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Abstract. Exponential crossover in Differential Evolution (DE), which
is similar to 1-point crossover in genetic algorithms, continues to be
used today as a default crossover operator for DE. We demonstrate
that exponential crossover exploits an unnatural feature of some widely
used synthetic benchmarks such as the Rosenbrock function – dependen-
cies between adjacent variables. We show that for standard DE as well
as state-of-the-art adaptive DE, exponential crossover performs quite
poorly on benchmarks without this artificial feature. We also show that
shuffled exponential crossover, which removes this kind of search bias,
significantly outperforms exponential crossover.

1 Introduction

Differential Evolution (DE) is an Evolutionary Algorithm (EA) that was primar-
ily designed for real parameter optimization problems [16], and has been applied
to many practical problems [14]. A DE population is represented as a set of real
parameter vectors xi = (x1, ..., xD), i = 1, ..., N , where D is the dimensional-
ity of the target problem, and N is the population size. In each generation t,
a mutant vector vi,t is generated from an existing population member xi,t by
applying some mutation strategy. Then, the mutant vector vi,t, is crossed with
the parent xi,t in order to generate trial vector ui,t. After all of the trial vectors
ui,t, 0 ≤ i ≤ N have been generated, each individual xi,t is compared with its
corresponding trial vector ui,t, keeping the better vector in the population.

Algorithm 1. exponential crossover

1 ui,t = xi,t, j is randomly selected from [1, D], L = 1;
2 repeat
3 uj,i,t = vj,i,t, j = (j + 1) modulo D, L = L+ 1;
4 until rand[0, 1) < CR and L < D;

The two most common type of crossover in DE are binomial crossover, anal-
ogous to uniform crossover in GA’s, and exponential crossover, analogous to
1 or 2 point crossover in GA’s [16]. Binomial crossover is implemented as fol-
lows: For each j (j = 1, ..., D), if rand[0, 1) ≤ CR or j = jrand, uj,i,t = vj,i,t.
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Otherwise, uj,i,t = xj,i,t, where rand[0, 1) denotes a uniformly selected random
number from [0, 1), and jrand is a decision variable index which is uniformly
randomly selected from [1, D]. CR ∈ [0, 1] is the crossover rate. Exponential
crossover is implemented as shown in Algorithm 1. The choice of crossover type
determines the distribution of the number of variables that are inherited by
children (trial vectors in DE terminology), as well as the contiguousness of the
inherited variables. Although binomial crossover appears to be more frequently
used in state-of-the-art DEs [2,18,23], a number of recent papers have reported
successful usage of exponential crossover [3, 7, 9, 13, 24, 25].

This paper questions the continued usage of exponential crossover in DE. It
has been long known in the GA community that traditional 1-point/2-point
crossover introduces significant positional biases – interactions between genes
that are positionally far from each other in a genome tend to be disrupted, while
interactions between genes that are close to each other tend not to be disrupted
[4]. This positional bias tends to result in undesirable search behavior in real-
world problems, and classical 1-point/2-point crossover, while still introduced in
textbooks, tends not to be used by experienced GA practitioners. Why then, is
exponential crossover, which is quite similar to 1 or 2 point crossover, still used
by the DE community?

We argue that exponential crossover in DE has been overrated because it suc-
cessfully exploits unnatural dependencies between adjacent variables in widely
used synthetic benchmarks. We show that if the benchmarks are altered to elim-
inate these unnatural dependencies, then exponential crossover performs very
poorly. We also evaluate shuffled exponential crossover (SEC), a method for
implementing exponential crossover without relying on arbitrary dependencies
between adjacent variables, which was briefly suggested in [14] but to our knowl-
edge has never been evaluated. Although exponential crossover has been one of
the recommended crossover methods since the introduction of DE in 1995 [16],
we believe that the use of exponential crossover needs to be carefully reconsidered
in light of our experimental results.

2 Adjacent Functions: A Common But Unnatural Class
of Benchmarks

In black-box optimization, synthetic benchmarks (e.g., the 13 classical functions
[22], CEC benchmarks [17, 20], GECCO BBOB [5], and SOCO benchmarks [8])
are often used by EA researchers as proxies for performance on real-world problem
instances. Although synthetic benchmark suites are designed in order to include
representatives of many class of real-world problems (e.g. unimodal/multimodal/
separable/nonseparable), previous work has pointed out that benchmark suites
can some pitfalls in using synthetic benchmarks to evaluate EA’s [11, 15, 20, 21].
One specific issue is the presences of exploitable problem characteristics that do
not arise in real-world problems [11].

One such “exploitable problem characteristic” found in some widely used,
nonseparable synthetic benchmarks is unnatural dependencies between adjacent



Reevaluating Exponential Crossover in Differential Evolution 203

Table 1. Nonseparable Benchmark Functions

Name Definitions Search Range Properties

Rosenbrock f(z) =
∑D−1

i=1

(
100(zi+1 − z2

i )
2 + (zi − 1)2

)
[−30, 30]D Multimodal

Schwefels 1.2 f(z) =
∑D

i=1(
∑i

j=1 zj)
2 [−100, 100]D Unimodal

Block-rotated
Ellipsoid [1]

f(z) =
∑D−1

i=1

∑2
j=1

(
αj−1

(
Ri · (zi, zi+1)

))2
[−5, 5]D Unimodal

variables – variables interacting (exclusively) with other variables that happen
to have similar variable indices. For example, in the Rosenbrock function, a
canonical, nonseparable function that has been widely used as an EA bench-
mark, each term in the summation depends on adjacent variables zi and zi+1

(Table 1). However, there is no particular reason that adjacent variables should
have such dependencies in real-world, black-box optimization problems, and such
dependencies are an artifact of synthetic benchmarks.1

This unnatural problem structure can be easily eliminated using the ran-
domization procedure described in [20]. First, the permutation vector P (P =
P1, ..., PD) is initialized to a random permutation at the beginning of the DE
run. During the DE run, whenever a trial vector x is evaluated, we permute x
using P , resulting in the permuted trial vector x′ = (xP1 , ..., xPD ). Then, x

′ is
evaluated using the evaluation function, and the result is the fitness score for
trial vector x. This permutation effectively eliminates arbitrary dependencies
between variables with consecutive in the trial vector x – the dependencies are
now between variables with indices that are consecutive in x′, but exponential
crossover, which operates on x, can not exploit the consecutiveness in x′.

2.1 Exponential Crossover on Adjacent/Distributed Functions

We evaluate exponential crossover on (1) functions with dependencies between
lexicographically adjacent variables, i.e., standard versions of widely used syn-
thetic benchmarks, and (2) modified versions of functions in (1) where the per-
mutation method described above is used to randomize the variable dependencies
and eliminate the adjacent dependency structure. Following [4], we call functions
of the former class adjacent functions, and functions of the latter class distributed
functions.

We used the 3 nonseparable, adjacent functions in Table 1. The Rosenbrock
and Schwefels 1.2 functions are well-known, classical benchmark functions that
have been widely used to evaluate EA’s [22]. The Block-rotated Ellipsoid [1]
is a partially separable function designed to only have dependencies between

1 Of course, there are real-world problems that can be represented in such a way as
to have dependencies between adjacent variables [1] – we are merely arguing that
these are not representative of black-box optimization problems.
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(a) Rosenbrock (DE)
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(b) Schwefels 1.2 (DE)
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(c) B. L. Ellipsoid (DE)
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(d) Rosenbrock (jDE)
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(e) Schwefels 1.2 (jDE)
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(f) B. L. Ellipsoid (jDE)

Fig. 1. Evaluation of various crossover operators (standard DE and jDE). (A) and (D)
stand ”Adjacent” and ”Distributed” respectively. The horizontal axis represents the
dimensionality D, and the vertical axis represents the average fitness evaluations (for
successful runs) divided by success rate.

zi and zi+1. Here, z = (yP1 , ..., yPD ), y = x − o, and for each function, the
location of the global optimum has been shifted by offset o (o = o1, ..., oD),
where each component of o is a uniformly generated random offset. For adjacent
functions, the permutation vector P = (1, ..., D), and for distributed functions,
P is a randomly generated ordering such as P = (6, 1, 3, ...). The 2× 2 rotation
matrix Ri is uniformly generated according to the method of [15] and α = 1e+6.

We studied problems with 10 − 80 dimensions. Each DE run continues until
either (1) the difference between the best-so-far and the optimal solution ≤
1e-8, in which case we treat the run as a “success”, or (2) the # of objective
function calls exceeds 2.0×106, in which case the run is treated as a “failure”. On
each problem, each algorithm is executed 50 times. Following [6], our evaluation
metric is the average # of fitness evaluations in successful runs divided by the
# of successes. Small values of this metric indicate a fast and stable search.

We use standard DE [16], as well as the state-of-the-art adaptive DE variants
jDE [2], JADE [23], and SHADE [18].2 The standard DE used a population
size of 100 and F = 0.5, and the most commonly used, and rand/1 muta-
tion strategy – this is a standard configuration in the DE literature [2, 23]. In
addition to exponential crossover, we also ran the experiments with binomial

2 jDE [2], JADE [23], SHADE [18] were originally designed to use binomial crossover;
in order to evaluate exponential crossover on state-of-the-art DE’s, we modified these
to use exponential crossover.
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crossover for comparison. On the standard DE, for each crossover method, for
each benchmark function, and for each dimensionality (D), we use the value
of CR ∈ {0.90, 0.91, ..., 0.99} that yields the best performance according to the
performance metric defined above. For jDE, JADE, and SHADE, which automat-
ically adjusts CR, we use the control parameters recommended in the original
papers on these adaptive methods [2, 18, 23].

The results for standard DE and jDE are shown in Figure 1. Detailed re-
sults for JADE and SHADE are in the supplemental material [19] due to space
constraints, but the SHADE and JADE results are qualitatively similar to the
jDE results. “Shuffled exponential crossover (SEC)” is explained in Section 3.
For cases where all runs failed (success rate for 50 trials = 0), then the data is
not shown. Since binomial crossover behaves almost identically for adjacent and
distributed functions, only the distributed function results are shown.

Figure 1 shows that exponential crossover performs much better on adja-
cent functions compared to distributed functions. The performance gap increase
as the dimensionality increases. For standard DE, exponential crossover out-
performs binomial crossover on all adjacent functions, for all dimensionalities.
In stark contrast, on the distributed functions, the performance of exponential
crossover drops significantly – for all the distributed functions, for all D, expo-
nential crossover performs worse than binomial crossover. In particular, on the
distributed-Rosenbrock and distributed-Schwefels 1.2 functions, for D ≥ 70 di-
mensions, exponential crossover fails on every single run. The results are similar
for jDE. Aside from the results on the Rosenbrock function (Figure 1(d)), the
performance of exponential crossover on distributed functions is clearly worse
than on the adjacent functions.

These results clearly show that the performance of exponential crossover on
nonseparable function benchmarks such as Rosenbrock and Schwefels 1.2 de-
pends on an arbitrary feature of these synthetic benchmarks – variable depen-
dencies between adjacent variables. Given essentially the same, nonseparable
functions without this arbitrary structure, exponential crossover performs much
worse (significantly worse than binomial crossover). Functions such as Rosen-
brock and Schwefels 1.2 have been part of benchmark suites used by to evalu-
ate DE since the original paper introducing DE [16], and continue to be used
today [3, 7, 9, 13, 24, 25]. As a consequence, exponential crossover has been inac-
curately overrated as a DE crossover operator for black-box optimization.

How fragile is exponential crossover to perturbations in the variable index
order? Instead of completely randomizing the variable index order, we investi-
gate the effect of gradually decreasing the dependency between adjacent variable
indices by applying n = 1, ..., D randomized swaps to the variable indices. As
n increases, the number of dependencies between adjacent variables decreases.
We ran standard DE on 50-dimensional problems (same setup as in the previ-
ous experiment). For each problem, we used the CR value that performed best
for each n. Figure 2 shows that for all of the functions, exponential crossover
performs best when n = 0, and rapidly degrades as n increases, i.e., exponential
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(b) Schwefels 1.2
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Fig. 2. Effect of gradually decreasing dependencies between adjacent variables for stan-
dard DE using exponential crossover and SEC on 50-dimensional problems. Horizontal
axis = # of randomized swaps (n = 1, ..., D); Vertical axis = average fitness evaluations
(for successful runs) divided by success rate.

crossover is quite fragile with respect to perturbations in dependencies between
adjacent variables.

3 Shuffled Exponential Crossover

The experiments in Section 2 showed that exponential crossover performs poorly
on distributed functions. To alleviate this problem, we evaluate shuffled exponen-
tial crossover. Caruana et al observed that 1-point crossover in GA’s introduced
a very strong search bias in that variables located close to each other in a lin-
ear genome (i.e., variable indices with similar lexicographic values) tended to
be inherited by the same child, while variables located far apart tend to be in-
herited by different children [4]. To eliminate this bias, they proposed shuffle
crossover [4]: First, the variable indices of the parents are randomly shuffled
(the same shuffle is applied to both parents). Next, standard 1-point crossover
is applied to the shuffled genomes. Finally, the indices are restored to their pre-
shuffled states.3

Price et al note that exponential crossover in DE is subject to the same bias
as 1-point crossover in GA’s, and suggested that the shuffling mechanism from
shuffle crossover can be added to exponential crossover in order to alleviate this
problem [14]. In this paper, we call this shuffled exponential crossover (SEC). The
algorithm is shown in Algorithm 2. Recently, Lin et al evaluated a mechanism
called non-consecutive exponential crossover which is in fact, the same as SEC
[12]. However, they do not analyze the effect of this mechanism in the context
of dependencies among variables as we do. In fact, [12] claims “in non-separable
ridge functions (Rosenbrock and Schwefels 1.2 function), differential evolution
algorithms with consecutive crossover are more reliable than those with non-
consecutive crossover” (this is clearly contradicted by our result above).

3 While shuffle crossover is similar to uniform crossover in that the genes that are ex-
changed are dispersed throughout the genome, the # of genomes that are exchanged
has a very different probability distribution, and there is a different search bias.



Reevaluating Exponential Crossover in Differential Evolution 207

Algorithm 2. Shuffled Exponential Crossover (SEC)

1 ui,t = xi,t, k = 1, S(= s1, ..., sD) is randomly shuffled permutation {1, ..., D};
2 repeat
3 j = sk, uj,i,t = vj,i,t, k = k + 1;
4 until rand[0, 1) < CR and k < D;

Table 2. # of Adjacent Functions in Standard Benchmark Suites

Benchmarks # of adjacent functions Function

13 classical [22] 2 / 13 F3, F5

CEC 2005 [17] 4 / 25 F2, F4, F6, F13

CEC 2010 [20] 2 / 20 F19, F20

GECCO BBOB [5] 1 / 24 F8

SOCO benchmarks [8] 10 / 19 F3, F8, F9, F11, F12, F13, F14, F16, F17, F18

Figure 1 shows the results of SEC for standard DE as well as jDE for the
same problems/settings as in Section 2.1.4 Unlike exponential crossover (but,
similar to binomial crossover), the performance of SEC is unaffected by whether
the test function is adjacent or distributed; thus, only the distributed function
results are shown. Figure 2 also shows the results for SEC with best CR value
when n = 0 for the same problems/settings as in Section 2.1. The performance
of SEC is clearly shown to be independent of n.

Figure 1 shows that overall, SEC slightly outperforms exponential crossover on
the distributed functions. However, on the distributed Rosenbrock function (60
dimensions), SEC significantly outperforms exponential crossover. Also, on the
distributed-Schwefels 1.2 function, SEC is competitive with binomial crossover,
even on 70 ≥ dimensional problems where exponential crossover failed on every
single run. These results show that while exponential crossover depends on the
ordering of variables (i.e., whether the function is adjacent or distributed), SEC,
as expected, does not depend on the index positions of the variables and yields
a much more stable search performance as a result.

4 Is Exponential Crossover Overrated?

Past evaluations of DE crossover operators on standard benchmark test suites
need to be reconsidered in light of our analysis of the interaction between adja-
cent functions and exponential crossover. Functions with dependencies between
adjacent variables (e.g., Rosenbrock, Schaffer F7, Whitley’s composite func-
tions [21]) are included in widely used benchmark suites. Table 2 shows the

4 Results for JADE and SHADE are in the supplemental material [19].
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Table 3. SEC vs. binomial and exponential crossover on the CEC2014 benchmark
functions [10] for D = 50 (Wilcoxon rank-sum test significance threshold p < 0.05)

exponential binomial

DE jDE JADE SHADE DE jDE JADE SHADE

vs. SEC # of better 1 0 0 0 12 18 19 13
Wilcoxon rank-sum # of worse 8 2 3 5 9 5 7 6

(significance: p < 0.05) # of no sig. 21 28 27 25 9 7 4 11

number of adjacent functions out of the total number of functions in the typi-
cal benchmarks. The larger the number of adjacent functions in the benchmark
suite, the more favorable the suite is for methods that exploit the adjacent struc-
ture, such as DE with exponential crossover. In particular, note that 10 out of 19
functions in the recent Soft Computing Journal (SOCO) benchmarks [8] are ad-
jacent functions, making it particularly vulnerable to exploitation by exponential
crossover. In fact, all 7 of the DE algorithms submitted to the SOCO special issue
evaluation used exponential crossover. It would seem that due to the presence of
adjacent functions, exponential crossover has been overrated in previous evalua-
tions (assuming that benchmark suites are supposed to model true “black-box”
scenarios where there is no a priori reason to believe that adjacent variables have
dependencies).

How do DE crossover operators compare on a benchmark set that does not
contain any adjacent functions? The recently proposed CEC2014 benchmark
set [10] consisting of 30 problems, does not include any adjacent functions.
We evaluated SEC vs exponential crossover vs binomial crossover on DE, jDE,
JADE, and SHADE on the CEC2014 benchmarks (in 10, 30, and 50 dimensions),
following the evaluation methodology specified in the CEC2014 benchmark com-
petition [10]. The overall results for D = 50 dimensions are shown in Table 3.5

As shown in Table 3, for a diverse benchmark set, SEC outperforms exponential
crossover for all DE algorithms. Binomial crossover performs best for all DE
algorithms.

5 Conclusion

This paper showed that exponential crossover, one of the standard crossover
methods in DE, implicitly exploits an unnatural structure found in some syn-
thetic benchmark problems, including some widely used, nonseparable functions
(Rosenbrock and Schwefels 1.2), where there are strong dependencies between
variables with consecutive indices. We showed that exponential crossover per-
forms significantly worse if we slightly perturbing these classical benchmarks
to remove these arbitrary, lexicographic dependencies, i.e., after artificial de-
pendencies between adjacent variables are removed, the “true” performance of

5 The results for D = 10, 30 are in the supplemental data [19].
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exponential crossover appears to be significantly worse than previously believed.
We believe that for synthetic benchmarks [5, 8, 17, 20, 22], the performance of
exponential crossover has been overrated [3, 7, 9, 13, 24, 25]. Thus, the suitabil-
ity of exponential crossover should be reevaluated in light of our results. We
showed that SEC, which does not implicitly assume sequential dependencies be-
tween variables and does not have the same search bias as exponential crossover,
significantly outperforms exponential crossover overall, and is competitive with
binomial crossover. While SEC was suggested by [14], and also proposed by [12],
our work is the first to identify the specific weaknesses described above for expo-
nential crossover and show that shuffling results in improved overall performance.
Although there is still no clear criteria to determine whether binomial crossover
or SEC should be used for a particular problem (a direction for future work),
we believe that we have presented sufficient evidence to suggest that plain, ex-
ponential crossover should no longer be considered as an appropriate, default
crossover operator for DE. SEC (or binomial crossover) should be used instead
of exponential crossover, unless there is some prior knowledge that there are
dependencies between consecutive variables.

As we showed for exponential crossover in DE, algorithms that (intentionally
or unintentionally) exploit this dependency can appear to perform much better
than they would actually perform on real-world problems without this artificial
structure. As shown in Section 2, randomizing the lexicographic positions of the
variables for all benchmark functions, as suggested by [20] is a simple method
for avoiding this benchmarking pitfall, and we believe that black-box bench-
mark suites should apply this randomization to avoid unintentionally biasing
the evaluation results.
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