
A Differential Evolution Algorithm

for the Permutation Flowshop Scheduling
Problem with Total Flow Time Criterion

Valentino Santucci, Marco Baioletti, and Alfredo Milani

Department of Mathematics and Computer Science
University of Perugia, Italy

{valentino.santucci,baioletti,milani}@dmi.unipg.it

Abstract. In this paper a new discrete Differential Evolution algorithm
for the Permutation Flowshop Scheduling Problem with the total flow-
time criterion is proposed. The core of the algorithm is the distance-based
differential mutation operator defined by means of a new randomized
bubble sort algorithm. This mutation scheme allows the Differential Evo-
lution to directly navigate the permutations search space. Experiments
were held on a well known benchmark suite and the results show that
our proposal outperforms state-of-the-art algorithms on the majority of
the problems.

Keywords: Differential Evolution, Permutation Flowshop Scheduling
Problem, Randomized Bubble Sort.

1 Introduction and Related Works

The Permutation Flowshop Scheduling Problem (PFSP) is a type of schedul-
ing problem widely encountered in areas such as manufacturing and large scale
products fabrication [1]. The goal of PFSP is to determine the best permutation
π = 〈π[1], . . . , π[n]〉 of n jobs that have to be processed through a sequence of m
machines.

Here we focus on the Total Flow Time (TFT) criterion that consists in mini-
mizing the objective function

f(π) =

n∑

j=1

c(m,π[j]) (1)

where c(i, π[j]) is the completion time of job π[j] on machine i and is recursively
calculated in terms of the processing times pi,π[j] as:

c(i, π[j]) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

pi,π[j] if i = j = 1

pi,π[j] + c(i, π[j − 1]) if i = 1 and j > 1

pi,π[j] + c(i− 1, π[j]) if i > 1 and j = 1

pi,π[j] +max{c(i, π[j − 1]), c(i− 1, π[j])} if i > 1 and j > 1

(2)

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 161–170, 2014.
c© Springer International Publishing Switzerland 2014



162 V. Santucci, M. Baioletti, and A. Milani

The PFSP with the TFT criterion has been demonstrated to be NP hard
for two or more machines. Therefore, even due to its practical interest, many
researches have been devoted to finding high quality and near optimal solutions
by means of heuristic or meta-heuristic approaches [1,2]. A report of the state-
of-the-art methods for PFSP-TFT has been recently provided in [2] where it
is shown that the most performing meta-heuristics are: VNS4 [3], AGA [4] and
GM-EDA together with its hybrid variant HGM-EDA [2]. VNS4 applies a vari-
able neighborhood search (VNS) to an initial permutation built by means of a
constructive heuristic called LR(n/m) [5]. AGA is an asynchronous genetic algo-
rithm hybridized with VNS. GM-EDA is an estimation of distribution algorithm
that adopts a probabilistic model for the permutations space known as general-
ized Mallows model, while HGM-EDA represents the hybridization of GM-EDA
with a VNS scheme.

Differential Evolution [6] is one of the many approaches to evolutionary com-
putation [7,8,9]. Although its effectiveness in numerical spaces, DE applications
to combinatorial problems, and in particular to permutation-based problems,
are still unsatisfactory. To the best of our knowledge, all the DE algorithms for
the PFSP proposed in literature (see for example the schemes reported in [10]
or the more recent ones [11,12]) adopt some transformation scheme to encode
permutations into numerical vectors. This distinction between the phenotypic
and genotypic space introduces large plateaus in the numerical landscape and
is probably the reason of their poor performances. To address this issue, in this
paper we propose a discrete DE scheme for the PFSP-TFT problem that works
directly on the permutations space. Since the differential mutation operator has
been generally considered the key component of DE [13], our approach mainly re-
lies on a differential mutation operator that directly handles permutations, thus
trying to fruitfully bring the DE search properties from the numerical space to
the combinatorial space of permutations. Furthermore, a new O(n2) randomized
bubble sort algorithm is provided.

The rest of the paper is organized as follows. The permutation-based differ-
ential mutation operator and the new randomized bubble sort algorithm are
introduced and motivated in Section 2. The full DE scheme for PFSP-TFT is
described in Section 3. An experimental analysis of the proposed approach is
provided in Section 4. Finally, conclusions are drawn in Section 5 and some
future lines of research are depicted.

2 Differential Mutation in the Permutations Space

Differential Evolution (DE) [6] is a popular and powerful evolutionary algorithm
over continuous search spaces using the differential mutation operator as its key
component [13]. In the most common variant, for each population individual
xi ∈ R

n, three different parents xr0 , xr1 , xr2 are randomly selected from the
current population and a mutant vi ∈ R

n is generated according to

vi = xr0 + F · (xr1 − xr2) (3)



A Differential Evolution Algorithm for the PFSP with TFT Criterion 163

where the scalar parameter F usually lies in (0, 1]. It has been argued that
the differential mutation confers to DE the “contour matching” property (term
coined by Price et al. in [13]), i.e., it allows DE to automatically adapt both
mutation step size and orientation to the objective function landscape.

Here we propose a differential mutation scheme that directly works on the
permutations space and that inherits, in some geometric sense, the “contour
matching” property of its numerical counterpart.

The permutations of the set {1, 2, . . . , n}, together with the usual permuta-
tions composition operator ◦, form a group denoted by S(n) where each π ∈ S(n)
has its inverse, denoted by π−1.

It is possible to bring the classical concepts of sum and difference of Rn in
S(n). Indeed, by defining the sum of π1, π2 ∈ S(n) as π1 ◦π2, their difference can
be straightforwardly defined as π−12 ◦ π1 since π1 = π2 ◦

(
π−12 ◦ π1

)
. Therefore,

by temporarily omitting the scale factor F , equation (3) can be rewritten for
permutations as:

νi = πr0 ◦
(
π−1r2 ◦ πr1

)
(4)

In order to introduce the scale factor F in equation (4) we need to define
an operation which, given a scalar F ∈ [0, 1], scales down a permutation π
to a “truncated” permutation F · π. A possible approach is to choose a set of
generators G ⊆ S(n) and decompose π in the compositions chain g1 ◦ · · · ◦ gL
where g1, . . . , gL ∈ G. Therefore, by defining F ·π = g1◦· · ·◦gk, with k = �F ·L�,
it is finally possible to provide a differential mutation for permutations as:

νi = πr0 ◦
(
F · (π−1r2 ◦ πr1

))
(5)

Interestingly, the introduction of a generators set G allows a useful geometric
interpretation of the search space. Indeed, given G ⊆ S(n), it is possible to
represents the permutations search space as a Cayley graph Γ , i.e., a regular
graph whose vertices are the permutations of S(n) and, for any π ∈ S(n) and
g ∈ G, the vertices corresponding to π and π ◦ g are joined by an edge labeled
with g. This allows in turn: (1) to derive a metric distance function corresponding
to the length of a shortest path between two permutations in Γ , (2) to view the
difference between π1 and π2 as the compositions chain of the edges labels in a
shortest path from π2 to π1 in Γ , and (3) to interpret the scaled difference as a
truncated shortest path.

However, different sets of generators are possible for S(n). Each one may lead
to a different search space structure thus have a different impact on the search
algorithm. Here, we consider the three main generators sets of S(n) [15]:

– the set of all transpositions T = {(i, j)T : 1 ≤ i < j ≤ n}, where (i, j)T
denotes the permutation which only swaps the elements at places i and j,

– the set of all insertions I = {(i, j)I : i 
= j and 1 ≤ i, j ≤ n}, where (i, j)I
denotes the permutation that shifts the element at place j to place i,

– the set of all simple transpositions ST = {(i, i+1)T : 1 ≤ i ≤ n − 1},
i.e., the permutations which only swap two adjacent elements (note that
(i, i+1)T = (i, i+1)I = (i+1, i)I).



164 V. Santucci, M. Baioletti, and A. Milani

T and I have respectively
(
n
2

)
and (n− 1)2 elements, and both produce a search

space diameter of n−1. Their induced distance functions are known in literature
as, respectively, Cayley distance and Ulam distance [15]. Instead, ST , which is
a proper subset of both T and I, has n− 1 elements and provides a diameter of(
n
2

)
. Its induced distance function is known as Kendall-τ distance [15] and equals

the number of inversions of either π−12 ◦ π1 or π−11 ◦ π2.
The choice among these sets of generators has been made by exploiting the

hypothesis that a smoother objective function landscape is a benefit for an evo-
lutionary algorithm. In order to detect which among T , I and ST produces the
smoothest landscape on the PFSP-TFT problem, we made two experimental
investigations. For several instances of the Taillard benchmark problems (see
Section 4) we have generated 10 000 random permutations. For each one, and
for d = 1, . . . , 10, we have tabulated its TFT relative difference after the appli-
cation of a random transposition of the type (i, i+d)T (first experiment) and a
random insertion of the type (i, i+d)I (second experiment). From the box-plots
reported in Figures 1a and 1b for the first instance of the Taillard problems
100 × 5 (other instances have the same behavior) it is possible to deduce that
d = 1 provides the smoother TFT variation and that this variation increases
with d. Therefore, by recalling the fact that both transpositions and insertions
reduce to simple transpositions when d = 1, the search space for the differential
mutation operator has been structured using ST as set of generators.

(a) using T (b) using I

Fig. 1. Relative TFT variations on the first instance of the 100× 5 Taillard problems

The truncated permutation F ·π can be computed using the well known bubble
sort algorithm. However, F ·π is not unique in general because π can have several
different shortest representations as compositions chain of simple transpositions.
Hence, in order to design a mutation scheme as fair as possible, we propose a
randomized version of bubble sort that is outlined in Algorithm 1.

The RandBS algorithm sorts the permutation π (and any array of sortable
elements) with the optimal number of adjacent swaps. Indeed, at each iteration



A Differential Evolution Algorithm for the PFSP with TFT Criterion 165

Algorithm 1. Randomized Bubble Sort

1: function RandBS(π,n) � π is the permutation of degree n to sort
2: CC ←<> � CC will be the sequence of simple transpositions that sorts π
3: LST ← {i : π[i] > π[i+ 1]}
4: while LST �= ∅ do
5: i← RemoveRandomElement(LST )
6: Swap π[i] and π[i+ 1]
7: Append i to CC
8: if i > 0 and i− 1 �∈ LST and π[i− 1] > π[i] then
9: Add i− 1 to LST

10: if i < n − 1 and i + 1 �∈ LST and π[i+ 1] > π[i+ 2] then
11: Add i+ 1 to LST

12: end while
13: return CC
14: end function

of the while loop: (1) a simple transposition is applied to π, thus reducing by
one the Kendall-τ distance to e (the ordered permutation), (2) LST contains
exactly the simple transpositions that “move” π towards e. This allows also to
limit the number of iterations to

(
n
2

)
= O(n2). Then, it is easy to prove that the

time complexity of RandBS is O(n2) as the one of its classical counterpart.
Furthermore, it is worthwhile to notice that RandBS produces, as a second

result, CC, i.e., a minimal-length sequence of simple transpositions that sorts π.
By reversing the sequence CC, the compositions chain of simple transpositions of
π is obtained. Interestingly, CC equals to a sequence of edges labels obtained by
a “never go back” random walk from π towards e in the subgraph of Γ composed
by the permutations σ such that dK(π, σ) + dK(σ, e) = dK(π, e), where dK(·, ·)
is the Kendall-τ distance.

Hence, the application of RandBS to π−1r2 ◦ πr1 allows to randomly produce
one of its decompositions. Then, by truncating it as aforementioned we obtain
F ·(π−1r2 ◦ πr1

)
and thus we have a procedure to compute the differential mutation

of equation (5).

3 Differential Evolution for Permutations

The Differential Evolution for the Permutations space (DEP), outlined in Al-
gorithm 2, directly evolves a population of NP permutations π1, . . . , πNP . Its
main scheme resembles that of the classical DE with the introduction of a restart
mechanism and a memetic local search procedure. Moreover, important varia-
tions have been made to the population initialization and to the genetic operators
of mutation, crossover and selection. All these components are described in the
following.

The population is initialized with NP − 1 random permutations and the
remaining one is obtained by means of the constructive heuristic LR(n/m) [5].

For each population individual πi, a mutant permutation νi is generated ac-
cording to equation (5) and using the procedure described in Section 2. In order
to avoid the setting of the scale factor F , the self-adaptive scheme proposed in
jDE [16] has been used for its online adaptation.



166 V. Santucci, M. Baioletti, and A. Milani

Algorithm 2.Differential Evolution for Permutations

1: Initialize Population
2: while evaluations budget is not exhausted do
3: for i← 1 to NP do
4: νi ← DifferentialMutation(i)

5: υ
(1)
i , υ

(2)
i ← Crossover(πi, νi)

6: Evaluate f(υ
(1)
i ) and f(υ

(2)
i )

7: for i← 1 to NP do
8: πi ← Selection(πi, υ

(1)
i , υ

(2)
i )

9: if restart criterion then
10: Perform a Baldwinian Local Search on πbest

11: Restart Population

12: end while

The crossover between the population individual πi and the mutant νi is
performed according to the two-point crossover version II (TPII) proposed in [7]
and used by AGA [4]. Differently from the classical DE crossover, TPII produces

two offspring individuals, i.e., υ
(1)
i and υ

(2)
i . Two indices j, k, such that 1 < j <

k < n, are randomly generated. υ
(1)
i [h] = πi[h] for j ≤ h ≤ k and the missing

jobs are placed in υ
(1)
i using the order of their appearance in νi. Finally, υ

(2)
i is

filled in the same way but by reversing the role of πi and νi.
In order to choose the trial υi that will compete with πi, a preliminary se-

lection between the two offspring individuals is performed according to υi =

argmin
{
f(υ

(1)
i ), f(υ

(2)
i )
}
.

The new population individual π′i is chosen by a “biased” selection between
υi and πi performed according to:

π′i =

{
υi if f(υi) < f(πi) or r < max {0, 0.01−Δi}
πi otherwise

(6)

where r is a random number in [0, 1] and Δi is the relative fitness variation
(f(υi) − f(πi))/f(πi). Similarly to classical DE selection, υi enters the next
generation population if it is fitter than πi. Otherwise, υi may be selected with
a small probability that linearly shades from 0.01 when Δi = 0 to 0 when
Δi = 0.01. This criterion allows: (1) to slow down the population convergence,
(2) to reduce the number of restarts, and (3) to mitigate the super-individual
effect observed in some preliminary experiments.

Finally, a restart mechanism has been introduced in order to completely avoid
the stagnation of the population. When the population fitnesses are the same, the
best individual is kept and the other NP − 1 permutations are randomly reini-
tialized. Furthermore, a local search procedure is applied to the best individual
using a Baldwinian approach, that is, the result of the local search is collected
but does not enter the DEP population. The local search scheme employed is
similar to VNS4 [3] without shakes. A greedy local search using the interchange



A Differential Evolution Algorithm for the PFSP with TFT Criterion 167

neighborhood is carried out until a local minimum is found. Then, the best neigh-
bor in its insertion neighborhood is chosen and the process is iterated until a local
minimum for both neighborhoods is reached. Moreover, it is worth to notice that
the interchange local search iterates by randomly scanning the permutation com-
ponents at every step and selecting the first improvement found.

4 Experiments

The performances of DEP have been evaluated on the well known 120 benchmark
problems proposed by Taillard in [17]. For each problem instance 20 runs were
made and the results have been compared with those provided in [2] for the
four PFSP-TFT state-of-the-art methods: AGA, VNS4, GM-EDA and HGM-
EDA. DEP population size has been set to NP = 100 after some preliminary
experiments and, in order to provide a fair comparison, the same caps of objective
function evaluations reported in [2, Table III] have been adopted.

The performance measure employed is the average relative percentage devia-
tion (ARPD):

ARPD =

(
20∑

i=1

(Algi −Best)× 100

Best

)
/20 (7)

where Algi is the final TFT value found by the algorithm in its ith run, and
Best is the best known TFT value for the problem instance at hand.

In order to detect the statistical differences between the performances of DEP
and each of the other algorithms, as suggested in [18], we applied to every n×m
problem configuration the non-parametric 1×N Friedman’s test and the Finner
post-hoc procedure to the average TFT results produced by each algorithm on
every instance.

The best TFT values and the ARPDs of each algorithm are reported in Table
1. The TFTs in bold indicates when DEP reaches the best value and the asterisk
denotes when it is a new known optimal TFT. Minimal ARPDs are reported in
bold.

Furthermore, for each problem configuration the Friedman’s average ranking
of all the algorithms are provided. Values in bold denote that DEP significantly
outperforms the algorithm, while values in italic denote that DEP is significantly
outperformed by the algorithm.

In 79 instances over 120, DEP reaches the best TFT, and, most remarkably,
in 45 cases they are the new known best values. Moreover, it is worth to notice
that DEP has obtained new optima for 23 over 30 instances of size 100×m and
for 18 over 20 instances of size 200×m, which are reputed to be difficult.

The robustness of DEP is proved by the fact that it presents the lowest ARPD
results in 96 instances. Again, in almost all 100 and 200 jobs problems, DEP is
the best algorithm in average.

Except the case of 500 jobs, DEP has always the lowest Friedman’s average
rank. The results can be summarized as follows:



168 V. Santucci, M. Baioletti, and A. Milani

Table 1. Experimental Results

Instance Best AGA VNS4 GM-EDA HGM-EDA DEP Instance Best AGA VNS4 GM-EDA HGM-EDA DEP

20× 5 14033 0.00 0.00 0.18 0.00 0.00 100× 5 ∗253605 0.29 1.25 0.87 0.23 0.05
15151 0.00 0.00 0.48 0.00 0.00 ∗242579 0.30 1.80 1.08 0.35 0.05
13301 0.00 0.00 0.50 0.00 0.00 ∗238075 0.22 1.49 0.85 0.26 0.07
15447 0.00 0.00 0.43 0.00 0.00 227889 0.17 1.29 0.78 0.20 0.06
13529 0.00 0.00 0.21 0.00 0.00 240589 0.21 1.29 0.80 0.23 0.02
13123 0.00 0.00 0.08 0.00 0.00 ∗232689 0.32 1.52 0.90 0.28 0.06
13548 0.00 0.00 0.79 0.00 0.00 240669 0.15 1.34 1.00 0.34 0.25
13948 0.00 0.00 0.18 0.00 0.00 ∗231064 0.29 1.79 1.06 0.35 0.07
14295 0.00 0.00 0.18 0.00 0.00 ∗248039 0.40 1.66 1.05 0.38 0.09
12943 0.00 0.00 0.46 0.00 0.00 ∗243258 0.19 1.44 1.00 0.28 0.07

Avg Rank 2.5 2.5 5 2.5 2.5 Avg Rank 2.2 5 4 2.7 1.1

20× 10 20911 0.00 0.00 0.45 0.00 0.00 100× 10 ∗299101 0.43 1.63 1.80 0.44 0.16
22440 0.00 0.00 0.54 0.00 0.00 ∗274566 0.60 1.58 2.08 0.69 0.28
19833 0.00 0.00 0.31 0.00 0.00 ∗288543 0.37 1.57 1.74 0.38 0.18
18710 0.00 0.00 0.75 0.00 0.00 ∗301552 0.50 1.79 2.08 0.53 0.18
18641 0.00 0.00 0.35 0.00 0.00 ∗284722 0.61 1.64 1.95 0.54 0.22
19245 0.00 0.00 0.77 0.00 0.00 ∗270483 0.42 1.76 1.83 0.45 0.19
18363 0.00 0.00 0.47 0.00 0.00 ∗280257 0.37 1.58 1.65 0.40 0.25
20241 0.00 0.00 0.47 0.00 0.00 ∗291231 0.49 1.77 2.03 0.61 0.27
20330 0.00 0.00 0.27 0.00 0.00 302624 0.36 1.46 1.76 0.41 0.20
21320 0.00 0.00 0.24 0.00 0.00 ∗291705 0.48 1.84 1.68 0.50 0.06

Avg Rank 2.5 2.5 5 2.5 2.5 Avg Rank 2.1 4.1 4.9 2.9 1

20× 20 33623 0.00 0.00 0.65 0.00 0.00 100× 20 ∗366438 0.80 1.70 2.26 0.67 0.37
31587 0.00 0.00 0.28 0.00 0.00 ∗373138 0.55 1.43 2.04 0.58 0.25
33920 0.00 0.00 0.04 0.00 0.00 371417 0.47 1.31 1.93 0.36 0.21
31661 0.00 0.00 0.28 0.00 0.00 ∗373574 0.60 1.36 1.92 0.45 0.26
34557 0.00 0.00 0.26 0.00 0.00 ∗369903 0.57 1.35 1.92 0.47 0.19
32564 0.00 0.00 0.30 0.00 0.00 ∗372752 0.51 1.46 2.17 0.42 0.30
32922 0.00 0.00 0.61 0.00 0.00 ∗373447 0.70 1.82 2.19 0.63 0.33
32412 0.00 0.00 0.52 0.00 0.00 385456 0.46 1.41 1.96 0.43 0.20
33600 0.00 0.00 0.56 0.00 0.00 ∗375352 0.62 1.52 2.01 0.52 0.41
32262 0.00 0.00 0.41 0.00 0.00 379899 0.48 1.29 2.05 0.49 0.46

Avg Rank 2.5 2.5 5 2.5 2.5 Avg Rank 2.8 4 5 2.2 1

50× 5 64803 0.05 0.78 0.79 0.12 0.05 200× 10 1047662 0.48 1.25 1.19 0.17 0.21
68062 0.06 0.88 0.94 0.12 0.08 ∗1035783 0.94 1.54 1.49 0.32 0.15
63162 0.19 1.21 1.34 0.38 0.21 ∗1045706 0.66 1.62 1.30 0.32 0.15
68226 0.17 1.12 1.27 0.22 0.13 ∗1029580 0.77 1.65 1.38 0.45 0.12
69392 0.09 0.87 0.89 0.15 0.09 ∗1036464 0.68 1.35 1.37 0.19 0.13
66841 0.10 0.80 0.82 0.18 0.04 1006650 0.50 1.36 1.39 0.19 0.23
66258 0.03 0.74 0.95 0.07 0.02 ∗1052786 0.95 1.66 1.23 0.24 0.10
64359 0.05 0.89 0.97 0.23 0.05 ∗1044961 0.62 1.51 1.39 0.25 0.11
62981 0.09 0.83 0.81 0.14 0.05 ∗1023315 0.81 1.61 1.29 0.28 0.24

∗68843 0.15 1.13 1.01 0.29 0.10 ∗1029198 0.97 1.87 1.48 0.39 0.25

Avg Rank 1.6 4.2 4.8 3 1.4 Avg Rank 3 4.8 4.2 1.8 1.2

50× 10 ∗87204 0.33 1.12 2.11 0.39 0.18 200× 20 ∗1225817 0.72 1.44 1.68 0.34 0.16
82820 0.22 1.09 2.45 0.60 0.30 ∗1239246 1.07 1.67 1.66 0.54 0.21
79987 0.23 1.07 1.84 0.36 0.22 ∗1263134 1.08 1.65 1.57 0.48 0.26

∗86545 0.21 0.94 1.87 0.36 0.16 ∗1233443 1.25 1.84 1.73 0.58 0.24
86450 0.14 0.90 2.02 0.38 0.25 ∗1220117 1.12 1.79 1.93 0.53 0.17
86637 0.13 0.77 1.55 0.29 0.11 ∗1223238 1.17 1.69 1.69 0.46 0.19
88866 0.25 0.89 1.97 0.48 0.42 ∗1237116 1.03 1.65 1.66 0.64 0.15

∗86820 0.19 0.95 2.04 0.36 0.01 ∗1238975 1.25 1.72 1.72 0.51 0.19
85526 0.29 1.11 2.10 0.42 0.28 ∗1225186 1.44 1.91 1.80 0.59 0.14
88077 0.09 0.76 2.00 0.45 0.42 ∗1244200 1.16 1.62 1.68 0.52 0.11

Avg Rank 1.6 4 5 3 1.4 Avg Rank 3 4.5 4.5 2 1

50× 20 125831 0.10 0.65 1.76 0.39 0.14 500× 20 6708053 0.11 0.35 8.90 2.02 1.00
119259 0.04 0.51 1.58 0.22 0.06 6829668 0.25 0.38 8.58 1.94 0.66
116459 0.19 0.73 2.24 0.44 0.28 6747387 0.24 0.41 8.46 2.04 1.07
120712 0.22 0.61 1.92 0.34 0.34 6787054 0.26 0.45 8.75 1.89 0.84
118184 0.40 0.86 2.30 0.52 0.39 6755257 0.39 0.41 8.72 1.92 0.74
120703 0.19 0.62 1.78 0.35 0.16 6751496 0.19 0.42 8.58 2.13 0.32
122962 0.38 0.71 2.10 0.47 0.36 6708860 0.27 0.45 9.15 2.05 0.93
122489 0.16 0.75 2.24 0.55 0.14 6769821 0.31 0.58 8.62 2.09 0.73
121872 0.16 0.76 1.79 0.37 0.12 6720474 0.15 0.46 8.69 1.91 0.96
124064 0.23 0.90 1.95 0.42 0.29 6767645 0.19 0.44 8.51 2.00 0.86

Avg Rank 1.5 4 5 3 1.5 Avg Rank 1 2.1 5 4 2.9



A Differential Evolution Algorithm for the PFSP with TFT Criterion 169

– For problems with 20 jobs, all the algorithms perform the same, except GM-
EDA which is significantly worse.

– For problems with 50 jobs, DEP has the lowest average rank values and is
significantly better than VNS4, GM-EDA and HGM-EDA.

– For problems with n = 100, DEP has the average rank values very close to
1 and has no clear competitor.

– A similar behaviour is found for problems with 200 jobs, but HGM-EDA,
although having a worse average rank and obtaining only two best values
over 20, is not significantly worse than DEP.

– The only weakness for DEP is found in problems with 500 jobs, where it is
outperformed by AGA and VNS4. Indeed, we observed that the number of
restarts was very small or even zero, thus indicating a low convergence rate
probably due to the large diameter of the search space.

The conclusion of this analysis is that DEP can be considered among the
state-of-the-art PFSP-TFT algorithms and is the best one on the majority of
the benchmark problems.

5 Conclusions and Future Works

In this work, a new discrete Differential Evolution algorithm for Permutation
spaces (DEP) has been proposed. The main contribution is the differential mu-
tation operator which is defined by means of a randomized bubble sort algorithm
and extends the “contour matching” property of classical DE to the permutations
space. Moreover, a randomly biased selection operator that allows to improve
the population diversity in order to mitigate the super-individual effect has been
proposed.

The experimental results on PFSP-TFT show that DEP outperforms the other
state-of-the-art algorithms and found 45 new optimal solutions previously un-
known.

Promising lines of research for further improvements will focus on the anal-
ysis of the contributions of each single DEP component (mutation, crossover,
selection, restart, local search) and the tuning of their parameters.

Furthermore, we are planning to investigate the application of the DEP algo-
rithm to other permutation-based problems (like TSP, QAP, LOP, etc.).

Acknowledgments. This work was partially supported by Italian Ministry
of Education, University and Research (MIUR) under the PRIN 2010-11 grant
no. 2010FP79LR 003 “Logical methods of information management”, by the
University of Perugia, DMI Project “Mobile Knowledge Agents in Evolutionary
Environments” and by the services provided by the European Grid Infrastructure
(EGI), the Italian Grid Infrastructure (IGI) and the National Grid Initiatives
for the Virtual Organization (VO) COMPCHEM.



170 V. Santucci, M. Baioletti, and A. Milani

References

1. Gupta, J., Stafford, J.E.: Flowshop scheduling research after five decades. European
Journal of Operational Research 169, 699–711 (2006)

2. Ceberio, J., Irurozki, E., Mendiburu, A., Lozano, J.A.: A Distance-based Ranking
Model Estimation of Distribution Algorithm for the Flowshop Scheduling Problem.
IEEE Transactions on Evolutionary Computation 99, 1–16 (2013)

3. Costa, W.E., Goldbarg, M.C., Goldbarg, E.G.: New VNS heuristic for total flow-
time flowshop scheduling problem. Expert Systems with Appl. 39, 8149–8161
(2012)

4. Xu, X., Xu, Z., Gu, X.: An asynchronous genetic local search algorithm for the
permutation flowshop scheduling problem with total flowtime minimization. Expert
Systems with Appl. 38, 7970–7979 (2011)

5. Liu, J., Reeves, C.R.: Constructive and composite heuristic solutions to the
P//

∑
Ci scheduling problem. European Journal of Operational Research 132,

439–452 (2001)
6. Storn, R., Price, K.: Differential Evolution: A Simple and Efficient Heuristic for

Global Optimization over Continuous Spaces. Jour. of Global Opt. 11, 341–359
(1997)

7. Murata, T., Ishibuchi, H., Tanaka, H.: Genetic algorithms for flowshop scheduling
problems. Computers & Ind. Eng. 30(4), 1061–1071 (1996)

8. Milani, A., Santucci, V.: Community of scientist optimization: An autonomy ori-
ented approach to distributed optimization. AI Commununications 25, 157–172
(2012)

9. Baioletti, M., Milani, A., Poggioni, V., Rossi, F.: Experimental evaluation of
pheromone models in ACOPlan. Ann. Math. Artif. Intell. 62(3-4), 187–217 (2011)

10. Onwubolu, G.C., Davendra, D. (eds.): Differential Evolution: A Handbook for
Global Permutation-Based Combinatorial Optimization. SCI, vol. 175. Springer,
Heidelberg (2009)

11. Cickova, Z., Stevo, S.: Flow Shop Scheduling using Differential Evolution. Manage-
ment Information Systems 5(2), 8–13 (2010)

12. Li, X., Yin, M.: An opposition-based differential evolution algorithm for permu-
tation flowshop scheduling based on diversity measure. Adv. Eng. Soft. 55, 10–31
(2013)

13. Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical Ap-
proach to Global Optimization. Springer, Berlin (2005)

14. Moraglio, A., Poli, R.: Geometric crossover for the permutation representation.
Intelligenza Artificiale 5(1), 49–63 (2011)

15. Schiavinotto, T., Stutzle, T.: A review of metrics on permutations for search land-
scape analysis. Computers & Oper. Res. 34(10), 3143–3153 (2007)

16. Brest, J., Boskovic, B., Mernik, M., Zumer, V.: Self-Adapting Control Parameters
in Differential Evolution: A Comparative Study on Numerical Benchmark Prob-
lems. IEEE Trans. on Evol. Comp. 10(6), 646–657 (2006)

17. Taillard, E.: Benchmarks for basic scheduling problems. European Jour. of Oper.
Res. 64(2), 278–285 (1993)

18. Derrac, J., Garcia, S., Molina, D., Herrera, F.: A practical tutorial on the use
of nonparametric statistical tests as a methodology for comparing evolutionary
and swarm intelligence algorithms. Swarm and Evolutionary Computation 1, 3–18
(2011)


	A Differential Evolution Algorithmfor the Permutation Flowshop SchedulingProblem with Total Flow Time Criterion
	1 Introduction and Related Works
	2 Differential Mutation in the Permutations Space
	3 Differential Evolution for Permutations
	4 Experiments
	5 Conclusions and Future Works
	References




