
Messy Coding in the XCS Classifier System

for Sequence Labeling

Masaya Nakata1, Tim Kovacs2, and Keiki Takadama1

1 The University of Electro-Communications, Japan
m.nakata@cas.hc.uec.ac.jp, keiki@inf.uec.ac.jp

2 University of Bristol, UK
kovacs@cs.bris.ac.uk

Abstract. The XCS classifier system for sequence labeling (XCS-SL)
is an extension of XCS for sequence labeling, a form of time-series clas-
sification where every input has a class label. In XCS-SL a classifier
condition consists of some sub-conditions which refer back to previous
inputs. Each sub-condition is a memory. A condition has n sub-conditions
which represent an interval from the current time t0 to a previous time
t−n. A problem of this representation (called interval coding) is, even if
only one input at t−n is needed, the condition must consist of n sub-
conditions to refer to it. We introduce a messy coding based condition
where each sub-condition messily refers to a single previous time. Unlike
the original coding, the set of sub-conditions does not necessarily rep-
resent an interval, so it can represent compact conditions. The original
XCS-SL evolutionary mechanism cannot be used with messy coding and
our main innovation is a novel evolutionary mechanism. Results on a
benchmark show that, compared to the original interval coding, messy
coding results in a smaller population size and does not require as high
a population size limit. However, messy coding requires more training
with a high population size limit. On a real world sequence labeling task
messy coding evolved a solution that achieved higher accuracy with a
smaller population size than the original interval coding.

1 Introduction

Time-series classification has attracted great interests in machine learning. As a
kind of time-series classification, sequence labeling [3] has been applied in a wide
range of real world applications, such as part of speech tagging [8] and recogni-
tion of human activity [2]. While typical time-series data is a sequence of values
which share a class, sequence labeling data is a sequence of input/class pairs. For
example, in a sequence such as speech tagging data, each word in a sentence is
one input and is classified as a noun, verb etc. In sequence labeling, the class of
the current input may depend on previous inputs, hence a learner may need to
refer back to the previous inputs 1. Our interest is in learning human-readable

1 The class of sequence labeling data may also depend on future inputs. However, in
many tasks, such as online learning, we want to predict the current or future class
strictly from the past, and so we consider only previous inputs.

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 191–200, 2014.
c© Springer International Publishing Switzerland 2014

192 M. Nakata, T. Kovacs, and K. Takadama

(simple, understandable and compact) solutions from sequence labeling data.
Learning Classifier Systems (LCSs) evolve general condition-action rules (called
classifiers). Previously, we introduced XCS for sequence labeling (XCS-SL) [6],
an extension of XCS [10]. In XCS-SL a classifier has a variable-length condition
which consists of sub-conditions C0, · · · , C−n as memories that refer back to
previous inputs. The condition can grow and shrink by evolution to find a suit-
able memory size (i.e., the number of sub-conditions which are needed). This
variable-length condition is more useful than a fixed-length condition (a fixed
memory size), since it can handle a larger memory size than the fixed-length
one [6]. Some related LCS works, e.g., XCSM [4] which also uses memory and
CCS [9] which uses a chain of classifiers as a kind of variable length condition,
have been presented but due to lack of space we must leave comparison of them
and XCS-SL for future work. Similarly we must leave comparison with other
sequence labeling algorithms for future work.

The variable-length condition C={C0, C−1, · · · , C−n} represents an interval
of inputs from the current time t0 to a previous time t−n. However such coding
(called interval coding) still has a limitation in representing compact conditions.
That is, even if only one previous input at t−n is needed to classify the current
input at t0, the condition must consist of all n memories from C−1 to C−n. For
example, if we only need the memory at time t−n the minimal condition would
be C={C0, C−n} (or even just {C−n} if C0 is not needed to disambiguate the
current input). But, the condition in the interval coding contains all memories.

We introduce a messy-coding based condition for XCS-SL. In the new condi-
tion, each sub-condition messily refers to a single different previous time, hence
the condition is not necessarily an interval. For instance, a condition can be
C={C0, C−5, C−n}. The messy-coding can remove redundant sub-conditions,
so it can represent the minimal conditions. Accordingly, the most important
thing when evolving classifiers is probably finding where and how many pre-
vious inputs are needed. To do so we present a novel evolutionary mechanism
for messy coding in XCS-SL. We test XCS-SL with messy coding on a bench-
mark problem (the Layered Multiplexer Problem) and a Activity of Daily Living
(ADL) recognition problem [7] as a real world application of sequence labeling.

2 Messy Coding in Sequence Labeling

This section describes sequence labeling in more detail by showing example data.
We also explain a difference between the messy coding and the original interval
coding (i.e., the variable-length condition) in XCS for sequence labeling.

2.1 Sequence Labeling

As shown in Figure 1, the sequence labeling dataset which is a part of a human-
activity recognition can be represented as 〈time, input:class〉. The input “kitchen”
is placed at different time stamps “1pm” and “7pm” but it has different classes
“lunch” or “dinner” respectively. Note we do not use the time stamps except to

Messy Coding in XCS Classifier System for Sequence Labeling 193

〈9am, office:work〉, 〈1pm, kitchen:lunch〉, 〈6pm, living :TV 〉, 〈7pm, kitchen:dinner〉

Fig. 1. Example dataset of sequence labeling

order the inputs, i.e., a classifier cannot be represented as “IF time is 7pm THEN
dinner”. Hence, the input “kitchen” does not unambiguously identify the current
class, i.e., the input is perceptually aliased 2. However, when a learner refers back
to the previous input, it can successfully classify it when it considers current and
previous inputs. For instance, a minimal condition for correctly predicting the
“dinner” class in Figure 1 can be {(living, t−1)}. While a minimal condition
should consist of minimum elements, many accurate but not minimal conditions
can exist such as the condition {(kitchen, t0), (living, t−1), (kitchen, t−2)}.

A difficulty of sequence labeling is that a learner does not know where and
how many previous inputs are needed to classify the current input. The learner
explores many possible conditions to find minimal conditions, hence it may need
many memories to refer back to previous inputs at different time stamps.

2.2 Messy Coding vs. Original Interval Coding

The original interval coding (i.e., the variable-length condition) and the messy
coding both are a memory-based approach for classifier conditions. In the orig-
inal interval coding, the condition consists of sub-conditions as a memory, and
includes a sub-condition C0 for the current input at t0. This is because, for non-
aliasing inputs, classifiers consist of only one sub-condition for the current input.
For instance, in Figure 1, classifiers using the original interval coding can be:

cl1={(#, t0), (living, t−1): dinner} cl2={(#, t0), (living, t−1), (#, t−2): dinner}
Here, don’t care symbol # can be any symbol. While the classifier cl1 has a
minimal condition in the original interval coding, cl2 does not since it includes a
redundant sub-condition (#, t−2). However, cl1 is also not minimal in Figure 1
because it has (#, t0) and we saw in Figure 1 that only {(living, t−1)} is needed.

In the messy coding, the condition also consists of sub-conditions, but each
sub-condition messily refers to a different time stamp. Accordingly, unlike the
interval coding, the condition using messy coding may have no sub-condition for
the current input. For instance, classifiers using the messy coding can be:

cl3={(living, t−1), (kitchen, t−2): dinner} cl4={(living, t−1): dinner}
cl3 does not have the minimal condition in Figure 1 because of (kitchen, t−2); cl4
has the minimal one. So the messy coding can represent more compact condi-
tions than the interval coding. However, the messy coding makes many possible
conditions which do not exist in the interval coding. Hence, an evolution of clas-
sifiers is important in finding the minimal conditions. We note there are many

2 This work does not use a history of previous classes, since our interest is in online-
learning where we do not know if the actions were correct in unlabeled data and so
the class history may be unsure information.

194 M. Nakata, T. Kovacs, and K. Takadama

minimal conditions in the messy coding which may result in many overlapping
classifiers. For example, in Figure 1, a condition {(kitchen, t−2)} is also the min-
imal condition for correctly predicting “dinner”. These overlapping classifiers
should increase the population size but it is unclear whether they will otherwise
affect the performance of XCS-SL. We do not consider this issue further.

3 XCS-SL Classifier System

This section describes the mechanism of XCS-SL [6]. XCS-SL almost works the
same as standard XCS [1] but some mechanisms in the performance and the
discovery components are modified (see [6]). We also explain subsumption [1] for
the interval coding and the shrinker, which can help to find compact conditions.

XCS-SL Classifiers. A classifier in XCS-SL is the same as the standard XCS
classifier [1] but it has a new memory size parameter m to determine the number
of sub-conditions in its condition C0, C−1, · · · , C−m. Each sub-condition C−n

corresponds to the input at the time stamp t−n. The memory size m is deter-
mined and fixed when the classifier is generated but the maximum memory size
M for all classifiers is set to a fixed value.

Performance Component. The population [P] is initially empty. At the cur-
rent time t0, XCS-SL stacks the current input to the input list. When the number
of inputs in the list is larger than M , XCS-SL deletes the input at the oldest
time stamp t−M in the list. Next, XCS-SL builds a match set [M] containing
the classifiers in [P] whose sub-conditions C−n each match the stacked input
at the corresponding time t−n. If [M] does not contain all the possible actions
covering [1] generates classifiers; their memory size m is set uniform randomly
but the maximum value is the number of inputs in the input list (so it does not
have more memory than there are past time steps). Each sub-condition C−n is
copied from the corresponding input at the time stamp t−n but each element of
the sub-condition is replaced by # with a probability P#. From here, XCS-SL
works the same as XCS in the performance component (see [1]). After that, the
reinforcement component [1] is performed the same way as in XCS.

Discovery Component. XCS-SL evolves classifiers using a Genetic Algorithm
(GA). In sequence labeling, each input can have its own suitable memory size
(i.e., each input may need a different number of previous inputs). Hence, XCS-SL
is required to evolve classifiers which have the suitable memory size. Accordingly,
XCS-SL builds subsets [A(t−n)] of the action set which each consists of classifiers
in [A] whose memory size m is equal to n. Then XCS-SL selects one subset from
among the subsets [A(t0)], · · · , [A(t−M)] to perform the GA on. Selection is done
by a roulette wheel on the average fitness of each subset. After selection, the GA
is applied to classifiers in the selected subset and generates two new offspring with
the same memory size as their parents. Evolution finds classifiers with a suitable
memory size because classifiers with enough memory have higher fitness than
classifiers with too little memory. Classifiers with more memory than they need

Messy Coding in XCS Classifier System for Sequence Labeling 195

also have high fitness, but subsumption removes them. Two offspring are gener-
ated as copies of two selected parents and the crossover and mutation operators
are applied to the offspring with probabilities χ and μ respectively. In crossover,
each sub-condition is recombined with the corresponding sub-condition of the
other offspring. The mutation changes elements in each sub-condition, after that
it also changes the memory size m of a classifier to a random value with proba-
bility μ. If the memory size shrinks, the extra sub-conditions C−n (n > m) are
removed. If the memory size grows, new sub-conditions C−n (n > m) are added
which are copies of the corresponding input at the time stamp t−n in the input
list and they are generalized as in covering.

Subsumption and Shrinker. Subsumption is a generalization operator that
helps to decrease the population size by subsuming a classifier to a more general
classifier. In XCS-SL, subsumption applies to classifiers which have different con-
dition lengths from each other. To compare the generality of these classifiers, we
assume the shorter classifier has extra virtual maximally general sub-conditions
(that have only #) to fit the condition length of the longer classifier. For in-
stance, as shown below, to compare the generalities of the classifiers cla and clb,
we consider that cla has two maximally general sub-conditions “###” added.
Accordingly, the sub-conditions C−1 and C−2 of cla are more general than the
corresponding sub-conditions of clb, hence, cla is more general than clb.

cla={(1#0, t0)} → {(1#0, t0), (###, t−1), (###, t−2)}
clb={(1#0, t0), (10#, t−1), (11#, t−2)} → {(1#0, t0), (10#, t−1), (11#, t−2)}
Shrinker is a compaction operator that helps to find compact conditions; it

decreases the memory size of classifiers whose sub-conditions are maximally gen-
eral. Specifically, if the sub-condition C−m for the oldest time stamp is coded by
only #, then C−m is removed and the memory size m is decreased by 1. This
process is repeated recursively. For instance, as shown below, the sub-condition
C−2 of classifier clc is removed, since C−2 is the maximally general condition
“###”, and the memory size of clc is reduced to 1. Note that the shrinker is
not applied to classifiers which consist of only sub-condition C0. The shrinker is
applied to classifiers which are generated by covering and the GA.

clc={(1#0, t0), (#1#, t−1), (###, t−2)} → {(1#0, t0), (#1#, t−1)}

4 Messy Coding in the XCS-SL Classifier System

This section presents a modified XCS-SL with messy coding (XCS-SL-messy).
Normally in LCS, conditions are fixed-length ternary strings from {0, 1, #}.
Lanzi [5] introduced messy coding for LCS, in which the # is not represented, and
the position of 0s and 1s are explicit. For example, the normal ternary condition
{1#0} is equivalent to {(1,0), (0,2)} in messy coding. We use a different kind
of messy coding. Lanzi encoded conditions on the single current input messily;
he did not use memory. In contrast, we encode memories messily: we do not
represent fully general memories (###), but we do represent the time-stamp

196 M. Nakata, T. Kovacs, and K. Takadama

Actionset [A]
{(1#0,t0), (00#,t-2) : 1, F=0.8}
{(#00,t-2), (##0,t-3) : 1, F=0.2}
{(000,t-2) : 1, F=0.1}

Paccept(n) =

Candidate time stamps:
t-2t0

0.73, 0.00,1.00,0.18, ..., 0.00}{

[A(C0)]

[A(C-2)]

{(1#0,t0), (00#, t-2), (##0,t-3) : 1, F=0.8}
{(1#0,t0), (#00, t-2), (##0,t-3)
{(1#0,t0), (000, t-2), (##0,t-3) : 1, F=0.1}

: 1, F=0.2}

{(1#0,t0), (00#, t-2), (##0,t-3) : 1, F=0.8}

Subsets of [A] Offspring
{(1#0,t0), (000, t-2),: 1, F=0.45}

{(1#0,t0), (#00, t-2),: 1, F=0.5}

RW selection for C0

RW selection for C-2

Crossover and Mutation

t-2t-1t0 t-M...t-3cl0
cl1
cl2

t-3t-2t-1t0 t-M...
...
...
...

F=0.8
F=0.2
F=0.1

cl0
cl1
cl2

0.8, 0.0,1.1,0.2, ..., 0.0}{FS(n)=

accepted

C0 C-2

C-3C0 C-2

(1#0,t0)

(000,t-2)

To
p

ha
lf

B
ot

to
m

 h
al

f

Fig. 2. Discovery component of XCS-SL-messy

of memories which are not fully general e.g., {(1#0, t0), (11#, t−2)}. Note that
when a memory is not fully general we use a normal ternary string.

The original XCS-SL evolves a suitable memory size for a classifier but with
messy coding we evolve not only how much memory but where (which time steps
a classifier refers to). Because we have changed the representation we also have
to change the discovery component. This is our most important contribution and
we explain it next. We also explain the covering and the shrinker operators which
are also modified for the messy coding. Note a classifier for the messy coding
is the same as the original XCS-SL except for the condition, which consists of
sub-conditions, which each messily refer to a different time stamp.

Covering. When covering takes place, XCS-SL-messy generates classifiers using
the messy coding. Firstly, their memory size m is set uniform randomly to deter-
mine how many sub-conditions are generated. Next, for each sub-condition C−n,
a time stamp t−n is set to a random value to determine where its sub-condition
refers. The time stamp is set except for values which are already assigned in
other sub-conditions. The maximum value for the memory size and the time
stamp is the number of inputs in the input list.

Discovery Component. We introduce a heuristic to estimate how many and
where previous inputs are needed to classify the current input to the correct
class. Figure 2 shows an overview of the discovery component we introduced. As
shown in the top half of Figure 2, we firstly calculate a fitness summation FS(n)
for each time stamp t−n. Here, we assume a sub-condition of a classifier which
has high fitness is a key memory to disambiguate the current input. FS(n) is
calculated by Equation (1), which is a summation of fitness of classifiers which
have sub-condition C−n. In Equation (1), clk ∈ [A](C−n) denotes classifiers
clk in [A] which their conditions have sub-condition C−n. Next, an acceptance
probability Paccept(n) is calculated by Equation (2), which is the normalized value
of the fitness summation. Next, candidate time stamps are selected from among
all possible time stamps. For each time stamp t−n, we decide either to accept it
as a candidate time stamp with the probability of Paccept(n) or to reject it.

Messy Coding in XCS Classifier System for Sequence Labeling 197

FS(n) =
∑

clk∈[A](C−n)

Fk (1) Paccept(n) =
FS(n)

maxnFS(n)
(2)

After that, XCS-SL-messy generates offspring based on the candidate time
stamps. As shown in the bottom half of Figure 2, like the original XCS-SL it
builds subsets of the action set, but they are built in a different view point from
the original one. Specifically, the subset [A(C−n)] consists of classifiers in [A]
whose conditions include the sub-condition C−n. Next, the offspring are gener-
ated from the classifiers in the subsets. The offspring is given a sub-condition for
each candidate time stamp. Firstly, for each candidate time stamp t−n, one par-
ent is selected from the corresponding subset [A(C−n)]. The sub-condition C−n

of the offspring is generated as a copy of C−n of the selected parent. This pro-
cess repeats two times to generate two offspring. The parameters of offspring are
set to averages of the corresponding parameters of their parents. The crossover
is the same way as the original XCS-SL. The mutation changes the memory
size m of a classifier to a random value with probability μ. If the memory size
shrinks, the sub-conditions C−n are randomly selected and removed. If the mem-
ory size grows, new sub-conditions C−n are added but their time stamp t−n is
randomly selected except for time stamps which are already assigned in other
sub-conditions. The C−n are copies of the corresponding input at t−n in the
input list which are generalized as in covering.

Shrinker. In XCS-SL-messy, if the sub-condition C−n for any time stamp t−n

is coded only by #, then its sub-condition is removed and the memory size m
is decreased. Note in the original XCS-SL, the shrinker takes place only on the
sub-condition C−m at the oldest time stamp t−m.

5 Experiment on Benchmark Problem

In the well-known family of l-bit Boolean multiplexer functions [10], the first
k bits are converted to a decimal index into the remaining bits and the value
of the string is the value of the indexed bit. E.g., with l-6, the class of 110001
is 1 as the first 2 bits index the final bit. We introduced the n-Layered l-bit
Multiplexer Problem (n-l LMP) in [6] as a sequence labeling task. We make a
list of D random l-bit binary strings. To train the learner we iterate through
them, using one string as input on each time step t0, t1, · · · , tD. In the LMP, the
class of the current input may depend on another input. Specifically, the first n
bits of the current input are converted to a decimal number as a reference time
rt. To determine the class of the current input, the LMP refers to the input at
t−rt and computes the normal l-bit multiplexer function on it. If the reference
time would be negative, i.e., t−rt<t0, we wrap around to the end of the dataset
and use tD−rt as the reference input. For instance, on 3-6LMP, for the sequence
of inputs {· · · , 000000, 001000, · · · }, the correct class of the ”000000” is 0 since
the class is determined by own input due to rt=0 (and index=0); the correct
class of the ”001000” is determined by the previous input ”000000” due to rt=1
(which means the class is referred to the last input). We use a reward of 1000

198 M. Nakata, T. Kovacs, and K. Takadama

for a correct action, otherwise 0. We use the 0-6 and 3-6 LMP with D=50,000.
Note a 0-l LMP is the normal l-bit multiplexer. Note also the minimal condition
in interval coding is {C0, · · · , C−rt}, but in the messy coding it is {C0, C−rt}.

5.1 Results

Each experiment consists of a number of problems that the system must solve. In
each problem as one iteration, LCS alternatively solves a learning problem and
an evaluation problem (see [10]). We use the standard parameter settings [1]:
ε0=1, μ=0.04, P#=0.33, χ=0.8, β=0.2, α=0.1, δ=0.1, ν=5, θGA=25, θdel=20,
θsub=20, M=8, and Action set subsumption and GA subsumption are turned
on. We use different population size limits N=60,000 and 6,000. The maximum
iteration is 2,000,000. The performance, which is the rate of correct actions the
LCS executed, and population size, which is the number of (macro) classifiers
[10], are reported as the moving average of 50,000 evaluation problems. All the
plots are averages over 30 experiments.

Figure 3 shows the performances and the population sizes of XCS-SL and
XCS-SL-messy on {0, 3}-6LMP with N=60,000 and 6,000. From Figure 3 a),
with N=60,000, on {0, 3}-6LMP both systems reach 100% performance, but
XCS-SL learns faster than XCS-SL-messy. In contrast, from Figure 3 b), with
a small population size limit (N=6,000), XCS-SL performs worse than XCS-
SL-messy: while XCS-SL fails to reach 100% due to the small population size
limit, XCS-SL-messy successfully reaches it. While one algorithm outperforms
the other depending on the population size limit, for both size limits, XCS-SL
has many more classifiers than XCS-SL-messy. Specifically, on 3-6LMP with
N=60,000, XCS-SL has 9367 classifiers but XCS-SL-messy has 2291.

In summary, results suggest 1) messy coding has a smaller population size
(i.e., a number of classifiers in population) than interval coding, 2) interval cod-
ing requires a larger population size limit to reach full accuracy, but 3) messy
coding is slower to reach full accuracy when the population size limit is large.
It is not clear why messy coding results in a smaller population size, but the
smaller population explains observation 2) – because interval coding has a larger
population size it needs a larger population size limit to function. We hypothesis
that 3) is the case because it takes longer to search the larger space of messy
classifiers than the smaller space of interval classifiers. Also, the larger popula-
tion found with interval coding is searching more of the rule space in parallel
than XCS-SL-messy’s smaller population.

Results on the layered and regular (i.e., 0-l LMP) multiplexers are similar:
the performance of interval coding reaches maximum faster than messy coding,
but messy coding has a smaller population size.

6 Experiment on ADL Recognition

This section tests XCS-SL-messy on a real world Activity of Daily Living (ADL)
recognition problem, which has the challenge of a small number of instances and

Messy Coding in XCS Classifier System for Sequence Labeling 199

 0

 0.2

 0.4

 0.6

 0.8

 1

0 500 1000 1500 2000

P
er

fo
rm

an
ce

 a
nd

 P
op

ul
at

io
n

si
ze

/6
00

00

Iterations (1000s)

XCS-SL 0-6LMP Perf.
Pop. size

3-6LMP Perf.
Pop. size

XCS-SL-messy 0-6LMP Perf.
Pop. size

3-6LMP Perf.
Pop. size

a) N=60,000

 0

 0.2

 0.4

 0.6

 0.8

 1

0 500 1000 1500 2000

P
er

fo
rm

an
ce

 a
nd

 P
op

ul
at

io
n

si
ze

/6
00

0

Iterations (1000s)

XCS-SL 0-6LMP Perf.
Pop. size

3-6LMP Perf.
Pop. size

XCS-SL-messy 0-6LMP Perf.
Pop. size

3-6LMP Perf.
Pop. size

b) N=6,000

Fig. 3. Performances and Population sizes on {0, 3}-6LMP

a large number of classes. ADL recognition [7] is a classification task to recognize
human activity from binary sensors. We modify the data (OrdonezA) to be a
sequence labeling task. The format of each data point is a time/input/class; an
input in the form of binary sensor data consists of three elements (sensor, sensor
type and room); a class indicates a human activity. The sensor, sensor type and
room can be one of 12 sensors, 5 sensor types and 5 rooms respectively; the class
can be one of 10 human activities (see [6], [7]). The dataset has 397 data points.

We use the first 70% as training data and the last 30% as test data. Each ex-
periment consists of a learning phase and a test phase. The test phase happens
after the learning phase. During the test phase, the system must solve the test
data, and it does not apply the reinforcement and discovery components. We
compare XCS, XCS-SL and XCS-SL-messy, and we employ the same parameter
settings of the previous test except for N = 5000, the maximum iteration is
200,000 and Action Set subsumption was turned off to avoid overly strong gen-
eralization pressure. We calculate the classification accuracy and the population
size during the test phase, which is the average over 30 experiments.

Table 1. a) Classification accuracies (the top half) and p-values (the bottom half) on
ADL recognition. b) Population sizes (the top half) and p-values (the bottom half).
Bold text indicates a significant difference (p<0.01).

a) Classification accuracies

XCS XCS-SL XCS-SL-messy

0.75 0.86 0.88

XCS - 8,15E-07 1.33E-07
XCS-SL - - 9.69E-03

b) Population sizes

XCS XCS-SL XCS-SL-messy

122.4 844.2 769.2

- 6.19E-36 3.82E-33
- - 1.15E-05

Table 1 shows the classification accuracies and populations sizes of all LCSs
and p-values (for classification accuracies and for population sizes) which are
calculated using the Two-tailed paired Student t-test. The population size of

200 M. Nakata, T. Kovacs, and K. Takadama

XCS is quite smaller than other LCSs but the classification accuracies of XCS-SL
and XCS-SL-messy are better than XCS and the positive significant differences
for the classification accuracy are noted (p<0.01). XCS-SL-messy improves on
the classification accuracy of XCS-SL, and the positive significant difference for
the classification accuracy between both systems is noted (p<0.01). Additionally,
XCS-SL-messy had a smaller population size than XCS-SL and the positive
significant difference for the population size is noted (p<0.01).

7 Conclusion

We introduced XCS-SL with a novel messy coding for memories and a novel
evolutionary mechanism to find how many and where previous inputs are needed
to disambiguate the current input. On the Layered Multiplexer Problem we
found messy coding results in a smaller population size and does not require
as high a population size limit. However, messy coding requires more training
with a high population size limit than the original interval coding. On a real
world sequence labeling task messy coding had higher accuracy and smaller
population size than the original interval coding. These results suggest that
the messy-coding in XCS-SL, combined with our new evolutionary mechanism
can successfully learn accurate and compact conditions. We will evaluate other
memory-using LCS on sequence labeling tasks. Finally, we will compare XCS-SL
with non-evolutionary sequence labeling algorithms on a range of datasets.

References

1. Butz, M.V., Wilson, S.W.: An Algorithmic Description of XCS. Journal of Soft
Computing 6(3-4), 144–153 (2002)

2. Kaluža, B., Mirchevska, V., Dovgan, E., Luštrek, M., Gams, M.: An Agent-based
Approach to Care in Independent Living. In: de Ruyter, B., Wichert, R., Keyson,
D.V., Markopoulos, P., Streitz, N., Divitini, M., Georgantas, N., Mana Gomez, A.
(eds.) AmI 2010. LNCS, vol. 6439, pp. 177–186. Springer, Heidelberg (2010)

3. Lafferty, J.D., McCallum, A., Pereira, F.C.N.: Conditional Random Fields: Prob-
abilistic Models for Segmenting and Labeling Sequence Data. In: ICML 2001, pp.
282–289 (2001)

4. Lanzi, P.L., Wilson, S.W.: Toward Optimal Classifier System Performance in Non-
Markov Environments. Evolutionary Computation 8(4), 393–418 (2000)

5. Lanzi, P.L.: Extending the Representation of Classifier Conditions Part I: From
Binary to Messy Coding. In: GECCO 1999, pp. 337–344. Morgan Kaufmann (1999)

6. Nakata, M., Kovacs, T., Takadama, K.: A Modified XCS Classifier System for
Sequence Labeling. In: Proc. of GECCO 2014, pp. 565–572. ACM (2014)

7. Ordóñez, F.J., de Toledo, P., Sanchis, A.: Activity Recognition Using Hybrid Gen-
erative/Discriminative Models on Home Environments Using Binary Sensors. Sen-
sors 13(5), 5460–5477 (2013)

8. Schmid, H.: Probabilistic Part-of-Speech Tagging Using Decision Trees. In: Inter-
national Conf. on New Methods in Language Processing, pp. 44–49 (1994)

9. Tomlinson, A., Bull, L.: An Accuracy Based Corporate Classifier System. Soft
Computing 6(3-4), 200–215 (2002)

10. Wilson, S.W.: Classifier Fitness Based on Accuracy. Evolutionary Computa-
tion 3(2), 149–175 (1995)

	Messy Coding in the XCS Classifier System
for Sequence Labeling

	1 Introduction
	2 Messy Coding in Sequence Labeling
	2.1 Sequence Labeling
	2.2 Messy Coding vs. Original Interval Coding

	3 XCS-SL Classifier System
	4 Messy Coding in the XCS-SL Classifier System
	5 Experiment on Benchmark Problem
	5.1 Results

	6 Experiment on ADL Recognition
	7 Conclusion
	References

