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Abstract. Multimodal optimization requires maintenance of a good
search space coverage and approximation of several optima at the same
time. We analyze two constitutive optimization algorithms and show that
in many cases, a phase transition occurs at some point, so that either
diversity collapses or optimization stagnates. But how to derive suitable
stopping criteria for multimodal optimization? Experimental results in-
dicate that an algorithm’s population contains sufficient information to
estimate the point in time when several performance indicators reach
their optimum. Thus, stopping criteria are formulated based on sum-
mary characteristics employing objective values and mutation strength.

Keywords: Multimodal optimization, global optimization, multiobjec-
tive selection, convergence detection, stopping criteria.

1 Introduction

For quite some time, global optimization has been the predominant research
direction in single-objective evolutionary computation (EC). While algorithms
for obtaining more than one good solution at once have been investigated already
in the 1970s (see [1] for a survey), the term multimodal optimization (MMO) has
become publicly known only lately. It may be seen as superordinate concept that
contains niching and related approaches, with the overall task to obtain a set of
diverse but very good solutions. It is easy to imagine that such behavior is useful
in many real-world applications, because it leaves more options to the decision
maker (related arguments apply to multiobjective optimization).

In contrast to global optimization methods, MMO algorithms always employ
populations and/or archives, and next to objective values, diversity is an impor-
tant issue: the finally chosen best solutions should not at all be similar but be
located in different search space regions. However, the interplay between reach-
ing good objective values but keeping search diverse has not been investigated
much from a general perspective, without focusing on a certain algorithm and/or
optimization problem. Authors usually refer to exploitation/exploration balance,
which means that there is a contradiction between improving solutions and cov-
ering the search space well. However, recent work on multiobjectivization-based
selection criteria for MMO [2] suggests that it is possible to realize compromises
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between the two, such that diversity is kept and still the good solutions are
improved further. In §3, we show that in most cases, the balance holds only tem-
porarily: after some time, it usually breaks and multimodal performance (dealt
with in §2) degrades again. Phenomenologically, this means that the algorithm
moves in direction of one extreme (see Fig. 1): either it focuses on one or few
attraction basins or it emphasizes diversity so that local optimization in the
separate basins becomes ineffective. This naturally calls for stopping criteria as
they are, e. g., known in multiobjective optimization (see §4). We do not state
that at the determined point in time, optimization shall just be cancelled. But it
undergoes a phase transition after which the algorithm does not sufficiently bal-
ance both goals any more, so that it may be supplemented with other techniques
as local searches. It does not seem reasonable just to continue runs.

The first goal of this paper is to document this phase transition and provide
data on where it can be expected in a run for different selection types, based on
a simple model algorithm that may serve as blue print for more complex meth-
ods in MMO. The second goal is to suggest (§4), experimentally assess (§5) and
discuss (§6) stopping criteria that detect the right time for a behavior change
of the algorithm. Differently from the situation in single- or multiobjective op-
timization, the important indicators cannot be observed directly in a real-world
application scenario. We would have to know in advance where the different
optima are located to compute the indicators. However, we can offer criteria
for mutation adaptive and non-adaptive optimization algorithms that provide a
good estimation of the point in time when the phase transition occurs, so that
measures against a degeneration of the optimization process can be taken.

2 MMO Performance Indicators and Model Algorithms

Several different approaches exist to measure performance of multimodal opti-
mization algorithms [3]. To precisely assess the approximation of the optima, at
least their locations and objective values have to be known. This information,
and above all the exact shape of corresponding attraction basins, is of course
only available for benchmarking purposes. In this case, the goal in one way or
another is to measure deviations from the local optima in objective and/or in
decision space. After carrying out our initial investigations (see §3) for all indi-
cators in [3], we are focusing the presentation on the quality indicator averaged
Hausdorff distance (AHD) [4], which is a natural advancement of the well-known
indicator peak distance (PD) [3,5]. It is defined as

AHD(P ,Q) = max

{
1

m

m∑
i=1

dnn(zi,P),
1

μ

µ∑
i=1

dnn(xi,Q)

}
,

where P = {x1, . . . ,xµ} is the approximation set, Q = {z1, . . . , zm} is the set
of optima, and dnn(x,P) = min{‖x− y‖2 | y ∈ P \ {x}}. PD is equivalent to
the first term inside the maximum (which is also known as inverted generational
distance). AHD is attractive, because it exhibits a continuous behavior over the
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Fig. 1. Populations (black dots) after 5000 function evaluations with different selection
variants (left: SV4, right: SV7). White crosses mark the local optima, a white circle the
global one. Gray circles denote the mutation strengths of the respective individuals.

whole range from very bad to very good approximations. This is in contrast to,
e. g., the basin ratio (BR), which measures the fraction of attraction basins that
contain a point of the population. However, BR is still an informative indicator,
as it has known minimal and maximal values. Other indicators, as PD or peak
inaccuracy, are somewhat correlated to AHD, and thus our developments should
be transferable to some extent.

Two simple evolutionary algorithms (EA) are considered in this paper. While
both employ nearest-better distances dnb(x,P) = min{‖x−y‖2 | f(y) < f(x)∧
y ∈ P} in their selection and use gaussian mutations for variation, they exhibit
very different behaviors. The first algorithm uses a multiobjective selection with
dnb(x,P) as a second objective. The ranking is established by non-dominated
sorting (and each non-dominated front is sorted by objective value). The second
algorithm uses truncation selection on a lexicographic ordering according to the
tuples (−dnb(x,P), f(x)). (Note that reversing the order of the criteria would
essentially lead to a conventional single-objective EA.) These selections have
been defined as SV4 and SV7, respectively, in [2], and we adopt these names in
the following. Details and pseudocode also can be found in [2].

3 Initial Investigations

For the analysis of the algorithms’ behavior, we use the following experimental
setup. A budget of 105 objective function evaluations is allocated for optimiza-
tion of the multimodal test problems described in [2] with a (100+100)-EA. The
test problems are generated by taking the minimum of random samples of uni-
modal functions (so-called peaks, although pointing downwards). These samples
can exhibit different global structures, which will be called random, linear, and
funnel in the following. For further details we refer to [2]. For variation, we are
using an isotropic mutation operator with gaussian random numbers and initial
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Fig. 2. EAs with fixed (blue) and self-adaptive (dark green) σ. Solid lines show mean
values of 25 repeats, dashed lines are 95% pointwise confidence bands. BOV denotes
best objective value and MedianSigma the median mutation strength in a population.

step size σinit = 1. This operator can be used with either fixed or self-adaptive
step sizes. In the latter case, the learning parameter is τ = 1/

√
2n, according to

recommendations of [6] for multimodal problems. Recombination is disabled.
Survivor selection is done by the two alternatives described in §2. Figure 1

shows snapshots of self-adaptive SV4- and SV7-EAs after 5000 function evalu-
ations on a two-dimensional problem with 20 peaks and funnel topology. It can
be seen that solutions close to optima possess small mutation strengths, while
other solutions exhibit diverging step sizes. From Fig. 2 it is evident that SV7-EA
constantly explores the search space, while SV4-EA will sooner or later converge
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to a single optimum. The figure shows the average performance on two selected
problem classes over time. For SV4, step size adaptation first leads to a slight
increase of σ before the conventional convergence to zero starts. Therefore, the
self-adaptive SV4-EA is the best suited for global optimization among the tested
algorithms, as it does converge to one single optimum at some point, but does
this later than a conventional single-objective EA. Note that SV4-EA has the
same structure as [7], but is expected to yield better global optimization perfor-
mance due to step-size adaptation and use of dnb. In this case, also the existing
stopping criteria for single-objective optimization (see §4) can be applied.

SV7, on the other hand, exhibits a permanent tendency towards larger σ,
which is sometimes beneficial but often leads to a deterioration of quality in the
late stages of the run. Additionally, the algorithms’ performance also depends on
problem features as the search space dimension and the number of local optima.
Here, low-dimensional, weakly multimodal problems favor SV4, while SV7 seems
more adequate in the opposite case. Thus, if a diverse set of good solutions is
sought as a result, special stopping criteria for multimodal optimization should
be employed in any case.

4 Stopping Criteria

So far, research on stopping criteria within the field of EAs concentrated on
assessing the convergence behavior of the respective algorithms. Formal analysis
of convergence behavior is difficult and only possible for special and usually sim-
plified cases. As optimality criteria such as the Karush-Kuhn-Tucker conditions
usually cannot be applied in the black-box scenario due to the lack of sufficient
gradient information, heuristic approaches were introduced to check whether the
expected improvement in convergence is worth the additional amount of func-
tion evaluations which has to be spent. So far, to the best of our knowledge,
no specific stopping criteria for multimodal optimization have been introduced,
which have to be designed to focus on tracking the trade-off between maintaining
diversity and ensuring sufficient convergence.

An overview about recent approaches for multiobjective optimization is pro-
vided in [8]. As most of the methods rely on analyzing (single-objective)
performance indicators, the approaches in principle could be transferred to single-
objective optimization tasks as well. However, none of these criteria allows for
adequately terminating an EA in the multimodal situation in which the pop-
ulation is desired to converge while simultaneously maintaining diversity. In
single-objective optimization the same problem exists. In [9] existing termina-
tion conditions in the single-objective case are discussed which consist of either
theoretically motivated approaches [10,11], movement criteria [12], or qualified
runtime distributions [13]. To our knowledge, criteria based on statistical hy-
pothesis testing are surprisingly uncommon. It shall also be stated that contrary
to intuition, deriving criteria for single-objective algorithms is not necessarily
simpler than for multiobjective ones. As, e. g., the list of criteria in [14] demon-
strates, there is much more information available for the latter case, so that many
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SV7 fixed mutation, random topology, 40 peaks, n=5
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Fig. 3. Exemplary runs of SV4- and SV7-EAs with fixed σ. In both cases, the variation
coefficient of the objective value is a suitable signal for stopping. The optimal stopping
point is marked with a black dotted line, the actual stopping point with a red one.

more generic criteria may be established. Algorithm internal criteria, as, e. g., in-
tegrated into CMA-ES, focus on a concentrated population and the convergence
to a single optimum, which is reflected by a fading mutation strength. Thus,
the challenges of multimodal optimization are not properly reflected within the
existing criteria which focus on stagnation related to desired convergence.

Stopping Criteria for Multimodal Optimization (SMMO): In contrast to the
requirements for single- and multiobjective stopping criteria, we cannot directly
observe the measures we are actually interested in (there: best objective value
and hypervolume, respectively). In order to find a signal that can be exploited
as stopping criterion due to its correlation to the course of the AHD indicator,
we have investigated a large number of time series by visual inspection, e. g.,
the best and average objective values, the standard deviation of the objective
values, the average mutation strength, its standard deviation, the coefficients of
variation (standard deviation divided by mean value, CV) of objective values
and mutation strengths, and diversity indicators [3].

We found two signals that appear to be useful. For the self-adaptive case, the
mutation strength on average (Fig. 2) experiences a peak when the AHD reaches
its minimum. In most cases, this behavior can also be found when looking at
individual runs. A slightly less obvious correspondence that may be used for the
fixed mutation strength algorithms exists between the CV of the objective values
and the AHD. In many cases, the CV starts to decline when the AHD passes its
minimum, as displayed in Fig. 3. As the raw signal shows fluctuations in both
cases, we employ the window median x̃w(t) = median(x(t−w+1):t), where xt is a
time series and t runs from 1 to tmax, over the median mutation strength and
the CV of the objective values, respectively. After some initial experimentation,
we chose w = 10 as window size. From that, we compute the window median
x̃′
w(t) of the forward differences of x̃w(t) in order to find the point in time when

the original value is decreasing considerably. We stop as soon as the median of
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Table 1. Factors for the experiment in §5

Factor Type Symbol Levels

Problem topologies environmental {random, linear, funnel}
Number of variables environmental n {2, 3, 5, 10}
Number of peaks environmental N {5, 20, 40}
Selection variants control {SV4, SV7}
Mutation strength control {fixed, self-adaptive}

Table 2. Differences between the optimal (w.r.t. AHD) stop generation and the sug-
gested one as well as the percentages of generations after StopGen with higher AHD

StopGenAHD − StopGen % higher AHD after

Strategy Criterion LQ Median UQ LQ Median UQ

SV4
SA MutStrength −6 1 21 97.1 99.4 99.9

NonSA VarCoeffObj −38 −11 95 67.9 95.1 98.9

SV7
SA MutStrength −57 351 680.5 14.5 35.1 61.2

NonSA VarCoeffObj 304.8 568 784.2 0.9 12.1 41.2

differences, x̃′
w(t) = x̃w(x̃w(t) − x̃w(t − 1)), gets negative for the first time (the

first w time steps are ignored).

5 Experimental Evaluation of SMMO

Research Question: Do the stopping criteria of §4 provide a reasonable per-
formance?
Pre-experimental Planning: The stopping criteria in §4 were selected after a
first visual inspection of several summary characteristics. After some preliminary
investigations, we decided to test the CV-based criterion only with fixed σ as
the mutation strength criterion seemed superior (when available).
Task: The task of the stopping criteria is to abort the runs early with as few
loss of performance as possible. The key criterion for us is the AHD indicator.
Setup: The bulk of the setup was already described in §3. Table 1 summarizes all
the factors for this full-factorial experiment. For each configuration, five random
test instances are drawn and five independent algorithm runs are carried out per
problem instance, leading to a total of 25 repeats per configuration.
Results: Figures 4 and 5 show how much worse the obtained AHD values are for
early stopping in comparison to the best value of the same algorithm run that
would be obtained sometime during the full 105 function evaluations. Table 2
contains another investigation of the same data, focusing on the differences of
the actual stop generation and the respective one with minimum AHD value.
Furthermore, the percentage of generations after the stop generation where the
obtained AHD value was higher than the one in the stop generation is provided.
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Fig. 4. Performance losses through the stopping criterion based on σ

Observations: For SV4, the loss of AHD performance is decreasing with in-
creasing n if N is 20 or 40. SV7 shows the opposite behavior, especially with
the CV-based criterion. If the problem contains only five peaks, the AHD loss
is generally higher, especially with the σ-criterion (although the absolute values
may still be better than with the CV). Table 2 reflects that the recommended
stop generation does not differ much from the respective one with minimum
AHD for SV4. Moreover, an almost neglectable percentage of obtained AHD
values after stopping results in smaller AHD. SV7 shows a different behavior,
the interquartile ranges of both statistics are relatively large and the median
levels differ quite much from the respective ones of SV4.
Discussion: The seemingly worse performance with five peaks may occur be-
cause these problems are relatively easy and therefore the obtained AHD values
are close to zero. So, even small absolute deviations appear as high relative devi-
ations. On SV7 the losses are smaller, which is probably because the AHD values
are generally fluctuating less. For SV7, the statistics in Table 2 reflect that the
AHD quality usually does not show an obvious decreasing tendency after Stop-
GenAHD but rather a fluctuating behavior around the minimum AHD. Applied
to SV4, the suggested stopping criteria successfully detect an adequate stopping
generation in the vicinity of StopGenAHD.
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Fig. 5. Performance losses through the criterion based on the variation coefficient

6 Conclusions and Outlook

By means of systematic experiments we are able to show that transition phases
between maintaining diversity and converging to single optima exist. While this
is intuitive for classical evolution strategies, this effect also can be observed for
strategies which explicitly address multimodality as SV4. Structural differences
compared to SV7 are present, for which a large percentage of local optima are
successfully approximated during the whole algorithm run due to extensive ex-
ploration of the search space.

Decreasing AHD between the set of local optima and the population coin-
cides with increasing approximation quality in the multimodal setting. Indica-
tors based on the mutation strength (self-adaptive strategies) or the variation
coefficient of objective values (fixed step sizes) could be set up which appropri-
ately reflect the AHD behavior over time which is naturally unknown within
the actual algorithm run. The suggested stopping criteria, in most cases, recom-
mended stopping generations which simultaneously ensure the coverage of the
modes as well as sufficient proximity to the latter. However, they face greater
challenges for decreasing number of modes but improve for increasing search
space dimensionality for the mutation strength criterion.

In future work, we will explicitly analyze the influence of self-adaption of the
mutation strength on algorithm performance. Moreover, the suggested stopping
criteria will be included into more sophisticated MMO algorithms.
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