An Extended Michigan-Style Learning Classifier
System for Flexible Supervised Learning,
Classification, and Data Mining

Ryan J. Urbanowicz, Gediminas Bertasius, and Jason H. Moore

Institute for Quantitative Biomedical Sciences, Department of Genetics
Geisel School of Medicine, Lebanon, NH, USA
{ryan. j.urbanowicz, jason.h.moore}@dartmouth.edu
http://www.epistasis.org/

Abstract. Advancements in learning classifier system (LCS) algorithms
have highlighted their unique potential for tackling complex, noisy prob-
lems, as found in bioinformatics. Ongoing research in this domain must
address the challenges of modeling complex patterns of association, sys-
tems biology (i.e. the integration of different data types to achieve a
more holistic perspective), and ‘big data’ (i.e. scalability in large-scale
analysis). With this in mind, we introduce ExSTraCS (Extended Su-
pervised Tracking and Classifying System), as a promising platform to
address these challenges using supervised learning and a Michigan-Style
LCS architecture. ExSTraCS integrates several successful LCS advance-
ments including attribute tracking/feedback, expert knowledge covering
(with four built-in attribute weighting algorithms), a flexible and efficient
rule representation (handling datasets with both discrete and continu-
ous attributes), and rapid non-destructive rule compaction. A few novel
mechanisms, such as adaptive data management, have been included to
enhance ease of use, flexibility, performance, and provide groundwork for
ongoing development.

Keywords: Learning Classifier System, Genetics, Epidemiology, Epis-
tasis, Heterogeneity, Evolutionary Algorithm, Systems Biology.

1 Introduction

Machine learning algorithms driven by evolutionary mechanisms offer a promis-
ing avenue for data mining within complex, noisy problem domains. Michigan-
style learning classifier systems (LCS) constitute a unique class of algorithms
that distribute learned patterns over a collaborative population of individually
interpretable (IF:THEN) rules, allowing them to flexibly and effectively describe
complex and diverse problem spaces found in behavior modeling, function ap-
proximation, classification, and data mining. Michigan LCS algorithms apply
iterative rather than batch-wise learning, meaning that rules are evaluated and
evolved one data instance at a time. This makes them naturally well-suited to
learning different problem niches found in multi-class, latent-class, or hetero-
geneous problem domains. LCS algorithms are fundamentally multi-objective,

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 211-221, 2014.
© Springer International Publishing Switzerland 2014

http://www.epistasis.org/

212 R.J. Urbanowicz, G. Bertasius, and J.H. Moore

evolving rules toward maximal accuracy and generality(i.e.rule simplicity) to
improve predictive performance [1]. We focus on classification and data mining
problems in genetics and epidemiology where risk factors that explain variation
in disease phenotypes are sought. Certain complicating phenomena are known to
interfere with the traditional mapping of genotype to phenotype [2]. We explicitly
consider two such phenomenon; epistasis (i.e. gene-gene interaction) and genetic
heterogeneity. Also, new systems biology approaches will require the integration
of different data types (e.g. genetic, epigenetic and environmental) embracing a
more holistic perspective when searching for predictive or causal disease risk fac-
tors. Difficulty is further compounded in the context of large-scale bioinformatic
investigations where the computational and methodological limitations hinder
scalability with increasing numbers of attributes and/or training instances.

With these challenges in mind, we introduce the Extended Supervised Track-
ing and Classifying System (ExSTraCS). ExSTraCS has been primarily designed
to address complex, noisy, supervised learning, single-step problem domains
with 2 or more balanced/imbalanced classes, and with continuous or discrete
attributes. ExSTraCS is descended from a lineage of Michigan-style LCS al-
gorithms, founded on the architecture of Wilson’s Extended Classifier System
(XCS) [3], the most successful and best-studied LCS algorithm to date. The
Supervised Classifier System (UCS) [4] replaced XCS’s reinforcement learning
scheme with a supervised learning strategy to deal explicitly with single-step
problems such as classification and data mining. Comparing select Michigan
and Pittsburgh-style LCS algorithms, UCS showed particular promise when ap-
plied to complex biomedical data mining problems with patterns of epistasis and
heterogeneity [5,6]. UCS inspired two algorithmic expansions named Attribute
Tracking and Feedback UCS (AF-UCS) and Expert Knowledge UCS (UCS-EK).
AF-UCS introduced mechanisms that improved learning and uniquely allowed
for the explicit characterization of heterogeneous patterns and the identification
of candidate disease subgroups [7,8]. UCS-EK incorporated of expert knowledge
into UCS learning for smart population initialization, directed rule discovery,
and reduced run time [9]. Recently, novel rapid rule compaction strategies were
developed and evaluated for post-processing rule populations to enhance inter-
pretability and improve predictive performance [10]. ExSTraCS merges success-
ful components of this algorithmic lineage with other valuable LCS research, and
a redesigned UCS-like framework with a few novel features. In addition to inte-
grating attribute tracking/feedback, expert knowledge covering, and rapid rule
compaction, ExSTraCS (1) adopts a flexible and efficient rule representation sim-
ilar to the one described in [11], to accommodate data with both discrete and
continuous attributes, (2) outputs attribute tracking scores and global statistics
(in addition to a rule population) for significance testing, and visualization-
guided knowledge discovery as described in [12], (3) includes an adaptive data
detection scheme to adjust the algorithm to the characteristics of the dataset,
and (4) includes a built-in selection of four attribute weighting algorithms to
discover potentially useful expert knowledge as a pre-processing step.

An Extended Michigan-Style Learning Classifier System 213
2 ExSTraCS

The Extended Supervised Tracking and Classifying System (ExSTraCS) com-
bines a number of existing and completely novel aspects into a single, flexible
LCS framework aimed at overall functionality, ease of use, as a platform for
ongoing algorithmic development. The algorithm itself is coded in Python, well
annotated, and freely available on sourceforge.net. We begin with an overview of
ExsTraCS referencing a schematic of major components given in Figure 1. We
follow with details of components that differentiate ExSTraCS from the UCS or
XCS algorithms.

ExSTraCS begins with (A) data pre-processing, followed by (B) algorithm
learning/training, and ending with (C) rule population post-processing. (A) ExS-
TraCS will accept a finite dataset with some number of independent attributes
and a single class variable as the training dataset. A testing dataset may be
optionally loaded for complete rule population evaluations. Adaptive data man-
agement initially determines and stores key characteristics of this dataset for
use during learning iterations. Lastly, expert knowledge (EK) may be loaded or
discovered from the dataset using one of four implemented attribute weighting
algorithms. These weights are converted describing relative probabilities that
attributes in the data will be valuable for discriminating class/endpoint. (B)
The core ExSTraCS algorithm largely follows a typical iterative Michigan-style

A Pre-Processing:

Data Set

i

1— Training Instance ————————
— @

4 C Post-Processing:

Genetic
Covering [P] @ Algorithm

[c1
/. output |
Subsumption

ge

Prediction [M]
!

=)
i

ExSTraCS lterative
@ Learning Cycle:

Fig. 1. ExSTraCS Schematic: Ovals are mechanisms, bordered squares are sets of
either data or classifiers, green = classifier discovery mechanism, purple = traditional
LCS mechanism, and blue = mechanisms unique to ExSTraCS

214 R.J. Urbanowicz, G. Bertasius, and J.H. Moore

learning cycle that includes the following 10 steps repeatedly up to a maxi-
mum number of learning iterations: (1) One training instance is taken from the
dataset without replacement. (2) The training instance is passed to a population
[P] of classifiers/rules that is initially empty. A classifier is a simple IF/THEN
rule comprised of a condition (i.e. specified attribute states), and what is tradi-
tionally referred to as an action (i.e. the state of the class or endpoint). (3) A
match set [M] is formed, that includes any classifier in [P] that has a condition
matching the training instance. (4) [M] is divided into a correct set [C] and an
incorrect set [I] based on whether each classifier specified the correct or incorrect
class/phenotype. (5) If, after steps 3 and 4, [C] is empty, covering applies expert
knowledge to intelligently generate a matching and ’correct’ classifier added to
[M] and [C]. (6) For every classifier in [P], a number of parameters are maintained
and updated throughout the learning process such as: numerosity (the number of
copies of a given classifier in [P]), rule accuracy which is the proportion of times
in which a classifier has been in a [C] over all times it has been in a [M]; and clas-
sifier fitness, which is simply equal to classifier accuracy in this implementation
(i.e. v = 1). We had previously observed that placing too much emphasis on op-
timal accuracy in calculating fitness led to dramatic overfitting in noisy problem
domains [5]. Classifier parameters (e.g. fitness) are updated for classifiers within
[C] and [I]. (7) Subsumption, a generalization mechanism is applied to [C] [3]. A
similar subsumption mechanism is also applied to new classifiers generated by
the genetic algorithm (GA). (8) Classifiers in [C] are used to update attribute
tracking scores for the current training instance. (9) The GA uses tournament
selection to pick two parent classifiers from [C] based on fitness and generates
two offspring classifiers which are added to [P]. The GA includes two discover
operators: crossover and mutation (x = 0.8 and v = 0.04, respectively). All
classifiers in [C] and [I] are returned to [P]. (10) Lastly, whenever the size of [P]
is greater than the specified maximum, a deletion mechanism decrements the
numerosity of a classifier (assuming it is > 1) or removes it from [P]. Deletion
probability is a function of classifier numerosity, average [M] size and is inversely
proportional to fitness. Notably, ExSTraCS cycles do not alternate between an
explore/exploit phases as described in XCS [3] due to supervised learning. How-
ever, for performance tracking and prediction evaluation, a prediction array is
generated every iteration from [M] to obtain a class prediction. A class predic-
tion is made by a fitness weighted vote of all classifiers within [M]. The class
with the largest ‘vote’ is the predicted class. (C) After all learning iterations
have completed, rule compaction is applied as a post-processing step to remove
poor and/or redundant rules from [P] to yield [P.]. Upon request, ExSTraCS
will yield up to four distinct output files after the final iteration, or any iter-
ation at which a full evaluation is requested. These include (1) the population
of classifiers collectively constituting the prediction ‘model’ (Note: ExSTraCs is
uniquely set up to load a given population file and continue learning from where
it left off), (2) population statistics, summarizing major performance statistics
including global training and testing accuracy of the classifier population [12],
(3) co-occurrence scores for the top specified pairs of attributes in the dataset

An Extended Michigan-Style Learning Classifier System 215

Quaternary Knowledge Mixed Discrete-Continuous
Representation Attribute-List Knowledge Representation
Rule Condition: [#,2,##0,#,1,2,##] Attribute Reference: [1,4,6,7]
Classification/Action: 1 Rule Condition: [2,0,[0.4-0.7], ‘high’]

Classification/Action: 1

Fig.2. Knowledge Representations: Quaternary vs. Mixed Discrete-Continuous
Attribute List. The ‘4’ symbol indicates ‘attribute not specified’;, which matches any
attribute state. The mixed representation only stores specified attributes, represents
continuous value states as flexible ‘ranges’, and allows for non-numerical states.

[12], and (4) attribute tracking scores for each instance in the dataset [7]. These
outputs may be evaluated and visualized to facilitate knowledge discovery as
described in [12].

Adaptive Data Management. We introduce a simple adaptive data manage-
ment (ADM) scheme to facilitate ease of use, improve efficiency, and algorithmic
adaptation to different datasets. ADM will load and format training (and op-
tionally testing) data, automatically identifying key characteristics including:
number of attributes, number of instances, the location of the endpoint variable
column, and the location of a column for instance identifiers (optional, but use-
ful in tying attribute tracking scores back to specific individuals in the dataset).
Also, ADM examines state values for all attributes and applies a user defined
run parameter (discreteAttributeLimit) to determine and store whether each
attribute is to be treated as discrete or continuous. If discrete, each possible
state value stored, while if continuous, the maximum and minimum values are
stored, for use in limiting covering and GA mechanisms. We plan to expand
ADM to store state frequency information which we expect can be applied to
further improve performance. ADM reduces redundancy, simplifies data format-
ting requirements, and paves the way for further algorithmic enhancements.

Knowledge Representation. Our prior implementations of UCS [5], AF-UCS
[7], and UCS-EK [9] were coded with a quaternary knowledge representation to
operate on single nucleotide polymorphism (SNP) case/control data. SNPs are
discrete genetic attributes with encoded states (0,1,or 2). ExSTraCS adopts a
mixed discrete-continuous attribute-list knowledge representation (see Figure 2)
allowing learning on datasets with discrete and/or continuous attributes. This
strategy is quite similar to the one proposed by Bacardit in [11] which extended
the attribute-list knowledge representation (ALKR), designed for continuous at-
tributes, with the GABIL discrete attribute representation [13]. ALKR only
stores information about attributes that are specified in a classifier which sig-
nificantly reduces run time in both matching and attribute tracking. This ef-
fect is particularly important in datasets with a large number of non-predictive
attributes. ExSTraCS keeps the ALKR representation but avoids the GABIL

216 R.J. Urbanowicz, G. Bertasius, and J.H. Moore

representation in favor of a simpler but less generalizable strategy for represent-
ing discrete attribute states. Specifically, classifier conditions can only specify
one state for discrete attributes, while GABIL allows for some subset of at-
tribute states to be simultaneously specified. While this may be advantageous
for evolving a maximally compact rule-set, this approach is not in-line with the
global approach to knowledge discovery proposed in [12] which relies on impor-
tant attributes being specified more often across rules in the greater population,
a valuable component to addressing significant noise in LCS data mining. Ad-
ditionally, this stricter representation yields individual rules that are arguably
easier to interpret (less ambiguity within the IF/THEN statement) and that are
likely be more accurate individual predictors (since they independently capture
a more specific set of attribute states). This representation requires modifica-
tions to both covering and the genetic algorithm in order to handle continuous
attributes (implemented as described in [11]).

Attribute Tracking and Feedback. Attribute tracking (AT) is akin to long-
term memory for supervised, iterative learning (see (8) in Figure 1). For a finite
training dataset, a vector of accuracy scores is maintained for each instance in the
data. In other words, for every instance in the data we increase attribute weights
based on which attributes are being specified in rules found in [C] every iteration.
Post-training, these scores can be applied to characterize patterns of association
in the dataset, in particular heterogeneous patterns which might suggest clinical
patient subgroups that may be targeted for research, treatment, or preventative
measures [7]. Note that using attribute tracking alone does not impact learn-
ing performance. Attribute feedback (AF) is applied to the GA mutation and
crossover operators, probabilistically directing rule generalization based on the
AT scores from a randomly selected instance in the dataset. The probability that
AF will be used in the GA is proportional to the algorithm’s progress through the
specified number of learning iterations (i.e. AF is applied infrequently early-on,
but frequently towards the end). Note that in developing ExSTraCS we realized
that AF-UCS was not using the AT scores from the current training instance (as
mistakenly described in [7]), but rather the scores from a neighboring instance.
This ‘error’ turned out to be essential to recapitulate attribute feedback per-
formance. AF speeds up effective learning by gradually guiding the algorithm
to more intelligently explore reliable attribute patterns. These mechanisms and
their application are further detailed in [7] and [8].

Expert Knowledge Covering. Previous work exploring the utilization of ex-
pert knowledge (EK) in UCS indicated that EK, utilized as probibalistic weights
for specifying attributes in rules, significantly sped up learning when applied to
covering, but yielded inconsistent success when applied to GA operators [9)].
Therefore, ExSTraCS adopts EK covering. EK is essentially an external bias in-
troduced to better guide learning, such that attributes more likely to be impor-
tant tend to be specified more often when covering. In other words, classifiers
tend to be initialized in parts of the problem space deemed by the EK to be

An Extended Michigan-Style Learning Classifier System 217

mostly likely to predict class status. Notably, the utility of EK is only as good as
the quality of the information behind the weights. EK covering is implemented in
ExSTraCS as described in [9] including the calculation of EK probability weights
from raw EK scores, and the application of these weights within the covering
mechanism. In theory the source of EK is up to the user (i.e. classifier popula-
tion initialization can be biased towards whatever attributes desired). In [9], raw
EK scores were obtained externally using a rapid attribute weighting algorithm
called SURF [14], designed to estimate attribute quality, in terms of predicting
class status. For convenience and flexibility, we have implemented SURF as well
as three other related attribute weighting algorithms into ExSTraCS (ReliefF
[15], SURF* [16], and MultiSURF [17]) from which the user may select and
discover EK scores for their respective datasets. Each algorithm has been re-
implemented to allow for discrete and continuous attributes. ExSTraCS handles
EK discovery is a pre-processing step (see (A) in Figure 1). This study applies
MultiSURF to discover EK, as it is the newest and most powerful.

Rule Compaction. ExSTraCS makes the six rule compaction strategies evalu-
ated in [10] available to post-process the classifier population (see (C) in Figure
1). Rule compaction utilizes the whole training dataset to consolidate the clas-
sifier population with the goal of improving interpretation and knowledge dis-
covery. Comparisons in [10] suggested that simple Quick Rule Filtering (QRF)
was both the fastest, and particularly was well suited to the theme of global
knowledge discovery [12] where it is more important to preserve or improve per-
formance than to minimize rule population size(useful for knowledge discovery
by manual rule inspection) [10]. This study applies QRF.

Miscellaneous. ExSTraCS naturally handle missing data points without re-
quiring imputation bias. Missing data points require a standard unique desig-
nation, and when encountered they match any attribute state specified in the
condition of a classifier. If desired, imputation can still be performed prior to
running ExSTraCS, but this is not currently built-in. ExSTraCS can perform
a complete evaluation of the classifier population as a whole at user specified
iterations, including assessments of training and testing accuracy. Balanced ac-
curacy is used to avoid accuracy calculation bias in multi-class and imbalanced
datasets. ExSTraCS centralizes and organizes all run parameters in a readable
configuration file, required to run the algorithm. Included in these parameters
is the option to deactivate major ExSTraCS mechansims as desired, such as
attribute tracking/feedback, expert knowledge, and rule compaction.

3 Results and Discussion

We evaluate ExSTraCS using two separate simulation studies (with discrete or
continuous attributes respectively) each including a total of 960 diverse datasets
(spanning from easily solvable to currently unsolvable) with underlying predic-
tive models that simulated patterns of epistasis and heterogeneity concurrently.

218 R.J. Urbanowicz, G. Bertasius, and J.H. Moore

Discrete attribute SNP datasets very similar to those used in [7,9,10] were sim-
ulated using GAMETES [18] with; architectures at maximum and minimum de-
tection difficulty, heritabilities (i.e. the proportion of class variance that can be
attributed to modeled attributes) of (0.1, 0.2, or 0.4), a minor allele frequency of
0.2, 20 attributes (only four of which were predictive and 16 were noise), sample
sizes of (200, 400, 800, or 1600) and a heterogeneous mix ratio of either (50:50 or
75:25) (e.g. 75% of instances were generated from one epistatic model, and 25%
were generated from a different one). 20 replicates of each dataset were analyzed
and 10-fold cross validation (CV) was employed to measure average testing accu-
racy and account for over-fitting. 960 corresponding continuous-valued versions
of these datasets were generated by transforming discrete values into random
values within specified continuous intervals (e.g. a discrete attribute with states
0, 1, or 2, was transformed to have a random continuous value within the respec-
tive ranges of 0-50, 50-100, or 100-150. ExSTraCS was run up to 200,000 learning
iterations but performance was also evaluated after only 10,000 iterations. Pair-
wise statistical comparisons were made using the Wilcoxon signed-rank tests.
All statistical evaluations were completed using R.

The focus of this analysis was two-fold; (1) comparing the performance of
our previous UCS-based core algorithm to the core ExSTraCS algorithm, where
‘core’ refers to the learning cycle without EK, AT/AF or rule compaction acti-
vated, and (2) comparing core ExSTraCS to performance when these separate
mechanisms are activated, in order to demonstrate their combined value. These
comparisons are performed using the discrete attribute simulation study summa-
rized in Table 1 over a set of key performance metrics. ‘Both Power’ is the ability
to correctly identify both two-locus heterogeneous models. ‘Single Power’ is the
ability to have found at least one. ‘Co-occur. Power’ indicates the ability to de-
tect the correct heterogeneous pattern. Generality refers to classifier generality,
or the average proportion of unspecified attributes across the classifier popula-
tion. Macro Population refers to the number of unique classifiers in the classifier
population. Previously, we demonstrated that UCS yielded the most promising
performance on these types of simulated datsets when compared to XCS, MCS,
GALE and GAssist (LCS algorithms) [5,6]. Therefore we utilize the ‘core’ ver-
sion of UCS used in [7,9,10] as the standard of comparison for ExSTraCS. Notice
that in Table 1 the ‘core’ ExSTraCS p-values are from a comparison to ‘core’
UCS, while all other p-values correspond to comparisons between ‘core’ ExS-
TraCS and ExSTraCS with respective mechanisms activated. As expected, the
mixed-ALKR knowledge representation added to ExSTraCS significantly and
consistently reduces run time by over 30% on average, when comparing ‘core’
UCS to ‘core’ ExSTraCS. We expect this difference to be even more dramatic in
datasets with > 20 attributes. Interestingly, a significant increase in testing accu-
racy is also observed. Next we compare ExSTraCS performance when activating
major new mechanisms including (1) EK, (2) AF, (3) EK + AF, and (4) EK +
AF + QRF. Performance improvements from EK and AF alone were consistent
with those observed in [7,9]. Further performance improvements were observed
when combining mechanisms. Additionally, comparing UCS to ExSTraCS with

An Extended Michigan-Style Learning Classifier System 219

Table 1. Average performance over all 960 discrete-valued datasets

10,000 Iterations (Early Performance)
Performance UCS ExSTraCS

Statistics Core Core p EK p AF p EK-AF p |
Training Accuracy .8569 .8640 1 ** 8628 | ** .8635 - .8630 | **
Test Accuracy .5720 .5724 - .5888 1 ** 5716 - 5898 1 **
Both Power .0990 .0927 - 2729 4 *FF 0990 - 2708 4 **
Single Power 4854 4917 - 7500 1 *F* 4354 | F 7542 A **
Co-Occur. Power .1083 .0969 | * .0896 - .1042 - 0865 -
Generality 6234 6233 - 6227 | ** 6264 T *F 6212 | FF
Macro Population 1754.3 1754.6 - 1740.5 | ** 1754.8 +* 1738.7 | **

Run Time (min) 3.70 257 | ** 253 | * 264 t* 259 |*
200,000 Iterations (Ending Performance)
Performance UCS ExSTraCS

Statistics Core Core p EK p AF p EK-AF p +QRF »p
Training Accuracy .8641 .8800 1 ** .8801 - .8637 | ** .8634 | ** .8537 | **
Test Accuracy .5833 .5863 1 ** .5866 - .5954 1 ** 5946 1 ** 5965 1 **
Both Power .2583 .2563 - 2625 - .2906 1 ** 2948 1 ** 3000 1 **

Single Power .6146 .6156 - 6250 - 5917 | * 5958 | * 6062 -
Co-Occur. Power .1750 .1656 - .1750 - .1823 +* .1823 1 * .1875 1 *
Rule Generality 6946 6945 - .6945 - 7501 1 *% 7518 1 *% 7601 1 **
Macro Population 1627.3 1627.6 - 1627.7 - 1444.8 | ** 1435.4 | ** 1044.3 | **
Run Time (min) 73.42 49.49 | ** 49.14 - 44.02 | ** 44.26 | ** 44.31 | **

— No significant change

* p < 0.05 (Direction of change given by arrows)

**p < 6.942107% (Cutoff assumes Bonferroni multiple test correction based on 72 comparisons)

EK and AF active in both algorithms (not shown), similar significant differences
to those observed for ‘core’ comparisons were observed (i.e. ExSTraCS yielded
faster run times and higher testing accuracy, but no difference in power).

Follow up analysis evaluated ExSTraCS with EK, and AF active on the con-
tinuous attribute simulation study. In short, we found that the adopted knowl-
edge representation extends ExSTraCS to accommodate continuous attributes.
Notably, the average run time for 200,000 learning iterations was significantly
increased by about 30%, and performance (in terms of average testing accuracy
and the three power metrics) was promising but significantly lower than per-
formance in the discrete attribute datasets. This is likely because continuous
attributes require ExSTraCS to learn not only ‘which’ attributes to specify, but
appropriate interval ranges as well. Addressing these performance losses will be
a target for ongoing research.

4 Conclusions

While ExSTraCS has been developed for biomedical, epidemiological, bioinformat-
ics, and genetics problem domains in particular, we expect this new algorithm to be
translatable to many related domains, and hopefully inspire new mechanisms and

220 R.J. Urbanowicz, G. Bertasius, and J.H. Moore

improvements based on this core architecture. Through extensive simulation stud-
ies we have demonstrated the value of bringing successful mechanisms together in
ExSTraCS in order to improve the key objectives of a successful data mining al-
gorithm including speed, learning efficiency, flexibility, ease of use, scalability, and
interpretability. In addition to improving continuous attribute performance, fu-
ture work will address (1) expanding ExSTraCS to also accommodate continuous
endpoints (e.g. quantitative traits), (2) further scalability (3) reassessment of fit-
ness and deletion metrics to improve learning efficiency and (4) accessibility and
usability through the development of ExSTraCS GUI software.

Acknowledgments. This work was supported by NIH grants AI59694,
LMO009012, LM010098, EY022300, LM011360, CA134286, and GM103534.

References

1. Urbanowicz, R.J., Moore, J.H.: Learning classifier systems: A complete introduc-
tion, review, and roadmap. Journal of Artificial Evolution and Applications (2009)

2. Thornton-Wells, T., Moore, J., Haines, J.: Genetics, statistics and human disease:
Analytical retooling for complexity. TRENDS in Genetics 20(12), 640-647 (2004)

3. Wilson, S.: Classifier fitness based on accuracy. Evo. Comp. 3(2), 149-175 (1995)

4. Bernadé-Mansilla, E., Garrell-Guiu, J.: Accuracy-based learning classifier sys-
tem: Models, analysis and applications to classification tasks. Evo. Comp. 11(3),
209-238 (2003)

5. Urbanowicz, R., Moore, J.: The application of michigan-style learning classifier
systems to address genetic heterogeneity and epistasis in association studies. In:
Proceedings of the 12th Annual Conference on Genetic and Evolutionary Compu-
tation, pp. 195-202. ACM (2010)

6. Urbanowicz, R., Moore, J.: The application of pittsburgh-style lcs to address ge-
netic heterogeneity and epistasis in association studies. Parallel Problem Solving
from Nature-PPSN XI, 404-413 (2011)

7. Urbanowicz, R., Granizo-Mackenzie, A., Moore, J.: Instance-linked attribute track-
ing and feedback for michigan-style supervised learning classifier systems. In: Pro-
ceedings of the Fourteenth International Conference on Genetic and Evolutionary
Computation Conference, pp. 927-934. ACM (2012)

8. Urbanowicz, R.J., Andrew, A.S., Karagas, M.R., Moore, J.H.: Role of genetic het-
erogeneity and epistasis in bladder cancer susceptibility and outcome: A LCS ap-
proach. Journal of the American Medical Informatics Association (2013)

9. Urbanowicz, R.J., Granizo-Mackenzie, D., Moore, J.H.: Using expert knowledge
to guide covering and mutation in a michigan style LCS to detect epistasis and
heterogeneity. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G.,
Pavone, M. (eds.) PPSN 2012, Part I. LNCS, vol. 7491, pp. 266-275. Springer,
Heidelberg (2012)

10. Tan, J., Moore, J., Urbanowicz, R.: Rapid rule compaction strategies for global
knowledge discovery in a supervised learning classifier system. In: Advances in
Artificial Life, ECAL, vol. 12, pp. 110-117 (2013)

11. Bacardit, J., Krasnogor, N.: A mixed discrete-continuous attribute list representa-
tion for large scale classification domains. In: Proceedings of the 11th Annual Con-
ference on Genetic and Evolutionary Computation, pp. 1155-1162. ACM (2009)

12.

13.

14.

15.

16.

17.

18.

An Extended Michigan-Style Learning Classifier System 221

Urbanowicz, R.J., Granizo-Mackenzie, A., Moore, J.H.: An analysis pipeline with
statistical and visualization-guided knowledge discovery for michigan-style learning
classifier systems. IEEE Computational Intelligence Magazine 7(4), 35-45 (2012)
DeJong, K.A., Spears, W.M.: Learning concept classification rules using genetic
algorithms. Technical report, DTIC Document (1990)

Greene, C., Penrod, N., Kiralis, J., Moore, J.: Spatially uniform relieff (surf) for
computationally-efficient filtering of gene-gene interactions. BioData Mining 2(1),
1-9 (2009)

Kononenko, I.: Estimating attributes: analysis and extensions of relief. In:
Bergadano, F., De Raedt, L. (eds.) ECML 1994. LNCS, vol. 784, pp. 171-182.
Springer, Heidelberg (1994)

Greene, C.S., Himmelstein, D.S., Kiralis, J., Moore, J.H.: The informative ex-
tremes: Using both nearest and farthest individuals can improve relief algorithms
in the domain of human genetics. In: Pizzuti, C., Ritchie, M.D., Giacobini, M.
(eds.) EvoBIO 2010. LNCS, vol. 6023, pp. 182-193. Springer, Heidelberg (2010)
Granizo-Mackenzie, D., Moore, J.H.: Multiple threshold spatially uniform relieff
for the genetic analysis of complex human diseases. In: Vanneschi, L., Bush, W.S.,
Giacobini, M. (eds.) EvoBIO 2013. LNCS, vol. 7833, pp. 1-10. Springer, Heidelberg
(2013)

Urbanowicz, R.J., Kiralis, J., Sinnott-Armstrong, N.A., Heberling, T., Fisher, J.M.,
Moore, J.H.: Gametes: A fast, direct algorithm for generating pure, strict, epistatic
models with random architectures. BioData Mining 5(1), 16 (2012)

	An Extended Michigan-Style Learning Classifier
System for Flexible Supervised Learning,
Classification, and Data Mining

	1 Introduction
	2 ExSTraCS
	3 Results and Discussion
	4 Conclusions
	References

