA-m schemes.
In Section 3 we empirically test the performance of all schemes on three quadratic
and the non-convex Rosenbrock function, and highlight the key results. We dis-
cuss these results and conclude the paper in Section 4.
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lineSearch(x,u, [σ, p])

1 if exact then return exactLS(x,u/‖u‖)
2 else return aSS(x,u, σ, p)

exactLS(x,u, [σ])

1 σ+ ← minλ f(x+ λu); x+ ← x+ σ+u
2 return (x+, σ+)

aSS(x,u, σ, p) (adaptive step size)

1 if f(x+ σu) ≤ f(x) then
2 x+ ← x+ σu; σ+ ← σ · exp(1/3)

else

3 x+ ← x; σ+ ← σ · exp
(
− p

3(1−p)

)

4 return (x+, σ+)

Fig. 1. Line search oracles for gradient-free optimization

2 Algorithms

We here present the optimization schemes considered in this study. We first
detail two Random Pursuit algorithms and a simplistic variant of a standard
(1+1)-CMA-ES. Then we introduce the new EP-CMA-m schemes.

RP. Random Pursuit is a basic optimization scheme that iteratively gener-
ates a sequence of approximate solutions to the global optimization problem
minx∈Rn f(x). In each step a search direction is drawn uk ∼ N (0,1n). In Ran-
dom Pursuit with exact line search (RP-exact), first proposed in [13] and ana-
lyzed in [14], the step size σ is determined by minimizing the objective function in
direction u, i.e. σ = argminλ f(x+λu). For quadratic functions f(x) := 1

2x
TAx

with Hessian A, the expected one-step progress can be estimated as:

E [f(x+) | x] ≤ (1− λmin(A)/Tr[A]) f(x) , (1)

where x is the current iterate, x+ := x+σu denotes the next iterate. This state-
ment can also be generalized to arbitrary smooth convex functions [14]. Stich
et al. [14] show that RP-exact still converges if the line search is not performed
exactly, but allowing relative errors. Therefore, we also consider Random Pursuit
with adaptive step sizes (RP) instead of exact line search. In RP the step size is
dynamically controlled such as to approximately guarantee a certain probability
p of finding an improving iterate. Depending on the underlying test function,
different optimality conditions can be formulated for the value p. Schumer and
Steiglitz [11] suggest the setting p = 0.27 which is considered throughout this
work. We use immediate exponential step size control as explicitly formulated
in the aSS sub-routine in Fig. 1. RP is identical to the well known (1+1)-ES.

SARP. Accelerated random search schemes are fundamentally different from
the simple random search schemes. Instead of generating only one sequence of
iterates, those algorithms typically maintain two or more sequences simultane-
ously (here essentially xk and yk, see Fig. 2). Those sequences allow to store
gathered knowledge on the objective function which yields better performance.
In Fig. 2 we present a simple version of the accelerated random search scheme
proposed in [14] and refer to it as simple accelerated random search (SARP).
Like RP, SARP can (in practice) be used with exact line search oracles or with
adaptive step size control, although convergence for those oracles has not been
proven yet. For Nesterov’s accelerated random search scheme [15], the expected
one-step progress can be estimated as
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RP(x0, N, [σ0, p])

1 for k = 1 to N do
2 uk ∼ N (0, In)
3 (xk, σk)← lineSearch(xk−1,uk, [σk−1])

4 return xN

EP-CMA-m (x0, N, σ0, p, cc, ccov)

1 p̂0 ← 0; p̂1, . . . , p̂m−1 ← 0; q = 0
2 for k = 1 to N do
3 Ck ← In
4 for i = 1 to m− 1 do

Ck ← (1− ccov)Ck + ccovp̂ip̂
T
i

5 Ck ← (1− ccov)Ck + ccovpk−1p
T
k−1

6 uk ∼ N (0, Ck)
7 (xk, σk)← aSS(xk−1,uk, σk−1)
8 yk ← (xk − xk−1)/σk−1

9 if yk �= 0 (success) then

10 pk ← (1− cc)pk−1 +
√

cc(2− cc)yk

11 else pk ← (1− cp)pk−112 if k > q + n2/m
then
p̂1 ← p̂2, . . . , p̂m−2 ← p̂m−1; q = k

13 return xN

SARP(x0, N,m,L, [σ0])

1 y0 ← x0; v0 ← x0; θ ←
√

m
2n2L

2 for k = 1 to N do
3 uk ∼ N (0, In)
4 (xk, σk)← lineSearch(yk−1,uk, [σk−1])
5 yk ← (θvk−1 + xk)/(1 + θ)

6 vk ← (1− θ)vk−1 + θyk + θn L
m
σkuk

7 return xN

(1+1)-CMA(x0, N, σ0, p, cc, ccov)

1 C0 ← In; p0 ← 0
2 for k = 1 to N do
3 uk ∼ N (0, Ck−1)
4 (xk, σk)← aSS(xk−1,uk, σk−1)
5 yk ← (xk − xk−1)/σk−1

6 if yk �= 0 (success) then

7 pk ← (1− cc)pk−1 +
√

cc(2− cc)yk

8 Ck ← (1− ccov)Ck−1 + ccovpkp
T
k

else
9 Ck ← Ck−1; pk ← (1− cp)pk−1

10 return xN

Fig. 2. RP, EP-CMA and CMA-ES schemes

E [f(x+) | x] ≤
(
1− (n

√
κ)−1

)
f(x) , (2)

where condition κ = L/m and the two parameters m ≤ λmin(A) and L ≥
λmax(A) are required as input to the algorithm (and always provided in our
numerical study). This rate is much better than (1) and we hope to see that
SARP attains comparable performance. SARP is not a monotone scheme, that
is, the function values of the iterates are not monotonically decreasing. SARP
is closely related to the first-order accelerated search scheme of Nesterov [2].
This scheme also simultaneously maintains two sequences x′

k and y′
k of iterates

(but requires access to the gradient in every iteration). For Nesterov’s first-order
scheme it is known [2, p.79] that the sequence y′

k obeys

y′
k+1 = x′

k+1 + β′ (x′
k+1 − x′

k

)
, (3)

for β′ = 1 − 2/
√
κ + O(1/κ). Thus the additional (x′

k+1 − x′
k) acts like a drift

term, cf. [1]. For SARP with parameter θ′ =
√
1/(n2κ) (only slightly different

from θ in Fig. 2) the same reformulation of the update reveals

yk+1 = xk + β (xk+1 − xk) , (4)

for β = (1− θ′)/(1 + θ′) = 1− 2/(n
√
κ) +O(1/κ). The main term contributing

to the drift is approximately only an 1/n-fraction of the step, accounting for the
uncertainty emerging form the randomness.

(1+1)-CMA-ES. In contrast to the presented Random Pursuit schemes, in
CMA-ES new search points are sampled from a multivariate normal distribution
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uk ∼ N (0, Ck) whose parameter Ck is updated in each iteration based on the
evaluation of the samples. The covariance matrix can be adapted using different
rank-1 [18, 24] or rank-k updates [19]. In addition, the CMA-ES scheme is aug-
mented by an auxiliary variable called evolution path that takes into account
the correlation of successive means taken over a finite horizon. In [18, 23], the
evolution path pk is updated as

pk+1 = (1− cc)pk +
√
cc(1− cc)uk . (5)

Cumulative information about successive steps is stored in the variable pk. We
use a simplistic CMA-ES variant, closely following [18], see Fig. 2. We use the
simple Adaptive Step Size control aSS to determine the step size σk, the covari-
ance matrix update solely uses the information of the evolution path like in [24]
and for simplicity we refrain from implementing any regularization features, in
contrast to [24]. We use the same parameters that were proposed in [24] for the
(1+1)-CMA-ES, namely cc = 2/(n+ 2), cp = 1/12 and ccov = 2/(n2 + 6).

EP-CMA-1. The evolution path pk accumulates information over successful
steps. This accumulation can be seen as a smoothing of the noisy information
obtained in single steps, at the effect that the evolution path points into direction
of more promising function values [18]. In this study, we are interested if the
evolution path can be used in a similar way as the drift term in (3) or (4),
respectively, to accelerate the search. There are several ways to incorporate the
evolution path pk into the update scheme. We suggest to use the path pk in the
following way: in the simple random search scheme RP (equivalent to (1+1)-ES),
we sample in iteration k a direction from uk ∼ N (0, (1 − ccov)In + ccovpkp

T
k ),

with bias along the direction indicated by pk. This has the effect that we only
follow successful steps, but the drift imposed by the evolution path might be
smaller than it ideally should be. The scheme EP-CMA-1 is detailed in Fig 2,
we used cc and cp as above, and ccov = 1/5. This approach is similar to [25].

EP-CMA-m. The proposed EP-CMA-1 can easily be generalized to a whole
family of optimization schemes by an approach presented in [21]. In EP-CMA-1,
only the information stored in the current evolution path pk is used to bias the
search direction. But we could also afford to temporarily store a small number
m of past pk′ for k′ < k, and use the information collectively to bias the search.
As two successive evolution paths are likely highly correlated, we propose to
store the evolution path only every n2/m-th generation (and up to at most
(m − 1) copies simultaneously). The resulting scheme is detailed in Fig. 2. We
used cc = 2/(n + 2) as in CMA-ES, and for m > 1, ccov = 2/(6 + m) for
EP-CMA-m. If implemented carefully, EP-CMA-m has Θ(mn) complexity per
iteration (not shown in Fig 2). For m = n2, the updates of EP-CMA-m are
identical to the updates of (1+1)-CMA-ES, if limited to a finite horizon of n2

steps. In contrast, the low memory method proposed in [20] behaves similar to
CMA-ES already for m = n, but has iteration complexity Θ(nm2).
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Fig. 3. Evolution of FVAL vs. #ITS on fexp (top) and flin (bottom) with L = 1e4 (left)
and L = 1e6 (right) in n = 100 dimensions. For 51 (11 for RP on flin with L = 1e6)
runs we recorded #ITS needed to reach FVAL of 1e-9. The trajectory realizing the
median values is depicted, mean and one standard deviation are indicated by markers.
(RP on flin with L = 1e6 reaching FVAL < 1e-2 after 1e6.5n #ITS.)

3 Empirical Study

We now present the setup of our empirical study. We focus on the following
schemes: (i) the two Random Pursuit schemes with adaptive step size control
(denoted as RP and SARP) and with exact line search (denoted as RP-exact
and SARP-exact), (ii) the simplified (1+1)-CMA-ES and (iii) the EP-CMA-m
schemes as introduced in Sec. 2, see Fig. 2. We use EP-CMA-m with param-
eters m = 1, 2, 4,

√
n, n. This totals in 10 different schemes, all of which were

implemented in MATLAB and will be made available on the authors website.
We tested the performance of all algorithms on three variants of the ellipsoidal

benchmark function [18] and the non-convex Rosenbrock function, detailed in
Table 1. The quadratic functions were chosen in such a way that the extremal
values of their spectra (1 and L) both agree. We considered the quadratic func-
tions with parameters L = 1e4 and L = 1e6 each, and repeat the experiments
in dimensions n = 20, 40, 60, 80, 100.

For all experiments, initial settings were x0 = 1, σ0 = 1 and p = 0.27 (for
schemes with the aSS routine). We count the number of iterations (#ITS) needed
to decrease the function value (FVAL) below 1e-9. A graphical summary of our
results can be found in Fig. 3-5. Results not depicted here are reported in the sup-
plementary online material [26]. We now proceed by discussing some of the key
results.

Table 1. List of benchmark functions

fexp(x) =
1

2

n∑
i=1

L
i−1
n−1 x2

i frosen(x) =

n−1∑
i=1

(
100 · (x2

i − xi+1

)2
+ (xi − 1)2

)

flin(x) =
1

2

n∑
i=1

(
1 + i

(L− 1)

(n− 1)

)
x2
i ftwo(x) =

1

2

�n/2�∑
i=1

x2
i +

L

2

∑
i=�n/2�

x2
i
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Fig. 4. Evolution of FVAL vs. #ITS on fexp with L = 1e4 (left) and L = 1e6 (right)
in n = 20 and n = 80 dimensions. For 51 runs we recorded #ITS needed to reach
FVAL of 1e-9. The trajectory realizing the median values is depicted, mean and one
standard deviation are indicated by markers.

Line Search. Both RP and SARP were tested with exact line search oracle and
adaptive step size control. In Fig. 3 we see that the exact schemes outperform
their adaptive variants in n = 100 dimensions by a factor of roughly 2-3. This
pattern is observed throughout the whole benchmark in all dimensions. Thus we
omit to display the results for exact line search in subsequent Figs. 4-5.

SARP vs. EP-CMA-1. The picture is twofold. In Fig. 3 we see that EP-CMA-
1 outperforms SARP by a factor of roughly 5 on flin with L = 1e4 (factor 24 for
L = 1e6). The smallest eigenvalue of this function is separated form the second
largest by a gap of roughly n. Hence, knowledge of one important direction
reduces the conditioning of the function by a large factor. This factor becomes
smaller in higher dimension. This scaling in the dimensions is indeed observed
empirically, and depicted in [26].

On the other three functions, SARP performs consistently better than EP-
CMA-1. On fexp with L = 1e4 in n = 100 dimensions the factor is roughly 3,
its roughly 14 for L = 1e6 (Fig. 3), and exceeds 10 on both ftwo and frosen
(Fig. 5). Considering the scaling in dimension (Figs. 4-5; and [26]), we observe
that the relative performance (#ITS/n) of SARP remains constant on all four
benchmark functions, as predicted by theory for a similar method [15, 22].

EP-CMA-schemes. The EP-CMA-m schemes consistently work better for in-
creasing values of m throughout the whole benchmark (Figs. 3-5). On fexp with
L = 1e4 the difference in #ITS between EP-CMA-n and EP-CMA-1 is roughly
a factor of 10, and 20 for L = 1e6 (Fig. 3). The gap becomes gradually smaller
on flin, ftwo (especially for L = 1e6, see [26]), and is insignificant on frosen
(Fig. 5). On flin the EP-CMA-m schemes perform extremely well, already for
small m. EP-CMA-4 performs approximately as good as CMA-ES, for both pa-
rameters L = 1e4 and L = 1e6 (Fig. 3). On fexp in n = 100 dimensions and
parameter L = 1e4, both SARP and EP-CMA-4 need about the same #ITS. For
parameter L = 1e4 the performance of SARP is the same as the performance
of EP-CMA-

√
n (Fig. 3). On both ftwo and frosen, the EP-CMA-m scheme can-

not reach the performance of SARP, though on frosen the EP-CMA-m schemes
perform as good as CMA-ES (Fig. 5).
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Fig. 5. Evolution of FVAL vs. #ITS on ftwo with L = 1e4 (left) and frosen (right) in
n = 20 and n = 80 dimensions. For 51 runs we recorded #ITS needed to reach FVAL
of 1e-9. The trajectory realizing the median values is depicted, mean and one standard
deviation are indicated by markers.

CMA-ES. Fig. 4 shows nicely the quadratic dependence of the performance
of CMA-ES on the dimension n, see also [26] where we report the data for all
considered dimensions. The #ITS of the Random Pursuit schemes (RP, SARP)
to reach the target accuracy increases only linearly (the relative performance
(#ITS/n) is constant over the dimensions). In the dimensions n ≤ 100 considered
here, CMA-ES is the best performing scheme on fexp (Fig. 3) and ftwo (Fig. 5);
on flin the EP-CMA-m schemes match its performance for m ≥ 4 (Fig. 3). A
notable exception is the behavior on the non-convex frosen, where only SARP
can accelerate and the other schemes, including CMA-ES, require over 10 times
more #ITS to reach the same accuracy (Fig. 5).

4 Discussion and Conclusions

In this contribution we emphasize the importance of accelerated random gradient
schemes [15, 22]. Each iteration in SARP has only linear complexity, yet the
scheme takes correlations between successive iterates into account. In CMA-
ES, such correlations are collected in the evolution path [18, 23] and stored in
the covariance matrix. This requires Θ(n2) simple operations per iteration. The
proposed EP-CMA-1 uses as well the information of the evolution path to bias
the search, but does not store a full-rank covariance matrix.

Line Search. We empirically tested two Random Pursuit algorithms with an
exact line search oracle. Such an oracle is in general not available for general
black-box optimization problems and the line search must for instance be im-
plemented as bisection search (cf. [14, 27]) at the expense of additional function
evaluations per iteration. The empirical data shows that both Random Pursuit
algorithms do perform well if a simple adaptive step size scheme is used instead
of the line search. This makes both schemes (especially SARP) promising candi-
dates for black-box optimization, also in high dimension, as the runtime scales
only linearly with the dimension. Up to our knowledge, no experimental results
for SARP with adaptive step size have been published yet (the authors in [14]
considered a line search with high accuracy, almost like SARP-exact).
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Acceleration in EP Schemes. Our empirical results show that the sole use
of the evolution path can lead to astonishingly good performance—depending on
the problem and its eigenvalue spectrum. The speed-up of EP-CMA-1 on flin can
be explained by the fact that the condition number of the problem drops once
the algorithm has learned the most insensitive direction. Hence, the acceleration
can be explained by formula (1) rather than (2). For SARP the situation is
more promising. The data indicates that the convergence on fexp and ftwo is
as described in (2). The same seems to be true on the non-convex frosen where
SARP needs an order of magnitude less #ITS than all other schemes, including
CMA-ES. Only on flin this does not to hold, as SARP is only one order of
magnitude faster than RP. Consider the update (4). By expansion we obtain

yk+1 = xk + β (σk+1uk+1 + β (xk − xk−1)) = xk +

k+1∑

i=1

βk+2−iσiui . (6)

We see that the drift is a weighted average of the previous steps σiui. The dis-
count factor β is the expected convergence rate. Therefore, the influence of a
step σiui on yk+1 is roughly the same for all i = 1, . . . , k. In contrast to this,
the evolution path pk stores only information of the directions of the last steps
(but no step sizes). The discount factor is approximately 1 − 2/n. Although
the evolution path pk is a cumulation of all old steps, the weigh of old steps
is exponentially small compared to the influence of the newest steps. We might
conclude that the mechanism of accelerated random schemes like SARP is there-
fore inherently different to the concept of the evolution path, supporting reports
in [27]. However, we cannot rule out the possibility, that with a different choice
of internal parameters of EP-CMA-1 the difference to SARP could be reduced.

Limited Memory Schemes. The performance of the proposed EP-CMA-m
schemes uniformly increases for larger parameters m, as well as the complexity
of each single iteration. An optimal trade-off for the parameterm has to be found,
depending on the dimension n and the cost of individual function evaluations.
The data shows that the EP-CMA-m schemes can dramatically improve the
performance of simple random search already for small values of m. The speed-
up depends crucially on the eigenvalue spectra of the objective function. It seems
that these schemes can not reach the performance of the related variants in [21].

We generally conclude, that the here proposed algorithmic schemes with linear
iteration complexity could be a promising way to handle high dimensional black-
box optimization problems. However, the empirical data suggest that there is
an intrinsic limitation for the EP schemes, as they depend on the eigenvalue
spectrum of the objective function. This behavior is not observed for SARP.
We like to advocate that features of accelerated schemes (like SARP) should
therefore be taken seriously into account when facing high dimensional problems.
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