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Abstract. In real-world complex systems objects are often involved in different
kinds of connections, each expressing a different aspect of object activity. Mul-
tilayer networks, where each layer represents a type of relationship between a
set of nodes, constitute a valid formalism to model such systems. In this paper
a new approach based on Genetic Algorithms to detect community structure in
multilayer networks is proposed. The method introduces an extension of the mod-
ularity concept and adopts a genetic representation of a multilayer network that
allows cooperation and co-evolution of individuals, in order to find an optimal
division of the network, shared among all the layers. Moreover, the algorithm re-
lies on a label propagation mechanism and a local search strategy to refine the
result quality. Experiments show the capability of the approach to obtain accurate
community structures.

1 Introduction

In the last few years complex systems described as networks of nodes connected by
different kinds of relationships are receiving a lot of attention. In fact, the approach
adopted so far of aggregating the great variety of links connecting objects constituting
a network, revealed its weaknesses because of loss of information caused by such a
simplified view of a system. Real-life networked systems present multiple ties, each
generally playing a different role and exhibiting a different type of strength among
objects. Representing such systems by using a single type of interaction is a rough
approximation of reality. A more apt modeling of such systems can be obtained by mul-
tilayer networks[5]. Kivela et al., [5] introduced the concept of multilayer network as
the most general notion to model complex networks, including multiplex [7], multire-
lational [4], multidimensional [9,10,6]. A multilayer network can be viewed as a set
of slice networks. Each slice, modeled as a graph, represents an aspect of the object
activity, since an object may be involved in distinct activities with variable concern. In
multilayer networks grouping actors by considering only one type of interaction may
lead to inaccurate community structures because information that could come from
all the interactions is discarded. The objective in a multilayer network is to uncover a
shared community structure among objects such that a quality function be optimized
for all the layers at the same time.
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Proposals to find groups in multilayer networks can be found in [9,10,6,12,3]. In
particular, Tang et al. [9,10] proposed a method, named Principal Modularity Maxi-
mization (PMM) that for each layer, first the structural features, corresponding to the
top eigenvectors with positive eigenvalues, are extracted, then these features are com-
bined to obtain latent communities.

In this paper a new method, named MultiGA (Multilayer Genetic Algorithm), able
to detect a shared community structure in a multilayer network, is proposed. MultiGA
adopts a genetic representation of individuals that allows co-evolution and cooperation
among all the network layers. An individual is composed by a number of elements equal
to the number of layers. Each element represents a division of the corresponding layer
in communities, and it is co-evolved with all the others by learning from them their
community structure through the optimization of a fitness function that combines the
modularity values of each layer. MultiGA relies also on a label propagation mechanism
and a local search strategy. The former mechanism aggregates nodes having no connec-
tion in a layer to the community recurring most often among its neighbors in all the lay-
ers. The local search strategy, similarly to the Blondel et al. [1] method for single-layer
networks, moves a node to one of its neighboring communities if an increase in modu-
larity is obtained. Experiments on synthetic and real-world networks show that MultiGA
is able to detect accurate community structures in multilayer networks. The paper is or-
ganized as follows. The next section introduces multilayer networks and formalizes the
problem of community detection. Section 3 describes the proposed approach. In section
4 the results of the experiments are reported. Finally, Section 5 concludes the paper.

Fig. 1. The Roethlisberger & Dickson Bank Wiring Room of Western Electric multilayer network

2 Multilayer Networks

Let V be a set of n objects. A multilayer network is defined as a set N = {N1, . . . ,Nd}
of slice networks. Each slice Ns can be modeled as a graph Gs = (Vs, Es) where the
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Fig. 2. (a) RDGAM relation, (b) RDCON relation, (c) RDPOS relation, (d) RDNEG relation, (e)
RDHLP relation, (f) RDJOB relation

set of nodes Vs ⊆ V is the subset of objects of V appearing in the slice Ns, and Es

is the set of links that connect the objects of Vs in the s-th layer, i.e. an edge (u, v) ∈
Es if objects u and v interact in the s-th layer. N can thus be represented as a set
G = {G1, . . . , Gd} of graphs, where each Gs = (Vs, Es), for s = 1, . . . , d, is the
graph modeling network Ns in the s-th layer. A layer thus represents one of the d slices
of the network. Given an object u ∈ V , the neighbors of u at layer s are defined as
ns(u) = {v ∈ Vs | (u, v) ∈ Es}, and the neighbors of u in G as n(u) = ∪d

s=1 ns(u).
A clustering, or community structure, CSs = {Cs1 , . . . Csk} of a layer Ns is a par-

titioning of Gs in groups of nodes that maximizes a quality function. Furthermore, for
each couple of communities Csi and Csj ∈ CSs, Vsi ∩ Vsj = ∅.

Our objective is to uncover a shared community structure CS among the objects of the
multidimensional network N such that a quality function is optimized in all the d dimen-
sions. An example of multilayer network is depicted in Figure 1. The example is taken
from [2] and shows the relationships of 14 employees from a bank wiring room of West-
ern Electric (Hawthorne Plant), downloaded fromhttp://moreno.ss.uci.edu/
data.html. The employees worked in a single room and include two inspectors (I1
and I3), three solderers (S1, S2 and S3), and nine wiremen or assemblers (W1 to W9).
There are six different kinds of interactions among the employees: RDGAM , par-
ticipation in horseplay; RDCON , participation in arguments about open windows;
RDPOS, friendship; RDNEG, antagonistic behavior; RDHLP , helping others with
work; and RDJOB, the number of times workers traded job assignments. The first

http://moreno.ss.uci.edu/data.html
http://moreno.ss.uci.edu/data.html
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four types of connections are symmetric, while the last two aren’t. Figures 2(a-f) show
the six networks corresponding to each relation, where an unconnected node in a slice
means that this node does not have any interaction of that type. For example, employee
S2 has no ties with others regarding participation in horseplay (RDGAM ) and argu-
ments about open windows (RDCON ), nor any friendship relation (RDPOS), i.e.
nRDGAM (S2) = nRDCON (S2) = nRDPOS(S2) = ∅, instead he has an antagonistic
behavior with W5 (RDNEG), he helps W6 with work (RDHLP ), and traded twice
job assignment with him, i.e. nRDNEG(S2) = {W5}, nRDHLP (S2) = {W6}, but
nRDJOB(S2) = ∅ because there is an edge from W6 to S2 and not viceversa, thus
n(S2) = {W5,W6}. The figure points out the intrinsic difficulty of grouping nodes
in a proper way due to the incompleteness of information about the relations between
two employees. In the next section an approach that combines the ties coming from all
the layers is presented.

3 Method Description

In this section a detailed description of MultiGA is given, along with the genetic repre-
sentation and operators adopted. Furthermore, the new concept of combined modularity
is introduced and used as fitness function to optimize in order to search for a shared
community structure in a multilayer network.

Genetic Representation and Operators. The genetic representation used by the ap-
proach is an extension of the locus-based adjacency representation. An individual I =
{I1, . . . , Id} of the population is composed by a set of d elements Is, 1 ≤ s ≤ d. Each
element Is consists of n genes g1, . . . , gn assuming integer values, corresponding to
network nodes, in the range {1, . . . , n}. A value v assigned to the u-th gene means that
there is a link between nodes u and v in the s-th graph Gs modeling the s-th network
layer Ns. If node u has no links in the s-th layer, i.e. ns(u) = ∅, then it is assigned a
zero value. Thus each element Is of an individual I of the population gives a division
of s-th layer Ns of N in a number cs of communities.

(a : Parent1) (b : Parent2) (c : beforemutation)

(d : mask) (e : child) (f : aftermutation)

Fig. 3. (a) First parent, (b) second parent, (c) individual before mutation, (d) binary mask,
(e) individual after crossover, (f) individual after mutation
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The initialization process, for every individual I = {I1, . . . , Id}, considers all the
elements Is, and assigns to a node u one of its neighbors v at random, where v ∈
ns(u), i.e. it is one of the neighboring nodes of u relative to the graph Gs corresponding
to the s-th layer. If u has no neighbors in Gs, then the corresponding gene gu = 0.
Consider Figure 3(a) representing a generic individual I = {I1, I2, . . . , I6} of the Bank
Wiring Room example consisting of six elements, i.e the number of different relations.
Employees have been numbered from 1 to 14, thus employee I1 is node 1, employee
I3 is node 2, employee W1 is node 3, and so on. Every element Is of I corresponds
to a layer s and represents the graph Gs. For example I2, second row of Figure 3(a),
represents the connections among employees with respect to relation RDCON . Nodes
I1, I3,W1,W2,W3, S2 have no connections of type RDCON , thus the value of their
neighbor node in I2 is set to zero. W4 has neighbors {W5,W6,W7,W9}, as can
be seen from Figure 2(b), thus I2 at position 6 (corresponding to W4) has value 7,
corresponding to W5, which is one of its neighbors.

The crossover operator is executed on each layer by applying uniform crossover.
Given two parents I = {I1, . . . , Id} and J = {J1, . . . , Jd}, and a randomly generated
binary vector, for each couple (Is, Js) uniform crossover selects the genes where the
vector is a 1 from the first parent Is, and the genes where the vector is a 0 from the
second parent Js, and combines the genes to form a child IJs. The crossover operator is
showed in Figure 3. Consider, for example, the RDGAM layer, and the corresponding
parents I1, first row of Figure 3(a), and J1 first row of Figure 3(b). The mask is that
reported in the first row of Figure 3 (d). Thus the child IJ1 generated by I1 and J1, first
row of Figure 3(e), is such that IJ1(1) = J1(1) = 6 and IJ1(2) = J1(2) = 0 because
the mask is zero in the first two positions, while IJ1(3) = I1(3) = 6 because the mask
value is 1 in the third position, and so on.

The mutation operator for every element Is of I = {I1, . . . , Id} assigns to each node
u one of its neighbors v ∈ ns(u) at random. An example of mutation can be seen in
Figure 3(c),(f). For example, consider relation RDNEG (fourth row in Figure 3(c)).
The neighbor of W5 is changed from 2 (I3) to 13 (S2), as can be seen in Figure 3(f).

Fitness Function. The choice of an appropriate fitness function is a key point to ob-
tain a good solution for the problem to solve. As regards single-layer networks, the
well known concept of modularity introduced by Girvan and Newman [8] is gener-
ally considered the one that at the best interprets the intuitive idea of dense group
of nodes. The definition of modularity Q for single-layer networks is the following:
Q = 1

2m

∑
ij(Aij − kikj

2m )δ(Ci, Cj) where A is the adjacency matrix of the associated
graph, m is the number of edges of the graph, ki and kj are the degrees of nodes i
and j respectively. δ is the Kronecker function and yields 1 if i and j are in the same
community (i.e. Ci = Cj), zero otherwise. Values approaching 1 indicate high quality
clustering.

We propose to extend the concept of modularity to multilayer networks by combining
the modularity values computed for each layer in such a way that the value for each
layer is influenced by the values of all the other layers. Let s and r be two slices of a
multilayer network, and CSs, CSr be the clustering obtained on networks Ns and Nr

respectively. Then the combined modularity Qsr between slices s and r is defined as
follows:
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Qsr =
1

2ms + 2mr

∑

ij

[
(Aijs − kiskjs

2ms
)δ(Cis, Cjs) + (Aijr − kirkjr

2mr
)δ(Cis, Cjs)

]
(1)

where As and Ar are the adjacency matrices of graphs Gs and Gr, respectively, kis
and kjs are the degrees of nodes i and j in Gs, while kir and kjr are the degrees of
nodes i and j in Gr, respectively. The Kronecker function δ yields 1 if i and j are in
the same community Cs (i.e. Cis = Cjs), zero otherwise. The meaning of Qsr is that,
while computing a community structure CSs on slice Ns, this community structure is
also checked on slice Nr. Thus, if CSs does not determine a good grouping of nodes
also in Nr, it is penalized because the second term of Formula (1) is low.

Analogously, the combined modularity Qrs between slices r and s is defined as

Qrs =
1

2ms + 2mr

∑

ij

[
(Aijr − kirkjr

2mr
)δ(Cir, Cjr) + (Aijs − kiskjs

2ms
)δ(Cir, Cjr)

]
(2)

Finally, the total combined modularity Qml is computed on all the d slices by consider-
ing the sum of combined modularities Qsr, for each couple of slices s and r:

Qml =
∑

s, r s �= r

(
Qsr +Qrs

)
(3)

In the next section a genetic algorithm that discovers shared community structure in
multilayer networks by optimizing Qml is presented.

Algorithm Description. The evolutionary method we propose is based on the idea
that, while detecting a community structure CSs on a layer s, it must be taken into
account how much CSs is similar to the community structures CSr of the other layers,
r = 1, . . . , d, r �= s. The intuitive idea of similarity is that CSs contains groups of nodes
that also appear in CSr, i. e. layers share communities. In order to pursue this objective,
the algorithm MultiGA, thanks to the genetic representation that consists of individuals
I = {I1, . . . , Id} composed by a number d of elements, one for each layer, evolves
individuals I by exchanging information among the layers. In fact, while searching for
the division of a generic layer s in groups of nodes, by evolving the corresponding
element Is ∈ I , it learns from the other elements Ir r = 1, . . . , d, r �= s how much its
clustering is shared with the other layers. This exchange of information is made possible
by computing the total combined modularity value, that guides the search by exploiting
the knowledge coming from all the slices. The MultiGA algorithm is described in Figure
4. It receives in input a multilayer network N and gives a vector L containing a cluster
labeling for each node of N . MultiGA creates a random population of individuals I =
{I1, . . . , Id} (step 1) and evolves it for a fixed number of generations (step 2). For
each individual in the population (step 3) the fitness function is calculated by using
Formula (3) of the total combined modularity Qml. To this end, for each element Is
of I , the combined modularity of Is with all the other layers is computed (steps 4-9).
Then variation operators are applied and a new population created. At the end of the
evolutionary process, a node label vector Ls is generated for each layer by assigning to
each node the label of the community it belongs to, as determined by the clustering CSs

(steps 13-17). If a node u in the layer s has not been assigned to any cluster because it
has no links with nodes of that layer, then the LabelAssignment method (Figure 4(b))
considers its neighbors n(u) = ∪d

s=1 ns(u) in G, and assigns to u the majority cluster
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MultiGA Method:
Input: A multilayer network N = {N1, . . . ,Nd} of d dimensions, the set of graphs G = {G1, . . . , Gd} modeling

it
Output: A node cluster labeling L that partitions N in the optimal shared community structure

1 create an initial population of random individuals I = {I1, . . . , Id}
2 while not maxGen
3 for each individual I = {I1, . . . , Id}
4 decode I and obtain partitionings CSs = {Cs1, . . . , Csk} for s = 1, . . . , d
5 Qml = 0
6 for s = 1, . . . , d
7 compute Qs =

∑
Qsr + Qrs, for r = 1, . . . , d, r �= s

8 Qml = Qml + Qs

9 end for
10 end for
11 create a new population by applying the variation operators
12 end while
13 for s=1,. . . ,d
14 initialize the labeling vector Ls to null values
15 for each node vj of G appearing in Csi ⊂ CSs

16 assign cluster label si to vj , i.e. Ls(vj) = si
17 end for
18 Perform LabelAssignment on Ls

19 end for
20 compute the modularity value Q for each partitioning determined by Ls s = 1, . . . , d
22 choose as node label vector L the label vector Ls returning the maximum Q value;
21 let G = ∪d

s=1Gs be the graph obtained by joining all layers, where Aij = 1 if ∃s such that Aijs = 1

22 Perform LocalSearch on G starting from solution L to improve modularity value Q

(a)

LabelAssignment Method:
Input: the sequence of graphs G = {G1, . . . , Gd} modeling N and the node cluster labeling Ls of s-th layer
Output: A node cluster labeling Ls where each node has been assigned a cluster label

1 for each node u ∈ V
2 if (Ls(u) == 0)
3 let n(u) = {vn1 , . . . , vnt} be the neigh. of u in G and Ls(vn1), . . . Ls(vnt ) be the clust. label of vni

in CSs

4 Ls(u) = argmax {Ls(vn1), . . . , Ls(vnt )}
5 end if
6 end for

(b)
Fig. 4. The pseudo-code of the MultiGA algorithm

label in CSs of these neighbors, i.e. u is assigned the cluster label that occurs most often
in CSs among its overall neighbors (steps 2-5 of LabelAssignment method). After that,
for each layer s, the modularity value Q of Girvan and Newman [8] with respect to the
partitioning determined by Ls is computed, and the labeling Ls giving the maximum Q
value is chosen as final solution (steps 20-21). Finally, a post-processing local search,
analogous to that proposed by Blondel et al. [1], is performed on the graph G = ∪d

s=1Gs

obtained by the union of all the slices Gs where edges between two nodes are counted
once, in order to improve modularity value. The local search, only once a time, moves
a node to one of its neighboring communities if an increase in modularity, computed on
the total graph G, is obtained. In the next section experiments on multilayer networks
will show the feasibility of the approach in finding shared community structure.
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Table 1. Average NMI values together with the standard deviation and best NMI values (in
parenthesis) of MultiGA and a standard genetic algorithm using one slice at a time. Population
size={100, 500}, ν = 0.1, 0.3, 0.5, μ = 0.5. nc is the number of communities found.

Pop. Strategy ν = 0.1 nc ν = 0.3 nc ν = 0.5 nc
A1 0.7629 ± 0.071 (0.8751) 7 (34) 0.4620 ± 0.124 (0.6684) 18 (145) 0.3696 ± 0.116 (0.5560) 5 (22)

100 A2 0.7277 ± 0.110 (0.9116) 9 (20) 0.5345 ± 0.101 (0.6267) 4 (8) 0.3939 ± 0.158 (0.7063) 30 (262)
A3 0.7997 ± 0.067 (0.9303) 3 (5) 0.5461 ± 0.151 (0.7092) 4 (6) 0.4451 ± 0.177 (0.6681) 10 (43)
A4 0.6421 ± 0.167 (0.9097) 17 (53) 0.5179 ± 0.118 (0.7080) 9 (30) 0.4801 ± 0.157 (0.6667) 4 (11)

MultiGA 0.9778 ± 0.024 (1) 3 (3) 0.7793 ± 0.139 (1) 2 (3) 0.7513 ± 0.084 (0.8335) 2 (2)

A1 0.8568 ± 0.088 (0.9498) 6 (35) 0.6663 ± 0.200 (0.9498) 17 (145) 0.6076 ± 0.105 (0.7529) 3 (10)
500 A2 0.8307 ± 0.087 (0.9498) 5 (11) 0.7617 ± 0.087 (0.8846) 3 (3) 0.5883 ± 0.141 (0.8134) 29 (262)

A3 0.9048 ± 0.081 (0.9707) 3 (3) 0.7627 ± 0.072 (0.9383) 3 (5) 0.5833 ± 0.174 (0.7371) 7 (43)
A4 0.7237 ± 0.174 (0.9414) 14 (44) 0.6653 ± 0.088 (0.7795) 7 (36) 0.6562 ± 0.064 (0.7304) 4 (9)

MultiGA 0.9808 ± 0.021 (1) 3 (3) 0.8376 ± 0.139 (1) 2 (3) 0.7530 ± 0.054 (0.7700) 2 (2)
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Fig. 5. (a) Comparison of the NMI values between the evolutionary computation approaches and
spectral approaches of Tang et al. [9]; (b) computation times required by MultiGA for increasing
number of cores.

4 Experimental Results

This section provides a thorough experimentation for assessing the capability of MultiGA
in detecting shared community structure in multilayer networks. The MultiGA algo-
rithm has been written in MATLAB 7.14 R2012a, using the Genetic Algorithms and
Direct Search Toolbox 2. A trial and error procedure has been adopted for fixing the pa-
rameter values. Thus the crossover rate has been fixed to 0.8, mutation rate to 0.2, elite
reproduction 10% of the population size, number of generations is 150. We first present
the results MultiGA obtained on randomly generated synthetic data sets. The networks
have been generated as proposed by Tang et al. [9]. Each network is composed by 350
objects divided into three different clusters: the first one contains 50 objects, the sec-
ond one 100 and the last one 200 objects. The objects are involved in d = 4 relations.
A within-group probability μ connects the objects inside the same cluster. This prob-
ability value changes between groups at different slices. Any two nodes are connected
to each other with probability ν, providing a controlled noise to the network. A clear
network structure is obtained when the μ value is high and the ν value is low. 50 dif-
ferent synthetic networks have been randomly generated for different combinations of
the parameters μ and ν and the average and standard deviation computed from the 50
runs. Since the ground truth partitioning of the nodes in communities is known a pri-
ori, in order to evaluate MultiGA, the Normalized Mutual Information (NMI) has been
computed between the ground truth division in communities and the partitioning found
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by MultiGA. Table 1 reports the average NMI values obtained by MultiGA together
with standard deviation, and best NMI, in parenthesis, reached among all the runs. In
order to show the superiority of MultiGA with respect to a naive approach that uses
only one layer, the NMI values are compared with those returned by a standard genetic
algorithm that optimizes Newman’s modularity by using only one layer at a time. For
this experiment the within-group interaction parameter μ has been fixed to 0.5, while
the noise parameter ν has been varied as 0.1, 0.3 and 0.5. Furthermore, we report the
results for increasing values of population size, namely 100 and 500. In the table, nc
denotes the average and the maximum, in parenthesis, number of communities found.
The table clearly shows the very good results obtained by MultiGA that simultaneously
evolves all the layers, with respect to running a naive method that finds a solution by
using only one slice. This confirms the superiority of our technique with respect to sin-
gle dimension based methods to discover community structure. It is worth to note that
increasingly high NMI values are obtained by MultiGA at increasing values of popula-
tion size, and often MultiGA, among the executions, is able to detect the ground truth
division of the network. Moreover, when the noise is high, ν = 0.5, the NMI values
of MultiGA are never less than 0.75. Figure 5 (a) compares MultiGA with the method
proposed by Tang et al. [9,10]. The table reports the results appearing in [9] for the
spectral approach PMM that uses all the layers, and the spectral approach that uses
a single layer at a time. The first observation is that the evolutionary approach always
obtains higher NMI values with respect to the spectral approaches proposed by Tang
et al. In particular, MultiGA reaches 0.97 with population size 100, and an even higher
value of 0.98 when population size is 500, while the NMI value of PMM is 0.93.
Analogously, the evolutionary strategy on single layers obtains better results than the
spectral approach. It is worth pointing out that the spectral approach needs the num-
ber of communities as input parameter, while MultiGA automatically determines the
number by optimizing the objective function. We also experiments MultiGA by fixing
within-group interaction parameter μ = 0.8. For lack of space we cannot report the
overall results. However, for instance, in such a case, with population size 300, the
NMI values are 0.75 for noise ν = 0.5, 0.88 for ν = 0.3 and 0.99 for ν = 0.1. We per-
formed experiments also on two real-life multilayer networks. The former is the Bank
Wiring Room of Western Electric network of Figure 1. The grouping obtained consists
of two communities, {W1,W2,W3,W4,I1,S1} and {W5,W6,W7,W8,W9,I3,S4} which
seems rather plausible by observing Figure 1. The second one, is the famous multi-
layer network consisting of marriage and business ties among 16 Florentine families in
the 15th century [11], depicted in Figure 6. The figure shows the division we obtained
in two groups (cyan and magenta respectively), and the isolated node Pucci in green,
which has no connections in any of the two layers (as can be seen from Figure 6(b)
and (c)). The division in two communities reflects the sharing of business and mar-
riage relations. Moreover, it is worth to note that Strozzi and Ridolfi families have
no marriage relationships, and they have been joined to the communities composed by
{Lamberteschi, Guadagni, Castellani, Peruzzi, Bischeri} and {Acciaiuoli, Albizzi, Bar-
badori, Ginori, Medici, Pazzi, Salviati,Tornabuoni} respectively, because they effec-
tively have more business ties with the corresponding group. Thus MultiGA was able
to properly capture the information coming from both types of relations. It is known
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that genetic algorithms are naturally parallelizable. To this end, we used the Parallel
Computing Toolbox of Matlab that allows multicore processing to deal with computa-
tionally intensive problems. We computed the times required by MultiGA on a computer
cluster of 24 nodes, with 4 Gbyte of RAM and a 24-core Intel Xeon CPU at 2.6 GHz
each, for a synthetic network of 5000 nodes with population size fixed to 300, when the
number of cores used varies as 1, 2, 4, 8, 16, and 32. We obtained a linear speedup of
the parallel implementation when 2 or 4 cores are employed (see Figure 5 (b)). In such
a case, in fact, doubling the number of cores doubles the algorithm speed. When the
number of cores increases to 8, 16, and 32 the speedup is almost linear, due to the times
needed for communication. However, the time reduction is notably, going from 55 hours
on one processor, to 5 hours when using 32 cores, showing that parallel implementation
can give a valuable help in dealing with large networks.

(a) (b) (c)

Fig. 6. (a) The Florentine families, (b) business relation (red), (c) marriage relation (blue)

5 Conclusions

The paper proposed a genetic algorithm to find shared community structure in multi-
layer networks, based on the extension of genetic representation from single to multi-
layer networks, and on the definition of total combined modularity concept. It employs
two strategies, one to aggregate isolated nodes, and another to improve quality results
by performing local search. Experiments on synthetic and real-life networks proved the
capability of the approach to detect meaningful shared community structure.
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