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Abstract. We propose a taxonomy for heterogeneity and dynamics of
swarms in PSO, which separates the consideration of homogeneity and
heterogeneity from the presence of adaptive and non-adaptive dynamics,
both at the particle and swarm level. It supports research into the sepa-
rate and combined contributions of each of these characteristics. An anal-
ysis of the literature shows that most recent work has focussed on only
parts of the taxonomy. Our results agree with prior work that both het-
erogeneity, where particles exhibit different behaviour from each other at
the same point in time, and dynamics, where individual particles change
their behaviour over time, are useful. However while heterogeneity does
typically improve PSO, this is often dominated by the improvement due
to dynamics. Adaptive strategies used to generate heterogeneity may end
up sacrificing the dynamics which provide the greatest performance in-
crease. We evaluate exemplar strategies for each area of the taxonomy
and conclude with recommendations.

1 Introduction

There has recently been a sharp rise in interest in heterogeneity of swarms for
particle swarm optimisation (PSO). Since early results (e.g. [1]) showed the
potential benefit of heterogeneity to PSO, it has been shown to offer a high
robustness to unknown problems [2]. In an effort to improve the performance
and robustness of heterogeneous PSO variants, more recent work (e.g. [3,4]) has
focussed on heterogeneity driven by particle-level adaptation, based on run-time
information. However, in this drive to add complexity to PSO by incorporating
heterogeneity, behavioural dynamics and run-time adaptation, there is a key
question which has not yet been fully addressed: are the observed performance
improvements due to better heterogeneity itself, run-time adaptation based on
state information, or simply the increase in behavioural dynamics? In this paper
we tease out these three components of modern adaptive heterogeneous PSO
variants, in order to provide some insight into this question.

Our first contribution is a taxonomy of heterogeneity and dynamics in PSO,
into which we place existing PSO variants from prior work. Accordingly we show
that most recent research has focussed on only part of the design space arising
from our taxonomy, in particular neglecting non-adaptive dynamic PSO in both
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heterogeneous and homogeneous cases. Our second contribution is to show that
these neglected regions of the taxonomy contain PSO variants which outper-
form similar adaptive heterogeneous variants. Furthermore, the introduction of
dynamics often has a greater impact on performance than the introduction of
heterogeneity. Therefore, this paper provides insight into existing PSO variants
and makes recommendations for future PSO research.

Montes de Oca et al. [2] describe a heterogeneous swarm as one in which at
least two particles differ from each other. They found that heterogeneous swarms
typically outperform the worst, and in some cases the best homogeneous swarm
on a particular problem. They propose that heterogeneity mitigates the risk
of choosing the “wrong” variant of PSO for an unknown problem. They iden-
tify three types of heterogeneity: i) static heterogeneity, in which particles in a
heterogeneous swarm never change their configuration (i.e. behaviour), ii) dy-
namic heterogeneity, in which particles’ configurations change either randomly
or according to some predetermined sequence over time, and iii) adaptive hetero-
geneity, where particles’ configurations change based on the state of the swarm;
we use these three classes as a starting point for our taxonomy. From their anal-
ysis, they conclude that future work should focus on adaptive heterogeneity to
improve robust performance of PSO across different problems.

Nipomucino and Engelbrecht [5] define dynamic swarms as those in which
particles change their behaviours during the search, also drawing the distinction
between static, dynamic and adaptive heterogeneous swarms. PSO variants in
the above categories have been proposed by Spanevello and Montes de Oca [6],
Li and Yang [7], Engelbrecht [3] and Nipomucino and Engelbrecht [8]. While
much of the work on dynamic swarms focuses on heterogeneity, dynamics have
also proven useful in homogeneous swarms. In one of the most successful early
variants of PSO, Shi and Eberhart [9] proposed varying particles’ inertial weight
over a swarm’s lifetime. Later variants attempt to improve on this with more
complex models. Chatterjee and Siarry [10] propose a non-linear update scheme
for inertial weights suggesting, however, that an adaptive mechanism for on-
line parameter choice would make their algorithm more robust. Such adaptive
algorithms have shown good empirical performance [11–13]. Other homogeneous
PSO variants use feedback to choose between a discrete set of behaviour types.
Riget and Vesterstrøm [14] propose a variant which monitors diversity in order to
prevent premature convergence, switching behaviour when particles are closely
clustered. Similarly, Evers and Ghalia [15] propose a variant which performs a
one-time update of particle positions when diversity drops below some threshold.

2 Forms of Heterogeneity and Dynamics in PSO

Firstly, we focus on whether or not the swarm is homogeneous or heterogeneous.
Homogeneous swarms are those in which at each point in time, all particles
exhibit the same behaviour as each other. Heterogeneous swarms are those in
which at some point in time, at least two particles exhibit different behaviours
from each other. In this description, we focus on particle update behaviour.
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However, our taxonomy can also be used to describe other forms of swarm het-
erogeneity.We further break down homogeneous and heterogeneous PSO variants
according to how the distribution of behaviours in the swarm changes over time:

– In static swarms, the behaviour of each particle does not change over time.
– In constrained dynamic swarms, there is a stationary proportion of each

behaviour, under expectation, between time windows of a predefined size.
Therefore, in constrained dynamic homogeneous swarms, the entire swarm
might progress through a static sequence of behaviours in synchrony.

– In dynamic swarms, the proportion of each behaviour changes over time.
In dynamic homogeneous swarms the entire swarm might progress through
a sequence of behaviours in synchrony, and this sequence varies over time.

– In adaptive swarms, the proportion of each behaviour changes over time in
response to the state of the algorithm as perceived by the particles.

The majority of PSO variants use static homogeneous swarms. Most re-
cent work on heterogeneity in PSO has focussed on the use of adaptive strate-
gies to generate particle behaviour, and therefore use adaptive heterogeneous
swarms. However, these results have often been used to argue that heterogene-
ity of a swarm per se is beneficial, despite the characteristics of heterogeneity,
particle-level and swarm-level dynamic behaviour and adaptivity being conflated.
By dividing both homogeneous and heterogeneous swarms into the above groups,
we can study heterogeneity separately from dynamics and adaptation. Table 1
shows a classification of existing literature in terms of the taxonomy. This clas-
sification includes the earlier categorisation of PSO variants with update rule
heterogeneity due to Montes de Oca et al. [2]. It builds on it firstly by consider-
ing work in the context of our expanded taxonomy which accounts for dynamics
and adaptivity apart from any heterogeneity present, and secondly by includ-
ing the significant amount of work on heterogeneous PSO since 2009. It is clear
that, despite the recent work on heterogeneity in PSO, a great deal of the space
defined by the taxonomy remains to be explored.

3 Experimental Analysis of Heterogeneity in PSO

Table 1 shows that despite the recent work on heterogeneity in PSO, there is a
large part of our taxonomy yet to be explored. Next, we present an experimen-
tal study which establishes that such exploration would be fruitful. We differ-
entiate between update particles on the basis of parameters and by using two
qualitatively different behaviours: Standard PSO [16] and Barebones PSO [17].
These use different information (Standard PSO requires velocity while Bare-
bones PSO does not); however, so that a particle can switch freely between
behaviours, we require that particles maintain all information required by either
behaviour. We say that this is the particle’s cognitive information: the set
Cp(t) = {xp(t),vp(t),hp(t)} where: xp(t) is the particle’s position, vp(t) is the
particle’s velocity and hp(t) is the particle’s historic best position. We as-
sume that the aim of a PSO algorithm is to find an input that minimizes the
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Table 1. A classification of existing PSO variants, in terms of the proposed taxonomy

Characteristic → Homogeneous Heterogeneous
Behaviour ↓
Static

Static homogeneity Static heterogeneity

– Many PSO variants, including
standard PSO [16], barebones
PSO [17] etc.

– Static heterogeneous PSO
(details not available) [6].

– sHPSO: (random
assignment) [3].

– Static heterogeneous PSO
(various fixed proportions) [2].

– Predator & prey particles [1].
– Neutral & charged

particles [18].
– Fitness-distance-ratio and

standard particles [19].
– Quantum particles [20].
– Extra central particle [21].

Constrained
Dynamic

Constrained dynamic
homogeneity

Constrained dynamic
heterogeneity

– None. – Different maximum velocities
after restarts (constrained
after initialisation phase) [22].

Dynamic
Dynamic homogeneity Dynamic heterogeneity

– Inertia weight decay:
time-based linear [9] and
non-linear [10] update.

– None.

Adaptive
Adaptive homogeneity Adaptive heterogeneity

– Fuzzy adaptive PSO [11] and
fuzzy adaptive informed
PSO [13]: inertia weight of
entire swarm updated based on
fuzzy system.

– Adaptive PSO: swarm
parameters updated based on
evolutionary state
estimation [12].

– ARPSO: particles
simultaneously switch between
two behaviours based on
diversity [14].

– RegPSO: all particles perform
a one-time position update at
low diversity [15].

– Stagnation threshold [6].
– Difference proportional

probability [6].
– dHPSO: win-stay-lose-shift [3].
– pHPSO and pHPSO-lin:

inspired by ants [5].
– fk-PSO: probability of

behaviour based on prior
performance [8].

– ALPSO: particle-level
probability matching [7].

– SLPSO: biased probability
matching & super-particle [4].

– Cooperator and defector
particles [23].

– Various adaptive heterogeneous
parameters (see [2]).

result of a cost function f , and so a particle’s historic best position is simply
the lowest cost position it has visited so far. When updating cognitive informa-
tion, particles may make use of information from their neighbourhood: a set of
particles whose states they can observe. In this paper, we assume that all parti-
cles neighbour each other, allowing particles to make use of the global historic
best position ĥp(t): the lowest cost position discovered by any particle.

In Standard PSO a particle p updates its velocity in dimension d as follows:

vp,d(t+ 1) = η vp,d(t) + φ1 · r1,d (hp,d(t)− xp,d(t)) + φ2 · r2,d (ĥd(t)− xp,d(t))

where η is the inertial weight coefficient and r1,d, r2,d are independent random
numbers drawn from U [0, 1]. Particles are attracted to cognitively and socially
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determined positions (hp(t) and ĥ(t) respectively) and the constants φ1, φ2 de-

termine the relative importance of these positions. If hp(t) = ĥ(t), then the
social component of equation 3 is ommited (effectively φ2 is set to 0).

In Barebones PSO a particle updates its position in dimension d as follows:

xp,d(t+ 1) ∼ N

(
hp,d(t) + ĥd(t)

2
, |hp,d(t)− ĥd(t)|

)

where N(μ, σ) is the Normal distribution with mean μ and standard deviation
σ. Barebones PSO does not make use of a velocity component but, for it to be
compatible with standard PSO, we set vp(t+ 1) = xp(t+ 1)− xp(t).

We say that a particle’s behaviour at time t, bp(t) is the update function
it is using at that time. In order for a swarm to be dynamic or heterogeneous
its particles must be capable of expressing more than one behaviour. A PSO
variant is comprised of a set of update functions and a strategy for selecting
between these functions. In our study, we make use of two such behaviour sets
composed of variants of standard PSO and barebones PSO.

The first behaviour set, cognitive-biased and social-biased (CBSB) con-
tains two parametrically different versions of standard PSO. The cognitive-biased
function (let φ = 0.5+log 2 then φ1 = 5φ

3 , φ2 = φ
3 , η = 1

2 log 2 ) makes more use of
cognitive information and is suited to exploration, while the social-biased func-
tion (φ1 = φ

3 , φ2 = 5φ
3 , η = 1

2 log 2 ) makes more use of social information and
is more suited to exploitation. This set allows us to investigate if an algorithm
expressing two behaviours which, intuitively, are suited to performing different
search tasks, is capable of improving on the best static homogeneous variant.
The second behaviour set, cognitive-biased and barebones (CBBB) con-
tains two quantitatively different functions: the cognitive-biased function above
and barebones PSO. Unlike the CBSB set, the roles of the two functions dur-
ing search is not so clearly complementary. This allows us to investigate if any
results obtained with CBSB only apply when we have clearly complementary
behaviours or whether they apply more generally.

3.1 Exemplar Strategies

We now consider the concrete strategies which particles use to select behaviours.
The strategies used are simple exemplars, allowing us to realise the full range
of swarm-level characteristics described in section 2. With the exception of the
adaptive strategies they are equally applicable to homogeneous and heteroge-
neous swarms to allow a direct comparison. Particles in static swarms, by defi-
nition, never update their behaviour and so set bp(t+ 1) = bp(t).

Particles in constrained dynamic swarms update their behaviour such that
the proportion of behaviours is static over some defined time window. For homo-
geneous swarms, a constrained dynamic selector must be deterministic. We use
a time-based selector which cycles through all possible behaviours, with the time
spent using each given by τ = (τ1, ..., τNu) where τb is the number of time-steps
a particle can spend in behaviour b before switching. After this time has expired,
particles deterministically change to the next behaviour b with τb �= 0.
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For comparability with the constrained dynamic selector, we use a determin-
istic time-based dynamic selector. Similarly to the inertia weight decay used
in [9], it is based on the intuition that certain behaviours are advantageous at
the start of search while others are advantageous at the end. τ becomes non-
static, given by a linear progression from τ start to τ end based on the fraction
of the evaluation budget used. Behaviour is then updated as in the constrained
dynamic case. We choose τ such that we have 10 behavioural cycles per run
(10 · ∑τ∈τ τ = budget where budget is the swarm’s budget of function evalua-
tions) which we have empirically found to be reasonable. Unless specified, τ1 = τ2
in the constrained dynamic case and τ start1 = |τ |, τend2 = |τ | in the dynamic case.

For the above selectors, homogeneity and heterogeneity differ only in initial-
ization. Homogeneous swarms are initialized uniformly with the desired ini-
tial behaviour while heterogeneous swarms are initialized according to a swarm
fraction ρ = (ρ1, ..., ρNu) where ρb is the fraction of particles initialized with
bp(1) = b. This fraction is analagous to the time vector τ with ρb =

τb
|τ | .

We use an adaptive selector based on win-stay-lose-shift [3]. Homogeneous
(respectively heterogeneous) particles keep track of the time υp(t) since the global
best (respectively, their historic best) position improved. If this time exceeds a
threshold θ then the particle will choose another behaviour uniformly at random.
Note that an adaptive selector can only be guaranteed to produce a homogeneous
swarm if it acts based on global information. In both the homogeneous and the
heterogeneous cases, particles are initialized with bp(1) = b.

3.2 Experimental Set Up

We use the homogeneous and heterogeneous versions of each of the strategies
defined previously to represent the areas of our taxonomy. Concrete variants of
PSO are created by combining these strategies with the two update function sets.
We investigate these variants using the well-known set of test functions described
by Hansen et al. [24]. As we are conducting a qualitative investigation rather
than attempting to establish the best possible variant, we omit the full set of
functions in favour of analysing six functions in more detail: Sphere, Ellipsoidal,
Rosenbrock, Rastrigin, Weierstrass and Schaffer F7. The problems have been
chosen so that we have three unimodal, three multi-modal, three separable and
three non-separable functions. The bounds of the search space for all functions
are set to [−5, 5]D, where D is the dimensionality. A trial terminates after an
evaluation budget of D ∗ 1000. All results are based on an average over 50 trials.

3.3 Experimental Results

Here we summarise key results from our experiments, giving more detailed results
in our accompanying technical report [25]. Our initial experiment investigates
whether heterogeneity or dynamics are sufficient in themselves to improve upon
static homogeneous solutions. We evaluate static homogeneous, static hetero-
geneous, constrained dynamic homogeneous and constrained dynamic hetero-
geneous variants using the CBSB and CBBB behaviour sets. Comparing these
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(a) (b)

(c) (d)

Fig. 1. Mean of best cost across 50 trials as a function of the fraction of cognitive
particles in a swarm for the Rosenbrock (1a and 1c) and Rastrigin (1b and 1d) functions.
1a and 1b use the CBSB update function set, 1c and 1d use the CBBB update function
set. Note that with fraction 0 or 1, the swarm exhibits static homogeneity.

strategies allows us to ask whether it is more important that particles express
different behaviours over their lifetimes, or are different from each other. We
look at the performance of our variants on the 30 dimensional Rosenbrock and
Rastrigin functions, controlling for swarm composition by running the experi-
ment for varying values of ρ and τ (as described in section 3.1) from (0.0, 1.0)
(no cognitive-biased particles) to (1.0, 0.0) (all cognitive-biased particles).

The results, shown in figure 1 indicate that heterogeneity and dynamics im-
prove on pure homogeneity, particularly compared to the worst of their two
component behaviours. While the type of strategy has a small effect on maxi-
mum performance, some strategies are feasible over wider ranges of swarm com-
position than others. However, a relatively wide range of swarm compositions
perform well, confirming results from the literature on heterogeneous swarms and
allowing us to draw these same conclusions about constrained dynamic swarms.

To validate the above results more generally and to evaluate the benefits of
the dynamic and adaptive models, we test all strategies on 10− 30− and 100−
dimensional versions of all evaluation problems. The results in this paper are for
the CBBB set, but qualitatively similar results were obtained for the CBSB set,
albeit with lower absolute performance. The absolute results do not show a clear
pattern by inspection, except for that the best static homogeneous algorithm is
typically worse than all heterogeneous or dynamic variants. For simpler analysis
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of the variants, we present the median improvement over the best homogeneous
case (here defined as h−v

h , where h is the mean cost of the best homogeneous
variant and v is the mean cost of a variant on a given problem) in table 2.

Table 2. Median improvement of each variant over the best static homogeneous case

Characteristic → Homogeneous Heterogeneous
Behaviour ↓
Static N/A 21%
Constrained Dynamic 56% 46%
Dynamic 33% 45%
Adaptive 37% 23%

Similarly to our first experiment, all dynamic and heterogeneous strategies
improved upon the best static homogeneous behaviour, indicating benefits to
dynamics. However, we do not see clear improvements as we move to the more
complex areas of our taxonomy: neither our dynamic model of the problem nor
our adaptive mechanism (both inspired by successful algorithms from the lit-
erature) have improved on constrained dynamic heterogeneous behaviour. In
contrast, all non-static strategies are improvements on static ones. Note that
we do not claim that a constrained dynamic strategy is optimal (e.g. in com-
parison to the best possible adaptive strategy), however it strongly indicates
that dynamics per-se are making an important contribution to performance and
that the benefits of introducing more complex strategies may be outweighed by
the loss of dynamics. Even if an adaptive algorithm drives the swarm to some
optimal static heterogeneous composition, we have seen from figure 1 that the
benefits compared to a sub-optimal but reasonable composition are minimal.

Finally, we invesigate the percentage of problems on which adding one level of
dynamics/adaptivity improves performance (table 3, note that a figure of 50%
indicates equivalent performance). This supports our previous analysis, showing
that our dynamic strategy is typically worse than our constrained dynamic, while
our adaptive strategy is similar to our dynamic. However, the initial addition of
dynamics (static to constrained dynamic) results in a significant improvement.
Similarly, heterogeneous variants improve upon their homogeneous counterparts
in 60% of tests (fairly uniformly across strategies); it is clear that most of the
observed improvements over the static homogeneous case are due to dynamics.

Table 3. The percentage of problems in which moving from one level to the next in
our taxonomy of swarm behaviours led to improved performance.

Characteristic → Homogeneous Heterogeneous
Behaviour comparison ↓
Static to Constrained Dynamic 78% 94%
Constrained Dynamic to Dynamic 17% 28%
Dynamic to Adaptive 61% 50%

4 Conclusions

In this paper we have proposed a taxonomy for heterogeneity and dynamics of
swarms in PSO, which acts as a design space. The taxonomy builds upon prior
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classifications of heterogeneous PSO variants [2,3], by separating the considera-
tion of homogeneity and heterogeneity from that of adaptive and non-adaptive
dynamics, both at the particle and swarm level. It supports research into the
separate and combined contributions of these characteristics. In prior work, such
questions were difficult to pose, leading to the conflation of the effects of hetero-
geneity, dynamics and adaptation in some research. An analysis of the literature
showed that most recent work focuses on only some regions of the design space;
however, other regions may be worthy of more attention. Specifically, while our
results agreed with prior work that heterogeneity and dynamics are both use-
ful, with the behaviours we tested, the introduction of dynamics typically had
a larger impact on performance than the introduction of heterogeneity. Further-
more, our results show that the recent drive to find optimal forms of heterogene-
ity at run-time using adaptation may sacrifice the very dynamics which provide
the greatest performance increase. It will be important to assess the generality
of these conclusions on a wider range of PSO variants and problems.

Our results suggest that future work should focus on dynamics, which have
the ability to encode a model of the problem. Furthermore, we believe that
there is significant scope for the development of adaptation mechanisms which,
rather than adapt particles’ behaviours directly, search online for better forms
of dynamics which in turn determine behaviour. It also seems appropriate that
adaptive PSO variants should not only be compared against static ones, but
also against uninformed dynamic variants. Only by doing this can any observed
improvement be attributed to the adaptation mechanism and not only dynamics.
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