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Abstract. When a feasible set of an optimization problem is a proper subset of
a multidimensional real space and the optimum of the problem is located on or
near the boundary of the feasible set, most evolutionary algorithms require a con-
straint handling machinery to generate better candidate solutions in the feasible
set. However, some standard constraint handling such as a resampling strategy af-
fects the distribution of the candidate solutions; the distribution is truncated into
the feasible set. Then, the statistical meaning of the update of the distribution pa-
rameters will change. To construct the parameter update rule for the covariance
matrix adaptation evolution strategy from the same principle as unconstrained
cases, namely the natural gradient principle, we derive the natural gradient of the
log-likelihood of the Gaussian distribution truncated into a linearly constrained
feasible set. We analyze the novel parameter update on a minimization of a spher-
ical function with a linear constraint.

1 Introduction

The covariance matrix adaptation evolution strategy (CMA-ES) is a state-of-the-art ran-
domized search heuristics in continuous domain [8–10, 12]. The CMA-ES maintains
the Gaussian distribution, from which candidate solutions are drawn. It repeats the fol-
lowing: sample λ points from the Gaussian distribution, evaluate the fitness for each
sample, update the parameters including the mean vector and the covariance matrix of
the distribution in order to make the distribution likely to generate better solutions. Re-
cently, it has been shown [2, 7] that the parameter update in the CMA-ES is partially
interpreted as a natural gradient ascent on the parameter space of the Gaussian distribu-
tion, where the natural gradient is computed for the function defined below in (1). This
idea is further generalized to the generic framework for arbitrary optimization, namely
information-geometric optimization (IGO) [16].

Since the CMA-ES has been originally proposed for unconstrained continuous opti-
mization, it often requires a treatment when solving a constrained problem. A number
of constraint handling strategies have been proposed for evolution strategies and for
more generic evolutionary algorithms [15]; e.g., adding an adaptive penalty to the fit-
ness according to the constraint violation [11], repairing an infeasible point into the
feasible region by a projection onto the boundary [4] or by a gradient based repair op-
erator [13]. In this paper we consider the resampling strategy; an infeasible point is
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discarded and resampled until it drops into the feasible region. It can be applied even
when the constraint functions are black-box.

It has been shown that under a linear constraint, the success probability, i.e. the prob-
ability of generating a better point, depends on the angle of the gradients of the con-
straint function and the objective function and the dependency of the success probability
on the angle is different for the resampling [5] and a repair operator [4]. This obviously
affects a success probability based parameter update such as step-size adaptation based
on the 1/5 success rule [17]. Moreover, since the distribution of the generated point in
the feasible region is truncated (in the case of resampling) or biased on the boundary
(in the case of repairing), the update rules that are designed from a statistical viewpoint
are affected. For example, when the original Gaussian distribution is parameterised by
the mean vector m and the covariance matrix C, these parameters no more represent the
mean vector and the covariance matrix of the truncated Gaussian distribution. Then the
maximum likelihood estimators for m and C for the truncated distribution differ from
the ones for the original distribution. Therefore, a treatment in parameter update is re-
quired, an example of which is proposed by [6] where the covariance matrix is actively
reduced in the direction of the gradient of the constraint.

In this paper we study the effect of the constraint from a viewpoint of the natural
gradient. When resampling method is employed, the distribution of the generated feasi-
ble points is a truncated probability distribution whose domain is limited to the feasible
set. In this situation the natural gradient differs from the one computed for the non-
truncated (original) probability distribution. Now a question arises as to if we can gain
a better performance by computing the natural gradient on the manifold of the truncated
Gaussian distributions limited to the feasible set.

To address the question we derive the natural gradient under a linearly constrained
feasible domain and compare it with the original natural gradient theoretically and nu-
merically. In Section 2 the IGO framework and the rank-μ update CMA-ES as an in-
stantiation of the IGO are revisited. In Section 3 we derive the natural gradient under
a linearly constrained feasible domain. In Section 4 we analyze the infinite-population
model using the derived natural gradient on a linearly constrained spherical problem
and perform simulations to compare the behavior of the derived algorithm with the
original algorithm on a linearly constrained spherical problem. Finally in Section 5 we
summarize this work and discuss required future works.

Notation. The inner product of x ∈ Rd and y ∈ Rd is denoted by 〈x, y〉 and the norm
of x by ‖x‖ = 〈x, x〉1/2. For any matrix A, [A]i, j represents the (i, j)th element, [A]i,:

(or [A]:, j) the ith row (or the jth column, respectively.) For any symmetric matrix A of
dimension d, let vech(A) denote the lower-left half vectorization of A such that vech(A)
is the d(d + 1)/2 dimensional column vector whose ith element is [A]mi,ni where i =
mi + (d − ni/2)(ni − 1) for 1 � ni � mi � d. We refer to [14] for the detail.

2 IGO Framework and the Rank-µ Update CMA

Formulation. We consider a constrained continuous minimization argminx∈X f (x),
where X ⊂ Rd is the feasible set and f is the objective function defined over X. In the



254 Y. Akimoto and S. Shirakawa

following sections we assume that the feasible set is restricted by a linear function,
namely X = {x ∈ Rd | 〈x, v〉 � α} for some unit vector v ∈ Rd \ {0} and some α ∈ R.

Given a family P of probability distributions Pθ on X parameterized by a real vector
θ ∈ Θ, the IGO framework formulates the joint problem on the parameter space Θ at
each iteration t as follows

θt+1 = argmaxθ∈Θ Jθt (θ), where Jθt (θ) :=
∫

X
W f
θt

(x)Pθ(dx) . (1)

Here θt is the value of the parameter at iteration t, W f
θt

defines the preference that is
monotonic to f . The preference is defined based on the probability of sampling a better
point; namely,

W f
θt

(x) = w (Pθt [y ∈ X | f (y) � f (x)]) , where w : [0, 1]→ R. (2)

Another weight scheme is introduced in [1],

W f
θt

(x) = − (μLeb[y ∈ X : f (y) � f (x)])2/d , (3)

where μLeb denotes the Lebesgue measure on Rd. This is theoretically attractive; on an
unconstrained monotonic convex quadratic composite function g(xTAx) with g strictly
increasing, this weight value is −cxTAx, where c is a constant independent of g, m, and
C, and it enables us to derive the exact Jθt (θ).

Natural Gradient. The natural gradient can be interpreted as the gradient of a function
defined on the space of the probability distribution equipped with the Fisher metric. It
can be also interpreted as the steepest ascent direction of the function with respect to
the KL-divergence. Since the Fisher metric (and KL-divergence) is independent of the
parameterization (coordinate system) of the probability distribution, the natural gradient
is invariant to any re-parameterization of θ. Given a parameterization θ, the natural
gradient is computed by the product of the inverse of the Fisher information matrix of
θ and the vanilla gradient (gradient on the Euclidean space) of the log-likelihood of the
probability distribution. We refer to [16] for further properties of the natural gradient.

Noting that W f
θt

in (2) or (3) is independent of θ, the natural gradient of Jθt is com-
puted by

∇̃Jθt (θ) =
∫

X
W f
θt

(x)∇̃l(θ; x)Pθ(dx) , (4)

where ∇̃ represents the map from a function to its natural gradient, and l(θ; x) = ln pθ(x)
denotes the log-likelihood at θ given x. Eq (4) is viewed as a weighted expectation of
the natural gradient of the log-likelihood at θ.

Implementation of the Natural Gradient Ascent. The IGO algorithm performs the
natural gradient ascent instead of exactly solving joint problem (1). Then iterate {θt} is
defined by

θt+1 = θt + ηt∇̃Jθt (θ)|θ=θt , (5)

where ηt denotes the step-size for the natural gradient ascent, aka the learning rate for
the parameter update, which is sometimes replaced with a diagonal matrix whose diag-
onal entries are the learning rates for each element of the parameter vector. However,
the integration in (4) cannot be performed analytically in advance unless f is known.
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Therefore, we estimate (4) with samples x1, . . . , xλ drawn from Pθt . According to [16],
we can approximate W f

θt
in (2) for each xi as W f

θt
(xi) ≈ ŵrk(xi) = w ((rk(xi) − 1/2)/λ),

where rk(xi) denotes the ranking of f (xi) among f (x1), . . . , f (xλ). With this, a Monte-
Carlo estimate provides an approximation of (4) at θ = θt, namely

∇̃Jθt (θ)|θ=θt ≈ 1
λ

∑λ
i=1 ŵrk(xi)∇̃l(θt; xi) . (6)

The IGO implementation performs the natural gradient ascent (5) with replacing the
natural gradient ∇̃Jθt (θ)|θ=θt given in (4) with its approximation (6).

Rank-µ Update CMA. Considering the IGO implementation for unconstrained con-
tinuous optimization, i.e. X = Rd, with the Gaussian distributions on Rd, it is known
from [3] that the natural gradient of the log-likelihood of the Gaussian distribution is
explicitly written in a special form. If the Gaussian distribution is parameterized by
θ = [mT, vech(C)T], where m and C are the mean vector and the covariance matrix, the
parameter update in the IGO implementation reads

mt+1 = mt +
ηm
λ

∑λ
i=1 ŵrk(xi)(xi − m)

Ct+1 = Ct +
ηC
λ

∑λ
i=1 ŵrk(xi)((xi − m)(xi − m)T −C) .

(7)

This is called the rank-μ update [10] and is a component of the standard CMA [9].
In [3], X = Rd is assumed to obtain the explicit form for the natural gradient. In other

words, the natural gradient computed in the reference is the one on the manifold of (non-
truncated) Gaussian distributions defined on Rd. If X is a proper subset of Rd (X ⊂ Rd

and X � Rd) and the truncated Gaussian distribution is considered (sampling from
a Gaussian distribution with resampling scheme as a constraint handling), the natural
gradient on the manifold of the truncated Gaussian distributions on X is different from
the one derived in [3] and the resulting natural gradient ascent differs from (7). This is
the main concern of the paper.

3 Natural Gradient for Truncated Gaussian Distributions

Let pθ(x) and l(θ; x) be the probability density function (p.d.f.) and the log-likelihood
function (l.l.f.) induced by the Gaussian distribution Pθ with mean m = m(θ) and covari-
ance matrix C = C(θ), i.e., l(θ; x) = − d

2 ln(2π)− 1
2 ln det(C(θ))− 1

2 (x−m(θ))TC−1(θ)(x−
m(θ)) and pθ = exp(l(θ; x)). Then, Pθ(A) =

∫
A

pθ(x)dx for any Lebesgue measurable
A ⊂ Rd. As in the rank-μ update CMA-ES, we consider θ = [mT, vech(C)T]T.

If the X is a proper subset of Rd and the resampling strategy is employed, the dis-
tribution of the samples in X is the Gaussian distribution truncated on X. Let p̄θ(x)
and l̄(θ; x) be the p.d.f. and l.l.f. of such a truncated Gaussian distribution P̄θ over
X. Then, p̄θ(x) = pθ(x)/Pθ(X) and l̄(θ; x) = l(θ; x) − ln Pθ(X) for x ∈ X, where
Pθ(X) =

∫
X

pθ(x)dx = Ex∼pθ [I{x ∈ X}] is the probability of x being sampled in X from
pθ. If we implement an algorithm following the IGO framework, the natural gradient
on the manifold of the truncated Gaussian distributions {P̄θ | θ ∈ Θ} is needed.

As the first attempt of the work, we derive the natural gradient of the l.l.f. of the
Gaussian distribution truncated on X = {x ∈ Rd | 〈x, v〉 � α}. The following proposition
and theorem provide the formula to compute the natural gradient explicitly.
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Proposition 1. Let ϕ andΦ be the p.d.f. and cumulative density function induced by the
standard normal distributionN(0, 1). Define ϕβ be the p.d.f. for the normal distribution
truncated onto {x � β}, that is, ϕβ(x) = ϕ(x)/(1 − Φ(β)). Let Nβ be a random variable
obeying ϕβ. Then, μ1 := E[Nβ] = ϕβ(β), μ2 := E[N2

β ] = βϕβ(β) + 1, μ3 := E[N3
β ] =

(β2 + 2)ϕβ(β) and μ4 := E[N4
β ] = (β3 + 3β)ϕβ(β) + 3.

Theorem 1. Let the natural gradient ∇̃l̄(θ; x) of the l.l.f. of the truncated Gaussian
distribution decomposed as ∇̃l̄(θ; x) = [δm(x)T, vech(δC(x))T]T, where δm(x) ∈ Rd and
δC(x) ∈ Rd×d are the components corresponding to m and C respectively. Let u =
v/‖C1/2v‖ and define y = x − m. Then,

δm(x) =
[μ2 − μ1〈u, y〉

τ1

]
y +
[
−
( τ2

τ1τ3 − τ2
2

− μ1

τ1

)
〈u, y〉2

+

(
τ3

τ1τ3 − τ2
2

− μ2

τ1

)
〈u, y〉 − τ3μ1 − τ2μ2

τ1τ3 − τ2
2

]
Cu and (8)

δC(x) = yyT − C +
[ (1 − τ1)〈u, y〉 + μ1

τ1

]
(yuTC + CuyT) +

[(
2
τ2μ1 − τ1μ2

τ1τ3 − τ2
2

+ 1
)

+

( 2τ1

τ1τ3 − τ2
2

− 2
τ1
+ 1
)
〈u, y〉2 − 2

(
τ2

τ1τ3 − τ2
2

+
μ1

τ1

)
〈u, y〉

]
CuuTC , (9)

where μ1, μ2, μ3 and μ4 are as defined in Proposition 1 with β = (α − 〈v,m〉)/‖C1/2v‖,
and τ1 = μ2 − μ2

1, τ2 = μ3 − μ1μ2, τ3 = μ4 − μ2
2.

We have omitted its proof due to the space limitation. Comparing to the natural gradient
∇̃l(θ; x) of the l.l.f. for the non-truncated Gaussian distribution Pθ that can be expressed
as δm(x) = y and δC(x) = yyT − C, (8) and (9) have additional components character-
ized by Cu = Cv/‖C1/2v‖. The coefficients are determined by β—a signed distance to
the boundary normalized by the standard deviation ‖C1/2v‖ in the direction of v—and
〈u, y〉—a signed distance from the current mean m to the sample point x in the direction
of C1/2v. In the limit β → −∞, meaning that the constraint boundary is far away from
the current mean and the situation is close to the unconstrained case, we have from
Proposition 1 that μ1 = μ3 = τ2 = 0, μ2 = τ1 = 1, μ4 = 3, τ3 = 2, and (8) and (9)
become identical to the natural gradient for the unconstrained case.

The natural gradient of the l.l.f. only depends on the manifold of the probability
distributions. That is, it only depends on the feasible set X, but not on the objective
function f . The parameter update (5) with (6) on the other hand depends on the selection
scheme. More precisely, the adjustments δm and δC of the parameters is the weighted
sum of δm(xi) and δC(xi) over i = 1, . . . , λ, where the weight value is determined by the
ranking of f (xi). In the next section we demonstrate on a linearly constrained spherical
problem how much the derived natural gradient differs from the rank-μ update (7).

4 Study on a Linearly Constrained Spherical Problem

We consider the following linearly constrained spherical problem argminx∈Xα f (x) :=
g(‖x‖2), where Xα = {x ∈ Rd | 〈x, v〉 � α} and g is strictly increasing. If α � 0, the op-
timum is located on the boundary x∗ = αv, otherwise x∗ = (0, . . . , 0) and the landscape
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around the optimum is the same as the unconstrained sphere function. Therefore, we
consider only α � 0 in this work.

For ranking-based weight scheme as in (2), the natural gradient (4) generally needs to
be approximated by (6). To understand and emphasize the benefit of use the natural gra-
dient derived in the previous section, we employ the weight scheme (3). As mentioned
after (3), we can compute the joint objective analytically, Jθt (θ) = −c(‖m‖2 + Tr(C)),
on the unconstrained spherical problem and the natural gradients become δm = −2cCm
and δC = −2cC2 with an appropriate constant factor c. This analytical natural gradi-
ent is the limit of the natural gradient estimate (6) w.r.t. λ → ∞ [1] and it models the
infinite-population behavior of the rank-μ update CMA (7).

If α = 0, the volume of each sub level set μLeb[y ∈ X : f (y) � f (x)] is just halved
compared to the unconstrained case and we still have similar results.

Lemma 1. If α = 0, the weight W f
θt

(x) defined in (3) is −c̃xTx, where c̃ is a constant
independent of m and C. The natural gradient (4) with δm and δC derived in Theorem 1
reads δm = −2c̃Cm for m and δC = −2c̃C2 for C.

Surprisingly, the natural gradient on the linearly constrained spherical problem is only
different in length from the one on unconstrained spherical problem. This implies that
the natural gradient update (5) with δm and δC in Theorem 1 reads the exact same
parameter update as in the unconstrained case with an appropriate ηt. Therefore, all
the results in [1] are carried over here as stated in the next theorem.

Theorem 2. Let λt
1 denote the largest eigenvalue of −C−1/2δCC−1/2. If C0 is symmetric

positive definite and ηtλt
1 < 1 for all t � 0, then Ct is symmetric positive definite. More-

over, if ηt = η̄/λt
1 for η̄ ∈ (0, 1/2], limt→∞ Cond(Ct) = 1 and limt→∞‖Ct+1‖F/‖Ct‖F =

limt→∞‖mt+1‖/‖mt‖ = 1 − η̄, where ‖·‖F denotes the Frobenius norm.

The learning rate ηt = η̄/λt
1 is taken from [1]. This theorem means, the C becomes

proportional to the Hessian of xTx, namely the identity matrix, and m linearly converges
towards the global optimum at the origin. For the detail, see [1].

To visualize the difference from the original parameter update (7) with λ = ∞ where
the adjustment is E[W f

θt
(x)(x − m)] and E[W f

θt
(x)((x − m)(x − m)T − C)], we derive the

explicit form of the expectation. Following proposition reads it when the weight scheme
with baseline subtraction, W f

θt
(x) − E[W f

θt
(x)], is introduced.

Proposition 2. Let y = x − m, u = v/‖C1/2v‖ and μ1, μ2, τ1, τ2 and τ3 be as appeared
in Theorem 1. If α = 0, E[W f

θt
(x)] = −c̃[Tr(C) + ‖m‖2 + 2μ1uTCm + (μ2 − 1)uTC2u],

E[y] = μ1Cu, E[yyT −C] = (μ2 − 1)CuuTC, and

E[(W f
θt

(x) − E[W f
θt

(x)])y]

= − c̃
[
(τ2 − 2μ1)(uTC2u) + 2(τ1 − 1)(uTCm)

]
Cu − 2c̃μ1C2u − 2c̃Cm and (10)

E[(W f
θt

(x) − E[W f
θt

(x)])(yyT −C)]

= − 2c̃C2 − c̃
[
(τ3 − 4μ2 + 2)(uTC2u) + 2(τ2 − 2μ1)(uTCm)

]
CuuTC

− 2c̃(μ2 − 1)(C2uuTC + CuuTC2) − 2c̃μ1(CmuTC + CumTC) . (11)

Note that the E[W f
θt

(x)y] = E[(W f
θt

(x)−E[W f
θt

(x)])y]+E[W f
θt

(x)]E[y] and E[W f
θt

(x)(yyT−
C)] = E[(W f

θt
(x) − E[W f

θt
(x)])(yyT − C)] + E[W f

θt
(x)]E[yyT − C]. We call them NGn
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Fig. 1. Transitions of ‖m‖2, m1, the eigenvalues of C, the condition number Cond(C), and β from
left to right, respectively. For NGn, the run stops after β reaches 7. In the center figure, the eigen-
value corresponds to the first coordinate is the larger one for NGb, and the smaller one for NGn.

(natural gradient computed on the non-truncated Gaussian manifold), in contrast to NGt

(natural gradient computed on the truncated Gaussian manifold) for δm and δC derived
in Lemma 1. Moreover, we call (10) and (11) NGb. The only difference between NGn

and NGb is the offset of the weight, −E[W f
θt

(x)], and the expectation of the weight in
NGb is forced to be zero. Note that this offset does not affect the natural gradient in NGt

derived Lemma 1 since the expectations of δm(x) and δC(x) taken over x are zero.
Fig. 1 illustrates the evolution of the parameters m and C following the natural gra-

dient update (5) with the natural gradient ∇̃Jθt(θ) = [δm
T
, vech(δC)T]T where δm and δC

are computed for NGt, NGn, and NGb. For the constraint we set v = e1 = [1, 0, . . . , 0]T

and α = 0. The step-size is ηt = η̄/λt
1, where η̄ = 0.1 and λt

1 is the largest eigenvalue of
−C−1/2δCC−1/2 with corresponding δC for each variant. This step-size setting guaran-
tees the positivity of the covariance matrix as stated in Theorem 2 for NGt. The problem
dimension is d = 10. To produce simple figures, the evolution starts from m0 = e1 and
C0 = I. Thanks to the symmetry, m stays on the first axis and C stays to be a diagonal
matrix whose second to the last diagonal elements are equal.

As stated in Theorem 2, m and C converge linearly in NGt while the condition num-
ber of C stays 1 forever. In contrast, m goes over the constraint boundary and tends to
stop at some point in the infeasible area while the condition number of C grows up in
NGb and NGn. The normalized and signed distance β from m to the constraint bound-
ary then becomes large, which in the actual algorithms means that the probability of
sampling a point in the feasible region decreases. Since m does not converge towards
the optimum, the best-so-far point would not converge linearly towards the global opti-
mum. The tendency of the plots does not depend on the choice of the learning rate, i.e.
β does not converge to zero with any learning rate in NGn and NGb.

So far the natural gradient is analytically computed. This is considered
the approximated behavior of the algorithm in the limit of λ → ∞. In practice the
population size λ < ∞ and W f

θt
(x) for each xi and then δm and δC must be estimated

using finite samples x1, . . . , xλ ∼ p̄θt (x).1 We can approximate W f
θt

(x) as Ŵ f
θt

(x) :=

1 The resampling can be performed efficiently as follows. Generate z ∼ N(0, Id). If 〈z,C1/2u〉 <
β, generate z̃ ∼ N(0, 1), resample it till z̃ � β, then update z = z + (z̃ − 〈z,C1/2u〉)C1/2u. Then,
m + C1/2z obeys p̄θ. So we only need to resample a standard normal random number z̃.



Natural Gradient Approach for Linearly Constrained Continuous Optimization 259

0 100 200 300
10−12

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2
‖m‖2 −m2

1

NGt
CMA

0 100 200 300
10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100
m2

1

0 100 200 300
10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100
Eigenvalues of C

0 100 200 300
1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7
Cond(C)

0 100 200 300
−1.6

−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2
β

Num. of iterations

0 1000 2000 3000
10−12

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3
‖m‖2 −m2

1

NGt
CMA

0 1000 2000 3000
10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100
m2

1

0 1000 2000 3000
10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100
Eigenvalues of C

0 1000 2000 3000
1.0

1.1

1.2

1.3

1.4

1.5

1.6
Cond(C)

0 1000 2000 3000
−1.6

−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2
β

Num. of iterations

Fig. 2. Transitions of ‖m‖2 − m2
1, m2

1, the eigenvalues of C, the condition number Cond(C), and β
for NGt and the rank-μ update CMA with ηm = ηC = η̄ = 0.1 (above) and ηm = ηC = η̄ = 0.01
(below). The graphs are the average over 30 trials.

[∑
j∈{k∈�1;λ�| f (xk)� f (x)}(1/ p̄θt(x j))

]2/d, where p̄θt (x) = pθt(x)/Pθt(X) and Pθt (X) = 1 −
Φ(β) = [1 − erf(β/

√
2)]/2.2 With this approximation we can estimate the weight with

baseline subtraction3, W f
θt

(x) − E[W f
θt

(x)], for each xi as wi = Ŵ f
θt

(xi) − 1
λ

∑λ
j=1 Ŵ f

θt
(x j).

Then, δm and δC are approximated by the average of wi · δm(xi) and wi · δC(xi), respec-
tively. We denote the estimated natural gradient by δ̂m and δ̂C.

Fig. 2 compares the behaviors of NGt with that of the rank-μ update CMA (7) (de-
noted CMA) with the weight used in the standard CMA, ŵrk(xi) = max(0, ln( λ+1

2 ) −
ln(rk(xi)))/

∑λ
j=1 max(0, ln( λ+1

2 ) − ln( j)). The problem dimension d = 10, the popula-
tion size λ = 1000, and the learning rates ηm = ηC = 0.1 and 0.01 for the rank-μ
update CMA. For NGt, ηt = η̄/max[σ(C−1/2δ̂CC−1/2), ‖C−1/2δ̂m‖] with η̄ = 0.1 and
0.01, where σ(·) represents the largest singular value. The graphs show the average of
30 independent runs for each method.

As you can see from the figure, in the rank-μ update CMA, β tends to stay at some
point in negative, meaning that the mean vector is always away from the constraint
boundary in the feasible domain and its distance is proportional to ‖C1/2v‖. The eigen-
value of C corresponding to v = e1 becomes relatively smaller than the other eigenvalues.

2 In practice, a scalar factor in Ŵ f
θt

does not matter at all because the natural gradient is multiplied
by ηt

m and ηt
C that are inversely proportional to the scalar factor as introduced below. Therefore,

we can replace 1/ p̄θt (x) with exp(‖z‖2/2), where z = C−1/2(x − m).
3 As stated above, the baseline subtraction in NGt does not affect the expectation of the natural

gradient, while it can reduce the estimation variance of the natural gradient.
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On the other hand, NGt results in smaller values of β and Cond(C) and they get even
smaller if we decrease the learning rate or increase the population size.

5 Summary and Discussion

In this paper we derive the natural gradient of the l.l.f. of the truncated Gaussian distribu-
tion for linearly constrained optimization problems. Analysis on a linearly constrained
spherical problem shows the infinite-population model using the derived natural gradi-
ent reads the same update as the exact natural gradient algorithm on a unconstrained
spherical problem [1] and all the results proven in the reference hold. The simulation re-
sults exhibit different behavior of the derived algorithm and the rank-μ update CMA. The
rank-μ update CMA tends to stay in the feasible set and the distance from the constraint
boundary stays proportional to ‖C1/2v‖, where v is the normal vector of the constraint
boundary, whereas the condition number and the normalized distance in the derived al-
gorithm converges to smaller values than in the rank-μ udpate CMA.

We would like to remark that the simulation performed in Section 4 depends heavily
on the weight scheme. As we see in Fig. 1 and Fig. 2, NGn, NGb, and the rank-μ update
CMA result in different behavior, although their only difference is the weight value and
the learning rate. Moreover, from a preliminary experiment we have observed that NGt

does not work as well as it is with the weight scheme (3) if we employ the CMA-type
weight scheme or the fitness proportional weight Ŵ f

θt
(xi) = ‖x‖2. The mean vector enters

the infeasible region as we have observed in NGn. Especially for the fitness proportional
weight, we can derive a theoretical result for the infinite-population model that even if
α > 0, the natural gradient becomes the same as the one on the unconstrained sphere
problem and the mean vector tends to converges to the origin that is in the infeasible
domain. Further study on the weight scheme is highly required.

For other future works, we compare the derived algorithm with the existing treatment
for the constrained problem such as [6]. To enhance the performance, we would need
to incorporate a step-size control mechanism that is in general heavily affected by the
constraint, and a projection of the mean vector to the feasible domain when it reaches
the infeasible domain. Furthermore, we extend the formula for the natural gradient for
a linearly constrained problem stated in Theorem 1 to problems with more general
constraint.
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