
VLR: A Memory-Based Optimization Heuristic

Hansang Yun, Myoung Hoon Ha, and Robert Ian McKay

School of Computer Science and Engineering, Seoul National University
Seoul, 151-744, Republic of Korea

Abstract. We suggest a novelmemory-basedmetaheuristic optimization
algorithm, VLR, which uses a list of already-visited areas to more effec-
tively search for an optimal solution. We chose the Max-cut problem to
test its optimization performance, comparing it with state-of-the-art
methods. VLRdominates the previous best-performing heuristics.We also
undertake preliminary analysis of the algorithm’s parameter space, not-
ing that a larger memory improves performance. VLR was designed as a
general-purpose optimization algorithm, so its performance on other prob-
lems will be investigated in future.

Keywords: Optimization, Metaheuristics, Max-cut problem, memory.

1 Introduction

We introduce a novel metaheuristic optimization algorithm which uses a list
of already-visited areas (the Visited-Local-Region – VLR) to improve the effi-
ciency of exploration. VLR extends a general local search approach, guiding the
system to avoid regions which are unlikely to have favorable solutions or near
which we have already searched. The VLR technique is inspired by the biologi-
cal mechanisms of microRNA, small non-coding RNA molecules which regulates
gene expression [1]. The search step size is controlled by a “threshold of uncer-
tainty” (TU), which resembles the temperature in Simulated Annealing (SA).
Unlike SA’s temperature, TU does not decrease monotonically, but depends on
the VLR – we describe it in detail later. We apply VLR to the Maximum Cut
(Max-cut) problem with good results.

The remainder of this paper is organized as follows. In Section 2, we introduce
previous work on the Max-cut problem. Section 3 describes the VLR heuristic
and its application. Section 4 presents the experiment settings for Max-cut, with
the computational results being presented in Section 5. We draw conclusions and
point out future directions in the last section.

2 Background

2.1 Search Methods

We propose a stochastic local search algorithm and evaluate it on the Max-cut
problem, though it is general in form, and may be useful for other problems. Most

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 151–160, 2014.
c© Springer International Publishing Switzerland 2014

152 H. Yun, M.H. Ha, and R.I. McKay

stochastic search methods do not employ an explicit long-term memory, either
foregoing memory altogether (stochastic hillclimbing and its variants) or relying
on an implicit memory either in the population (genetic and swarm algorithms)
or in a probability structure (estimation of distribution and ant algorithms).
Only a few algorithms, of which tabu search [2] is the most prominent, explicitly
remember details of the search space. The algorithm we propose here resembles
tabu search in retaining an explicit memory of areas in the search space that it
has previously visited. However tabu search uses the memory to determine its
neighborhood structure; this algorithm differs in many details, most obviously in
using the memory to affect the acceptance criterion rather than the neighborhood
structure. It will be described in more detail in the next section.

2.2 The Max-Cut Problem

Let V be a set of n vertices, E a set of edges(i, j) with i, j ∈ V , and W a set
of weights wij on the edges (i, j) ∈ E. For a graph G = (V, E), the Max-cut
problem seeks a cut(S, Sc) that maximizes the sum of the weights on the edges
between S and its complement Sc:

maxcut(G) = max
S⊆V

(
∑

u∈S,v∈Sc

wuv)

In spite of its simple conceptualization, this problem is remarkable for its
practical applications such as the design of VLSI circuits [3,4], and the deter-
mination of ground states of spin-glass models in statistical physics [5]. Since
Karp [6] proved it NP-Complete, various algorithms have been used to achieve
better solutions with limited computing resources.

Most recent studies focused on heuristic techniques. Burer et al. [7] proposed
a rank-2 relaxation heuristic, CirCut, that achieves better solutions than any
previous, and can handle bigger problems in shorter computational time. Festa
et al. [8] combined a greedy randomized adaptive search procedure (GRASP),
variable neighborhood search (VNS), and path relinking (PR) to form a hybrid
randomized method. Their VNSPR produces high quality solutions, but with
high computational effort (time). These methods can be further hybridized with
others, such as CirCut or the Goemans and Willamson algorithm.

The subsequent Scatter Search (SS) heuristic of Mart́ı et al. [9] obtained better
performance than CirCut. Kochenberger et al. [10] applied a new Tabu Search
algorithm, Diversification-Driven Tabu Search (DDTS) [11], demonstrating its
solution quality and computational efficiency on Max-cut problems up to 10,000
vertices. Song and Li’s [12] HMA combines a memetic algorithm (MA) with
semidefinite programming for initialization, as in [13] GW+Random. It creates
a better initial population leading to a higher score for Max-cut than the SS
in [9] over many different problems.

We compared our approach with state-of-the-art heuristics, namely SS, HMA,
DDTS. Our new method out-performs these older heuristics in most cases.

VLR: A Memory-Based Optimization Heuristic 153

3 Method

Visited-Local-Region (VLR) is a general-purpose metaheuristic optimizing a tar-
get function f(x) over solution vectors x. In the Max-cut problem, x is a binary
vector representing which elements belong to set S, and f(x) denotes the value
sum for the cut(S, Sc).

We begin with a simpler version, Visited-Local-Hill (VLH), with two main
characteristics. It memorizes already-visited local hills, represented by their local
optima. Each hill has an attribute, the escape count (EC), proportional to the
number of visits (with user-set constant of proportionality d). It controls the
extent of exploration by a “threshold of uncertainty” τ , differing from SA’s
temperature in two ways:

1. Its value is reversed (low values mean more exploration).

2. It can both increase and decrease during search.

We give the explanation in three parts: exploration control in the Uncertain-
Climbing method, the VLH heuristic, and the VLR extension of VLH. To sim-
plify the explanation, we limit it to Boolean domains.

3.1 Exploration

UncertainClimbing (Algorithm 1) iteratively seeks a local optimum x. To permit
crossing between hills, we allow it to climb down (the probability varying over
time), unlike the random exploration that traditional stochastic hill climbing
undertakes when it is stuck in a local optimum. Let x′ be a bit-flip neighbor of
x. We define h(x) and p(x → x′) as:

h(x) = max(f(x) − τ, 0)

p(x → x′) =

{
h(x′)/(h(x) + h(x′)) , if (h(x) + h(x′)) > 0

0 , otherwise

Algorithm 1. Pseudocode of UncertainClimbing
01: procedure UncertainClimbing(x, τ)
02: repeat
03: for i = 1 to N do // N is length of x
04: let x′ be a neighbor of x obtained by flipping the i’th bit of x
05: pick a random real r between 0 and 1
06: h(x) = max(f(x)− τ, 0), h(x′) = max(f(x′) − τ, 0)
07: if h(x) + h(x′) > 0 and r < h(x′)/(h(x) + h(x′)) then
08: replace x with x′

09: end if
10: end for
11: increase τ
12: until (x is a local optimum)
13: return (x, τ)
14: end procedure

154 H. Yun, M.H. Ha, and R.I. McKay

Algorithm 2. Pseudocode of VLHmain
01: procedure VLHmain()
02: initialize x with a random solution and τ with f(x) .
03: repeat
04: (x, τ) = UncertainClimbing(x, τ)
05: if x /∈ V LH.keys then enroll x in V LH end if
06: V LH[x].ec = V LH[x].ec + d
07: τ = τ − V LH[x].ec
08: until (end condition)
09: return the best found solution
10: end procedure

p(x → x′) is the probability of accepting x′ as the next solution: solutions bet-
ter than x have higher rates, but worse solutions have some chance of acceptance.
The propensity for exploration is managed by τ . For f(x′) ≤ τ , p(x → x′) = 0,
so x′ is rejected; for f(x′) > τ , p(x → x′) > 0 and x′ may be accepted. Until the
process finds the local optimum, τ increases, decreasing the acceptance rate and
making the process more eager, so that it eventually reaches the local optimum.

3.2 Visited-Local-Hill (VLH)

RNA silencing works like this: when a messenger RNA contains a genetically
vulnerable feature – coding say for diabetes or cancer – microRNAs evolve to
silence them by inactivating the matching sequence. VLH acts in a similar way,
changing τ to move the search away from previously matched features.

VLH lists previously visited local optima, implemented as a TRIE structure.
This gives match determination time dependent on the search space dimension,
but not the list size. When we find a new local optimum not in the VLH list,
we add it and initialize the escape count (EC) to a constant d. EC is used
to decrement τ , determining the acceptance rate for exploration, and thus the
distance to the next target. If EC is small relative to the basin of attraction of
the local optimum, the process may revisit the same peak, in which case, we
increase EC until it is large enough to exit the basin.

Overall, τ works as follows. When the process is seeking a local optimum, τ
increases; when it reaches one, τ suffers a large reduction (by EC) and escapes
the basin of attraction. Thus the system can act as both a local optimization
method and a global one, with τ and EC adapting the algorithm to the scale of
the fitness landscape. Algorithm 2 provides the full details.

3.3 Visited-Local-Region(VLR)

VLH is simple and performs competitively. However a small extension can im-
prove it. Searching and escaping from each hill can limit the search scope. We
broaden it by defining a local region embracing a few minor hills, represented
by the fittest solution, y, detected in the region. During this phase, τ increases
– eventually, it will exceed the maximum available f(x) in the region, so search
stalls; τ suffers a reduction by EC and x can move again. VLR is described in
detail in Algorithms 3 and 4.

VLR: A Memory-Based Optimization Heuristic 155

Algorithm 3. Pseudocode of VLRmain
01: procedure VLRmain()
02: initialize x with a random solution and τ with f(x) .
03: repeat
04: (x, y, τ) = UncertainClimbing2(x, τ)
05: if y /∈ V LR.keys then enroll y in V LR end if
06: V LR[y].ec = V LR[y].ec+ d
07: τ = τ − V LR[y].ec
08: until (end condition)
09: return the best found solution
10: end procedure

Algorithm 4. Pseudocode of UncertainClimbing2
01: procedure UncertainClimbing2(x, τ)
02: y = x
03: repeat
04: for i = 1 to N do // N is length of x
05: let x′ be a neighbor of x obtained by flipping the i’th bit of x
06: pick a random real r between 0 and 1
07: h(x) = max(f(x)− τ, 0), h(x′) = max(f(x′) − τ, 0)
08: if h(x) + h(x′) > 0 and r < h(x′)/(h(x) + h(x′)) then
09: replace x with x′

10: if f(x) > f(y) then y = x end if
11: end if
12: end for
13: increase τ
14: until (x has been stuck) // i.e. x is a local optimum and τ ≥ f(x)
15: return (x, y, τ)
16: end procedure

4 Experiments

We compared VLR with three leading metaheuristics from section 2: SS [9],
HMA [12], and DDTS [10]. SS is the best known algorithm for Max-cut, outper-
forming well-known methods such as VNSPR [8] and CirCut [7]. HMA has better
performance than SS in most cases, but does not dominate. DDTS has even bet-
ter performance on the same instances, and has been tested on larger problems
(3000 to 10000), beyond the range on which SS and HMA were tested. All had
been tested on the Gset test set of Helmberg and Rendl [14] of 54 problems,
varying from 800 to 3000 vertices, so we used Gset for comparison.

The HMA tests used 30 min. on an Intel Core i5-750 2.67GHz. To calibrate
with our Intel Core i7-870 2.93GHz system, we used SPEC2006 benchmarks,
giving us a time budget of 27 min. We were able to compare also with SS
because [12] provided timings for the same problems under both HMA and SS.
[10] does not provide timing details for DDTS, so it is difficult to determine
the fairness of the comparison, but we nevertheless provide the comparative
attainments of the algorithms.

Ideally, such comparisons should be tested for statistical significance. This was
not possible, because the per-run data for previous systems were not available,
and the number of runs were too small for statistical stability. To support such
comparisons in future, all our tests used 50 runs, and the raw data are available at

156 H. Yun, M.H. Ha, and R.I. McKay

http://hdl.handle.net/10371/91260. Suitable parameter settings were deter-
mined by some more detailed exploration of VLR’s parameter space, which we
detail below.

To test the importance of the region search in VLR, we compared VLH and
VLR performance on G16, G21, G32, G37, and G52 from Gset. We tested the
impact of list size by comparing two extreme cases, VLR lists of sizes 1 and
8,000, on G37. Finally, we tested the sensitivity of VLR’s performance to the
value of the user-set parameter d, trying an exponentially increasing series of
sizes –

√|V |/4,√|V |/2, √|V |, 2√|V |, 4√|V | – on G16, G21, G37, and G52.
Detailed parameter settings for the experiments are shown in Table 1.

Table 1. Experimental Parameter Settings

Parameter Value Parameter value

d
√|V | the amount of τ

increment
1

V Problem dependant Number of Runs 50

list size 1 GByte
(size of 1list item)×|V |

5 Result and Discussion

Table 2 shows the results of comparisons between VLR and earlier methods. We
show the best known record to date, together with the available data from [12]
and [10]. For SS and HMA, we show their best and average performance from 10
runs. Curiously for a stochastic algorithm, the results for DDTS in [10] appear
to be from single runs, so that is all we can present. For VLR, we show the best,
average and median values from 50 runs, and the success rate.1

Bold values indicate best-known performance on a problem. The values en-
closed in square brackets are new best-known records. Comparing VLR with
SS, VLR has superior performance on 37 problems and worse on one. Compar-
ing with HMA, VLR wins on 30 problems and loses on one. Thus VLR almost
dominates SS and HMA; although we cannot statistically test the comparison,
it seems that VLR is overall a better performer. The comparison with DDTS is
difficult because of the single runs for DDTS, but VLR wins on 27 problems and
DDTS on 3. Overall VLR performed well, finding 20 new best-known solutions,
while failing to find a known-best solution on only 3 problems. Overall, VLR’s
performance on Max-cut is clearly of a high order.

Table 3 compares the performance of VLH and VLR. The result of one sample
t-test whether all pairwise difference differ from 0 suggests that the region struc-
ture brings performance gains on average, though differences are fairly small.

1 For skewed data such as typically arises in optimization, the median is generally
more informative than the mean.

http://hdl.handle.net/10371/91260

VLR: A Memory-Based Optimization Heuristic 157

Table 2. Comparative Results on Gset Instances

ID
of
Verts

Best
Known

SS
Best

SS
Avg.

HMA
Best

HMA
Avg.

DDTS
VLR
Best

VLR
Avg.

VLR
Median

VLR
Succ.
Rate

Number of Runs 10 1 50

G1 800 11624 11624 11624.0 11624 11624 11624 11624 11622.9 11624 47

G2 800 11620 11620 11620.0 11620 11620 11620 11620 11620.0 11620 50

G3 800 11622 11622 11619.5 11622 11622 11620 11622 11622.0 11622 50

G4 800 11646 11646 11638.5 11646 11646 11646 11646 11646.0 11646 50

G5 800 11631 11631 11630.4 11631 11631 11631 11631 11631.0 11631 50

G6 800 2178 2178 2174.1 2178 2178 2178 2178 2178.0 2178 50

G7 800 2006 1996 1988.9 2006 2006 2006 2006 2006.0 2006 50

G8 800 2005 1996 1994.7 2005 2005 2005 2005 2005.0 2005 50

G9 800 2054 2054 2051.2 2054 2053 2054 2054 2054.0 2054 50

G10 800 2000 2000 1999.1 2000 1999.1 2000 2000 1999.5 2000 44

G11 800 564 564 563.8 558 558 564 564 564.0 564 50

G12 800 556 554 550.6 556 552 556 556 556.0 556 50

G13 800 580 578 575.8 578 578 580 [582] 582.0 582 50

G14 800 3063 3063 3060.8 3060 3058.1 3061 3063 3061.3 3061 1

G15 800 3050 3040 3036.8 3049 3048.8 3050 3050 3049.1 3049 7

G16 800 3052 3044 3043.7 3050 3048.8 3052 3052 3051.0 3051 10

G17 800 3046 3040 3038.4 3045 3043.6 3046 [3047] 3045.5 3046 1

G18 800 991 991 985.8 989 986.9 991 [992] 991.3 991 19

G19 800 906 905 898.9 906 904.1 904 906 905.2 906 31

G20 800 941 941 941.0 941 941 941 941 941.0 941 50

G21 800 931 931 931.0 931 930.9 931 931 930.8 931 47

G22 2000 13359 13349 13314.8 13358 13349.8 13359 13359 13345.8 13358 9

G23 2000 13342 13323 13312.6 13337 13329.3 13342 [13344] 13335.8 13337 9

G24 2000 13337 13318 13307.8 13330 13321.8 13337 13337 13322.9 13324 6

G25 2000 13332 13320 13313.8 13330 13322 13332 [13335] 13325.4 13328 4

G26 2000 13328 13308 13299.7 13323 13310 13328 13326 13315.8 13316 8

G27 2000 3336 3332 3312.0 3334 3325.8 3336 [3341] 3326.8 3330 4

G28 2000 3295 3275 3264.9 3294 3286.9 3295 [3298] 3291.0 3294 11

G29 2000 3404 3385 3376.0 3404 3386.5 3391 [3405] 3385.8 3386 4

G30 2000 3407 3395 3384.5 3407 3402.8 3403 [3412] 3402.5 3403 15

G31 2000 3305 3275 3265.8 3305 3296.3 3288 [3310] 3299.6 3301 2

G32 2000 1406 1400 1393.2 1396 1392.2 1406 [1410] 1404.4 1404 1

G33 2000 1378 1364 1359.4 1372 1368.4 1378 1378 1374.5 1374 3

G34 2000 1378 1368 1361.6 1378 1375 1378 [1382] 1380.1 1380 15

G35 2000 7680 7654 7648.5 7680 7673 7678 [7683] 7678.9 7679 2

G36 2000 7670 7667 7654.5 7670 7665.7 7670 [7675] 7671.0 7671 1

G37 2000 7682 7667 7660.3 7682 7674.6 7682 [7687] 7685.4 7686 9

G38 2000 7683 7668 7659.8 7678 7669.9 7683 [7687] 7684.2 7685 3

G39 2000 2406 2395 2388.0 2406 2396.9 2397 [2408] 2399.6 2399 9

G40 2000 2393 2380 2375.9 2393 2389.2 2390 [2399] 2390.7 2394 1

G41 2000 2405 2391 2385.7 2405 2401.7 2400 2405 2398.0 2405 26

G42 2000 2478 2462 2458.1 2478 2469.1 2469 [2480] 2471.0 2472 2

G43 1000 6660 6660 6656.2 6660 6658.7 6660 6660 6659.1 6660 48

G44 1000 6650 6650 6648.8 6650 6649.7 6639 6650 66467.0 6650 30

G45 1000 6654 6646 6643.0 6654 6650.1 6652 6654 6648.7 6650 16

G46 1000 6649 6647 6640.4 6649 6645.8 6649 6649 6645.4 6648 18

G47 1000 6665 6655 6652.9 6656 6655.2 6665 6657 6651.3 6650 9

G48 3000 6000 - - 6000 6000 6000 6000 6000.0 6000 50

G49 3000 6000 - - 6000 6000 6000 6000 6000.0 6000 50

G50 3000 5880 - - 5880 5880 5880 5876 5859.6 5874 15

G51 1000 3847 3843 3839.4 3847 3843.9 3847 3847 3846.0 3846 9

G52 1000 3849 3841 3836.1 3848 3844.8 3849 [3851] 3849.1 3849 3

G53 1000 3849 3845 3844.3 3849 3844.9 3848 3849 3846.7 3846 2

G54 1000 3851 3849 3846.0 3845 3842.5 3851 3851 3850.1 3850 4

158 H. Yun, M.H. Ha, and R.I. McKay

Table 3. VLH-VLR Performance Comparison

VLH
Best

VLH
Avg.

VLR
Best

VLR
Avg.

t p value mean

G16 3052 3050.9 3052 3051.06 8.593 <2.2e-16 0.16

G21 931 930.76 931 930.94 11.6283 <2.2e-16 0.18

G32 1408 1404.88 1410 1404.84 -0.6851 0.4934 -0.04

G37 7688 7683.78 7687 7684.7 12.8641 <2.2e-16 0.92

G52 3850 3848.74 3851 3849.08 16.462 <2.2e-16 0.34

Table 4. Performance Comparison for VLR Parameter d

√|V |/4 √|V |/2 √|V | 2
√|V | 4

√|V | t p-value mean

G16 3049.1 3051.58 3051.06 3048.6 3045.22 175.1456 <2.2e-16 6.36

G21 921.46 929.26 930.94 931 930.32 64.8215 <2.2e-16 9.54

G32 1392.12 1397.6 1404.84 1400.64 1393.16 131.3383 <2.2e-16 12.72

G37 7677.9 7682.62 7684.7 7678.88 7665.5 218.2509 <2.2e-16 19.2

G52 3847.04 3850 3849.08 3844.88 3840.76 236.2583 <2.2e-16 9.24

Table 4 shows the sensitivity analysis for user-set parameter d. We can see
that the performance is fairly sensitive to d from the result of one sample t-test
for all pairwise difference the best and the worst. Since even small differences
in objective values are crucial for optimization performance, setting d correctly
is clearly important – however for individual problems, the performance curve
seems to be unimodal, with the best settings not varying much. The setting
we used in the main experiments (

√|V |) appears to have been a reasonable

0 100 200 300 400
0

1

2

3

4

5
·10−3

0 100 200 300 400
0

1

2

3

4

5
·10−3

0 100 200 300 400

evaluation(10millions)

d
ev

ia
ti
on

VLR size = 1

VLR size = 8k

Fig. 1. VLR List Size Comparison: Distribution of Deviation Current Best from Best
Known Value every 107 Evaluations (Median and Quartiles over 50 Runs) on G37

VLR: A Memory-Based Optimization Heuristic 159

choice, though a value between
√|V |/2 and

√|V | may have been better. The
unimodality of the search means that adaptive measures could be used to choose
d, but we leave this for future work.

Figure 1 illustrates the effect of VLR list size. The best solutions found each 10
million evaluations from 50 runs on the G37 form the raw data. The vertical axis
indicates the deviation from the best known solution. The dotted lines show the
median, and the translucent areas indicate the interquartile ranges (rank statis-
tics are more useful here because the distributions are highly skewed). Larger
list sizes consistently lead to better performance (though there is substantial
overlap). Larger VLR sizes come with a memory cost, but a VLR size of 8,000 is
trivial today; because of the use of the TRIE structure, there is little additional
time cost. Thus it seems sensible to use reasonably large VLR sizes, even though
the performance gains are relatively small. We conclude that the larger list has
better performance since the t-test results for all pairwise difference at the end of
the runs are t = 11.9942, p− value < 2.2e− 16, and mean = 0.064, respectively.

6 Conclusion

The VLH mechanism, inspired by MicroRNA, and extended by the region struc-
ture in the VLR algorithm, has shown good performance on the Max-cut prob-
lem. VLR’s design uses adaptive feedback to maintain the balance between explo-
ration and exploitation through more effective use of information gathered from
the search process. We think the performance of VLR derives from its targeted
exploration, adapting to the fitness landscape rather than exploring randomly. It
thus adopts good features from two important heuristics, namely simulated an-
nealing and Tabu search, combining them in ways that yield useful increments in
performance.

In the future we plan to test VLR’s performance on a wider range of opti-
mization problems. We also plan to explore the parameter space and algorithm
details more deeply – finding ways to determine the optimum list size, and test-
ing whether there are more effective ways to change the EC parameter than
the current linear increase and decrease. There is also potential to explore more
informed and efficient search operators. Preliminary work in these directions has
yielded improved results, but detailed results are not yet available.

Acknowledgements. This work was supported by the Engineering Research
Center of Excellence Program of Korea Ministry of Science, ICT & Future Plan-
ning(MSIP) / National Research Foundation of Korea (NRF) (Grant NRF-2008-
0062609). The ICT at Seoul National University provided research facilities for
this study.

References

1. Chen, K., Rajewsky, N.: The evolution of gene regulation by transcription factors
and microRNAs. Nature Reviews Genetics 8(2), 93–103 (2007)

2. Glover, F.: Future paths for integer programming and links to artificial intelligence.
Comput. Oper. Res. 13(5), 533–549 (1986)

160 H. Yun, M.H. Ha, and R.I. McKay

3. Chang, K.C., Du, D.: Efficient algorithms for layer assignment problem. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 6(1),
67–78 (1987)

4. Pinter, R.Y.: Optimal layer assignment for interconnect. Adv. VLSI Comput.
Syst. 1(2), 123–137 (1984)

5. Barahona, F., Grötschel, M., Jünger, M., Reinelt, G.: An application of combi-
natorial optimization to statistical physics and circuit layout design. Operations
Research 36(3), 493–513 (1988)

6. Karp, R.M.: Reducibility among combinatorial problems. In: Jünger, M., Liebling,
T.M., Naddef, D., Nemhauser, G.L., Pulleyblank, W.R., Reinelt, G., Rinaldi, G.,
Wolsey, L.A. (eds.) 50 Years of Integer Programming 1958-2008, pp. 219–241.
Springer, Heidelberg (2010)

7. Burer, S., Monteiro, R.D.C., Zhang, Y.: Rank-two relaxation heuristics for max-cut
and other binary quadratic programs. SIAM Journal on Optimization 12, 503–521
(2000)

8. Festa, P., Pardalos, P., Resende, M., Ribeiro, C.: Randomized heuristics for the
max-cut problem. Optimization Methods and Software 17(6), 1033–1058 (2002)

9. Mart́ı, R., Duarte, A., Laguna, M.: Advanced scatter search for the max-cut prob-
lem. INFORMS J. on Computing 21(1), 26–38 (2009)

10. Kochenberger, G.A., Hao, J.K., Lü, Z., Wang, H., Glover, F.: Solving large scale
max cut problems via tabu search. Journal of Heuristics 19(4), 565–571 (2013)

11. Glover, F., Lü, Z., Hao, J.K.: Diversification-driven tabu search for unconstrained
binary quadratic problems. 4OR, Q. J. Oper. Res. 8(3), 239–253 (2010)

12. Song, B., Li, V.: A hybridization between memetic algorithm and semidefinite
relaxation for the max-cut problem. In: Proceedings of the Fourteenth International
Conference on Genetic and Evolutionary Computation Conference, GECCO 2012,
pp. 425–432. ACM, New York (2012)

13. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming. J.
ACM 42(6), 1115–1145 (1995)

14. Helmberg, C., Rendl, F.: A spectral bundle method for semidefinite programming.
SIAM Journal on Optimization 10, 673–696 (1997)

	VLR: A Memory-Based Optimization Heuristic
	1 Introduction
	2 Background
	2.1 Search Methods
	2.2 The Max-Cut Problem

	3 Method
	3.1 Exploration
	3.2 Visited-Local-Hill (VLH)
	3.3 Visited-Local-Region(VLR)

	4 Experiments
	5 Result and Discussion
	6 Conclusion
	References

