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Abstract. This paper introduces a novel parallel immune-inspired algo-
rithm based on recent developments in the understanding of the germinal
centre reaction in the immune system. Artificial immune systems are rel-
atively new randomised search heuristics and work on parallelising them
is still in its infancy. We compare our algorithm with a parallel implemen-
tation of a simple multi-objective evolutionary algorithm on benchmark
instances of the set cover problem taken from the OR-library. We show
that our algorithm finds feasible solutions faster than the evolutionary
algorithm using less parameters and communication effort.
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1 Introduction

Artificial immune systems (AIS) are randomised search heuristics inspired from
the immune system of vertebrates [3]. Unlike any other biological system, the
immune system has several desirable properties combined together, which make
it a great inspiration for the design of randomised search heuristics. Due to
properties like diversity, robustness, and memory, algorithms inspired by the
immune system have been applied to a large number of applications such as
machine learning, security, robotics, and optimisation [3].

As more and more problems in the real world are getting increasingly complex
the approaches to solve these are unable to scale and maintain robustness [7,10].
Natural processes on the other hand are robust and perform complicated tasks
well, thus it is hoped that understanding and using more detailed ideas from
these systems will help us design better systems. In this direction some work has
been done by Greensmith [7] on the dendritic cell algorithm but this has been
limited to intrusion detection and classification. Sim et al. [15] have proposed
a hyper-heuristic called NELLI which learns from changing problem landscapes
and has been shown to perform better than single human-designed heuristics.

In recent decades with the advancements in technology parallel architectures
and multi-processor systems are becoming more and more common. As a conse-
quence parallelisation of evolutionary algorithms (EA), in order to better utilise
available resources and save time, is gaining importance and popularity [11]. EAs
are inherently suitable for parallel implementations as operations such as fitness
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calculations and mutations can be performed on separate processors. Parallel
EAs based on island models, where each island is an independent population
evolving on a separate processor, have features like inherent diversity. Some
communication is required to guide the search process and this is achieved by
exchange of solutions between islands.

We propose a novel artificial immune algorithm, the germinal centre artificial
immune system (GC-AIS) which has been developed based on recent under-
standing of the germinal centre reaction in the immune system [16]. This new
model has interesting properties like a dynamic population of islands and inher-
ent parallelism. We compare it with a parallel version of the global simple evo-
lutionary multi-objective optimiser (GSEMO) [12] on instances of the set cover
problem taken from the OR-library [1]. It is shown that the GC-AIS is able to
reach the feasible solution region faster than the homogeneous island model with
less communication effort as well as less parameters to be set manually.

The outline of the paper is as follows: In Section 2 some preliminary informa-
tion about the parallel GSEMO is provided along with the problem description.
Section 3 gives the description of the GC-AIS model along with its pseudo-
code. In Section 4 the experimental set-up along with the obtained results are
provided. The paper is concluded in Section 5 with a discussion on the observed
results and conclusions thereafter.

2 Preliminaries

The set cover problem (SCP) can be defined as follows: Given a universe set U
consisting of m items and a set S of n subsets of U whose union equals U , the
goal is to find the smallest subset of S that covers the whole universe U . More
formally:

Definition 1. Let the set of m items U := {u1, ..., um} denote the universe and
let S := {s1, ..., sn} such that si ⊆ U for 1 ≤ i ≤ n and

⋃n
i=1 si = U . The unicost

set cover problem can be defined as finding a selection I ⊆ {1, 2, ..., n} such that⋃
k∈I sk = U with minimum |I| .

SCP is a NP-hard combinatorial optimisation problem with many practical
applications, one of the most important being scheduling [2]. A survey of tech-
niques used to solve the set cover problem can be found in [2]. The description
of SCP above is a constrained single objective problem where the objective is
to find the smallest subset of S which covers the universe and the constraint is
that the subset covers the universe.

We convert this to a multi-objective version by using the constraint as a
secondary objective [5]. Let vector A = a1a2 . . . an ∈ {0, 1}n denote a solution
where ai = 1 if set si is in the solution and 0 otherwise. Let N equal the
number of sub sets selected in A, and let C equal the number of elements left
uncovered in U . The fitness function V for the SCP can now be written as a
vector V = 〈C,N〉.
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Multi-objective optimisation [4] is the task of finding optimal solutions to
a problem which has several objectives, often competing with each other. A
solution is said to dominate another if it is better in at least one objective and
has at least the same fitness for the other objectives. In this case it is not always
possible to order all individuals in a population since two potential solutions
may each be good in a different objective and worse in the others. Therefore,
there is not necessarily a unique optimal solution but a set of solutions where
each member is not dominated by any other solution in the search space. This
set is called the Pareto set and its image in the objective space is called the
Pareto front.

The global simple evolutionary multi-objective optimiser (GSEMO) [6] is a
generalisation of the (1 + 1) EA for multi-objective optimisation. It maintains
a set of non-dominated solutions in every iteration. The parallel variant of
GSEMO called the homogeneous island model GSEMO based on [12] can be
described as a collection of µ islands which are fully connected to each other
where each island runs an independent instance of the GSEMO algorithm. We
refer to this model as parallel GSEMO (PGSEMO) throughout this paper.
This is described in Algorithm 1.

Algorithm 1. Parallel GSEMO based on homogeneous island model [12]

Let P t
i denote the population in each island i at generation t, µ denote number of

islands, and p denote probability of communication.
Initialise P 0 = {P 0

1 , . . . , P
0
µ} where P 0

i = {0n} for 1 ≤ i ≤ µ. Let t := 0.
loop

for each island i in parallel do
Select an individual x from P t

i uniformly at random.
Create offspring x′ by mutating x with standard bit mutation, i. e., flip each bit
with probability 1/n.
if any individual in P t

i dominates x′ then
Leave P t

i unchanged.
else

Remove all individuals dominated by x′ from P t
i and add x′ to P t

i .
end if
With probability p send copy of population P t

i to all µ− 1 neighbours.
Combine P t

i with copies of populations received from neighbours.
Remove all dominated solutions from P t

i and let P t+1
i = P t

i .
end for
Let t = t+ 1.

end loop

Communication effort can be described as the number of individuals which
have been exchanged between the islands. We define the total communication
effort as the total number of individuals which were transmitted in one run of
the algorithm and the parallel running time as the number of generations it takes
for the algorithm to reach an optimal solution [12].
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3 The GC-AIS Algorithm

In the immune system [13] germinal centres (GC) are regions where the invading
antigen (Ag) is presented to the B cells (a kind of immune cell) which create
antibodies (Ab) that in turn bind to the pathogen in order to eradicate it. At the
start of the invasion, the number of GCs grows and they try to find the best Ab
for the pathogen by continuously mutating and selecting the B cells which can
bind with the pathogen. Periodically GCs communicate by transmitting their
Abs to other GCs. By proliferation, mutation and selection of immune cells this
GC reaction is able to produce Abs which can eradicate the pathogen. Towards
this stage the number of GCs starts declining.

The exact mechanism of selection in the GC is an active area of research and
a new theory forms the basis of our algorithm [16]. According to this work the
selection of B cells to be kept alive for proliferation, is maintained by the B cells
themselves as they secrete Ab which bind with Ag and in turn directly compete
with other B cells to bind with Ag. This is an inter-GC phenomenon as Ab from
one GC can migrate to others and the competition increases which can lead to
disappearance of GCs which can not cope up with the Ab from other GCs.

The motivation to apply the GC-AIS to the set cover problem comes from
our belief that in an abstract way the immune system tries to solve the set cover
problem. Every time the body is invaded by a pathogen, the immune system
must produce Abs which are able to bind with the antigen (a partial cover) and
must improve this Ab by optimisation so that the binding is strong enough to
eradicate it (full cover). So if we visualise a possible pathogen binding site as an
instance of the universe set, and the binding regions of the B cells as possible
solutions, then the immune system tries to solve the problem of finding the best
match to the pathogen, by randomised variations in the solutions.

The GC-AIS (see Algorithm 2) starts with one GC which contains one B cell,
representing a problem solution. Offspring are created by standard bit mutation
of B cells in GCs. In the current version of our algorithm we restrict ourselves to
GCs that contain only a single B cell. In every generation there is a migration
of Ab between GCs, performed by transmitting only the fitness value of the
offspring from one GC to another. After migration, dominated solutions are
deleted which can lead to the eradication of a GC. The surviving offspring form
new GCs. This leads to a model where the number of GCs is dynamic in nature.

The GC-AIS always maintains a set of non-dominated solutions in every
generation. A parameter for the number of GCs is not required as the number is
dynamic and evolves as the algorithm runs. A preliminary design of the GC-AIS
can be found in [9].

4 Experimental Results

In this section we present the results obtained on running the GC-AIS and
the PGSEMO on some benchmark test instances of the SCP. The instances are
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Algorithm 2. The GC-AIS

Let Gt denote the population of GCs at generation t and gti the i-th GC in Gt.
Create GC pool G0 = {g01} and initialise g01 . Let t := 0.
loop

for each GC gti in pool Gt in parallel do
Create offspring yi of individual g

t
i by standard bit mutation.

end for
Add all yi to Gt, remove all dominated solutions from Gt and let Gt+1 = Gt.
Let t = t+ 1.

end loop

selected from the SCP test bed of the OR-library [1] where the instances are
grouped into classes based on the size of the problem. One instance each was
selected randomly from the 12 problem classes named 4, 5, 6, A, B, C, D, E,
RE, RF, RG and RH.

The PGSEMO requires the number of islands and the probability of commu-
nication to be set manually while GC-AIS does not require these parameters.
As in [12], both algorithms initialise individuals in 0n. This was done as most
problem specific algorithms use this method. For the GC-AIS we observed that
starting from a random string gives poor results. The stopping criteria can be
based on a fixed budget of generations or letting the algorithms run until a
certain desired fitness is achieved.

The probability of communication in the PGSEMO was initially based on
the equation p = µ/mn, where µ is the number of islands, p is the probability of
communication and m and n describe the problem size. This value gives the best
performance guarantee for a complete topology [12]. To estimate the number of
islands µ for the PGSEMO, GC-AIS was run for 10,000 generations and it
was observed that sufficiently good solutions were achieved. The average of the
maximum number of islands in 30 runs was used as the number of islands for
PGSEMO. This is done so that a fair comparison can be made in terms of
computation resources available to both algorithms. Due to space restrictions it
is not possible to include plots for every instance in this paper, key representative
plots are provided.

The first set of experiments was performed to analyse the solution quality
both algorithms can achieve using a fixed budget of fitness evaluations. A quota
of 7500 generations was set as a stopping criteria and average fitness achieved
per generation was plotted. This can be seen in Figures 1 and 2. It was observed
experimentally that using p = µ/mn to set p resulted in sub-par performance and
experiments were tried with higher rates of communication, p = 1/n , p = 1/m
and p = 1/µ. These are shown for problem scp41 in Figure 1. We observed
that having the probability of communication p = 1/µ, so that on average every
generation one island communicates gives best results.

Figures 1 and 2 show the fitness achieved per generation in both the GC-AIS
and the PGSEMO. The dotted lines depict the average number of sets used and
the solid lines depict the average number of uncovered elements per generation.
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Fig. 1. Fitness plots for GC-AIS and PGSEMO for problem scp41 with standard
deviation as shaded error bars, averages performed over 30 independent runs

The standard deviation per generation can be seen as the shaded error-bars. To
better see the difference between the curves in the early phase, the plots have
been zoomed in, which can be seen as the smaller sub-plots inside these figures.

For our next set of experiments we are interested in finding the generations
required to reach a fixed fitness value. From our previous experiment we use the
best fitness value which has been achieved in every run. Average generations to
reach this value were computed and the Wilcoxon rank-sum test was performed.
We additionally compare the results achieved by PGESMO and GC-AIS with
the best known results and the results of a simple Greedy heuristic [8,14]. All
results are shown in Table 1. In 8 out of the 12 rows of the table it can be
seen that there is a significant difference (p-value smaller than 0.05) between
the performance of the two algorithms, visible from the Wilcoxon rank-sum test
results, these entries have been written in bold face. In 7 out of these 8 cases
GC-AIS performed faster than PGSEMO.

To estimate the communication effort of the two algorithms, we count the
number of individuals which are exchanged between islands per generation.
The plots for the accumulated number of communications until generation t
are shown in Figure 3 for the problem instances scp41 and scpbnre4.
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Fig. 2. Fitness plots for GC-AIS and PGSEMO for problem scpb4 and scnpnre1 with
standard deviation as shaded error bars, averages performed over 30 independent runs

Table 1. Generations required to reach a sufficiently good fitness. ‘AIS’ repre-
sents generations required for GC-AIS, ‘PGSEMO’ represents generations required for
PGSEMO, ‘fitness’ is the target fitness value used as stopping criterion. The column
‘WRStest’ shows the p-values of the Wilcoxon rank-sum test, ‘Gr’ contains the fitness
achieved by the Greedy heuristic, ’known’ contains the best known value and ’achieved’
contains best value achieved by GC-AIS in the first set of experiments. Generations
are averaged over 30 runs.

Problem m × n Fitness µ AIS PGSEMO WRStest Gr Known Achieved

scp41 200×1000 (0,45) 65 3654.5 4349.3 0.0013 41 38 41

scp52 200×2000 (0,43) 65 3412.4 4440.4 4.1127e-07 38 34 39

scp63 200×1000 (0,25) 45 2260.8 2037.3 0.3112 21 21 22

scpa5 300×3000 (0,50) 75 3518.8 4702.8 9.2603e-09 43 38 44

scpb4 300×3000 (0,28) 50 2941.2 2682.3 0.0575 24 22 25

scpc3 400×4000 (0,58) 90 3418. 4765.4 3.6897e-11 47 43 51

scpd2 400×4000 (0,31) 50 3507.8 3450.4 0.9646 26 25 28

scpe1 50×500 (0,5) 12 961.4 2051.1 0.0058 5 5 5

scpnre1 500×5000 (0,22) 30 1409 1506 0.1370 18 17 19

scpnrf2 500×5000 (0,12) 20 1867.5 1490.9 0.0302 11 10 11

scpnrg3 1000×10000 (0,87) 120 3168.4 6519.8 3.0199e-11 - 62 77

scpnrh4 1000×10000 (0,44) 65 3179 4069 1.3848e-06 - 34 40
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Fig. 3. Total communication cost until generation t, for problems scp41 and scpnre1
averaged for 30 runs, for GC-AIS and PGSEMO

5 Discussion and Conclusion

The GC-AIS is able to reach the region of feasible solutions, i. e., solutions
where the first objective value is 0, faster than the PGSEMO. This can be
seen in Figures 1 and 2: in the first 500-1000 generations the solid curve, which
depicts the uncovered elements, can be seen to reach 0 faster for GC-AIS than
for PGSEMO. It was observed that during the generations towards the end,
mutations of individuals in the population very rarely replace any parent. We
think that at this stage that all islands in the PGSEMO converged to a similar
Pareto set due to communication over the course of the run, while there is in fact
just one Pareto set for the GC-AIS. Therefore for the PGSEMO, having many
parallel islands each with a similar population increases the chance of finding
an improvement, in comparison to a single GC population in the GC-AIS. This
advantage of having many islands comes at a cost, which is the communication
effort. As communication increases the benefits of parallelism begin to fade, as it
becomes a substantial time constraint for the overall performance. The GC-AIS
requires far less communications over all than PGSEMO which can be seen in
Figure 3. GC-AIS also uses less communication information than the PGSEMO,
as only fitness values are sent to other GCs in GC-AIS while the whole population
is communicated in PGSEMO.

Parameter setting is a big factor when running an algorithm on a new problem.
The GC-AIS has a clear advantage over PGSEMO in terms of parameters to be
set: the PGSEMO needs two parameters p and µ to be set manually while GC-
AIS does not require any of these. As can be seen in Figure 1, setting the right
values for p is crucial to obtain the desired performance. The values we found
optimal are different from the ones, which give the best proven performance
guarantees, as suggested in [12].

We proposed a novel immune-inspired algorithm calledGC-AIS and compared
itwith a simplemulti-objective evolutionary algorithm.Withnew ideas taken from
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the immune system and an interesting motivation to use the set cover problem as
a test, we show that the GC-AIS performs faster, uses less communication and
has the advantage of not requiring as much human intervention to set it up. In the
future we will investigate how theGC-AIS performs on other problem classes and
compare it with state-of-the-art techniques for these problems.

References

1. Beasley, J.E.: OR-library: Distributing test problems by electronic mail. The Jour-
nal of the Operational Research Society 41(11), 1069–1072 (1990),
https://files.nyu.edu/jeb21/public/jeb/info.html

2. Caprara, A., Toth, P., Fischetti, M.: Algorithms for the set covering problem.
Annals of Operations Research 98(1-4), 353–371 (2000)

3. De Castro, L.N., Timmis, J.: Artificial Immune Systems: A New Computational
Intelligence Approach. Springer (2002)

4. Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms. Wiley-
Blackwell (2001)

5. Friedrich, T., He, J., Hebbinghaus, N., Neumann, F., Witt, C.: Approximating
covering problems by randomized search heuristics using multi-objective models.
Evolutionary Computation 18(4), 617–633 (2010)

6. Giel, O., Wegener, I.: Evolutionary algorithms and the maximum matching prob-
lem. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 415–426.
Springer, Heidelberg (2003)

7. Greensmith, J.: The Dendritic Cell Algorithm. PhD thesis, University of Notting-
ham (2007), http://www.cs.nott.ac.uk/~jqg/thesis.pdf

8. Grossman, T., Wool, A.: Computational experience with approximation algorithms
for the set covering problem. European Journal of Operational Research 101(1), 81–
92 (1997)

9. Joshi, A.: Design of a parallel immune algorithm based on the germinal center
reaction. In: Proc of GECCO Companion, pp. 1671–1674. ACM (2013)

10. Kim, J., Bentley, P.J.: Towards an artificial immune system for network intrusion
detection: An investigation of clonal selection with a negative selection operator.
In: Proc. of CEC, vol. 2, pp. 1244–1252. IEEE Press (2002)

11. Luque, G., Alba, E.: Parallel Genetic Algorithms: Theory and Real World Appli-
cations. Springer (2011)

12. Mambrini, A., Sudholt, D., Yao, X.: Homogeneous and heterogeneous island models
for the set cover problem. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S.,
Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part I. LNCS, vol. 7491, pp. 11–20.
Springer, Heidelberg (2012)

13. Murphy, K.: Janeway’s Immunobiology. Garland Science (2011)
14. Musliu, N.: Local search algorithm for unicost set covering problem. In: Ali,

M., Dapoigny, R. (eds.) IEA/AIE 2006. LNCS (LNAI), vol. 4031, pp. 302–311.
Springer, Heidelberg (2006)

15. Sim, K., Hart, E., Paechter, B.: A lifelong learning hyper-heuristic method for bin
packing. Evolutionary Computation (to appear, 2014),
http://dx.doi.org/10.1162/EVCO_a_00121

16. Zhang, Y., Meyer-Hermann, M., George, L.A., Figge, M.T., Khan, M., Goodall, M.,
Young, S.P., Reynolds,A., Falciani, F.,Waisman, A.,Notley,C.A., Ehrenstein,M.R.,
Kosco-Vilbois, M., Toellner, K.-M.: Germinal center B cells govern their own fate via
antibody feedback. The Journal of Experimental Medicine 210(3), 457–464 (2013)

https://files.nyu.edu/jeb21/public/jeb/info.html
http://www.cs.nott.ac.uk/~jqg/thesis.pdf
http://dx.doi.org/10.1162/EVCO_a_00121

	An Immune-Inspired Algorithmfor the Set Cover Problem
	1 Introduction
	2 Preliminaries
	3 The GC-AIS Algorithm
	4 Experimental Results
	5 Discussion and Conclusion
	References




