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Abstract. This investigation considers the optimization of multiple
gravity assist capture trajectories in the Jupiter system combining the
well known Differential Evolution algorithm with different classes of con-
straint handling techniques. The trajectories are designed to reach a de-
sired target orbit around Jupiter with minimum fuel consumption while
satisfying mission design constraints on maximum thrust level, maximum
time of flight and minimum closest distance to the planet. The advanced
constraints handling techniques are compared for different set of con-
straints on the challenging mission design problem. For each method the
trade off between performance, efficiency and the structure of the feasible
space is analyzed in light of the results obtained.

1 Introduction

The exploration of planetary moons has become a scientific interest by space
agencies such as NASA or ESA. The Jupiter system particularly has been the
focus for recent mission concepts such as the JUICE mission [1]. These mission
scenarios consist of a tour of Jupiter’s moons using multiple flybys. One of their
main goal is to assess the habitability of the four Galilean moons. Satellite-aided
capture is a well-known trajectory design technique that is employed to decrease
the fuel usage to capture a spacecraft into orbit around a planet.

Global optimization techniques have been successfully applied to interplan-
etary trajectory design [2,3]. They provide automated and unbiased searches
for various trajectory options. Within the last decade, several researchers have
investigated automated search techniques as a new approach to interplanetary
trajectory design. Abdelklalik and Gad investigate genetic algorithms to deter-
mine both the optimal flyby sequence and the optimal trajectory [4]. Recently,
Englander, Conway, and Williams develop an integer genetic algorithm to de-
termine the optimal flyby sequence and employ differential evolution for the
optimal trajectory [5]. However all these approaches are limited to the inclusion
of constraints as penalty factors in the definition of the fitness function.

This current paper investigates an automated search procedure based on evo-
lutionary techniques to design constrained interplanetary capture trajectories in
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the Jupiter system. The optimization problem is formulated as a constrained op-
timization problem. The trajectories are designed to target a final orbit around
Jupiter with path constraints on the maximum acceleration and minimum dis-
tance to the center of the system. The system is evolved towards the minimization
of the cumulative velocity increments. The purpose of this study is to investigate
how different constraints handling schemes perform for different subsets of con-
straints, on the given trajectory optimization problem, and propose alternative
techniques to the already widely used static penalty approach.

First, a modified version of the multiple gravity assist model (MGA-1DSM)
for interplanetary design is presented for the formulation of the optimization
problem [6]. The test case selected for this investigation is a capture trajectory
in the Jupiter system using a predefined sequence of flybys at the Jupiter’s
moons and targeting a final orbit around Jupiter with an eccentricity constraint.
The evolutionary optimization technique and the constraints handling methods
selected for the study are described in the third section. The advantages and
drawbacks of each method are briefly discussed while a quantitative comparative
assessment, on the specific test case, is performed in the following section related
to the experimental results. The summary of the results obtained and the future
research directions are outlined as final conclusions of the paper.

2 Jupiter Capture Trajectory

The capture trajectory model is formulated as an optimization problem using a
modified version of the MGA-1DSM model, where one deep-space maneuver is
allowed between two successive flybys at the moons [7]. The initial conditions
and characteristics of the spacecraft are taken from the problem statement of the
Global Trajectory Optimization Competition (GTOC 6) that was organized by
the Jet Propulsion Laboratory. Given a sequence of N moons, the constrained
optimization problem is defined as

minimize
x

N∑

i=1

ΔVi

subject to lb ≤ x ≤ ub

a = afinal, e = efinal, i = ifinal

ΔVi < Ti amax, i = 1, · · · , N
N∑

i=1

Ti < tofmax

di > dmin i = 2, · · · , N
where the variable vector x is bounded between lower bounds and upper bounds,
the objective function is composed of the sum of the deep space maneuvers and
three types of inequality constraints and three equality constraints are consid-
ered. The first inequality constraint is an acceleration constraint that is applied
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for each ΔVi to meet the thrust requirements. The second one is a limit on the
maximum time of flight and the third one is a minimum constraint on the clos-
est approach to Jupiter to avoid damaging the spacecraft due to the high level
of radiations emitted by the planet. The design of capture trajectories is often
dictated by specific mission requirements related to the shape and orientation of
the final insertion orbit. Therefore three equality constraints are introduced to
define the desired semi-major axis, eccentricity and inclination of the final orbit.
Given the set of moons defined as Γ = {I, E,C,G} where I = Io, E = Europa,
G = Ganymede and C = Callisto, and consider a sequence of N moons, denoted
SeqN in Γ , i.e, SeqN ∈ ΓN . The objective is to find a x vector encoding an
interplanetary trajectory that executes in sequence the N flybys at the moons
and satisfies the constraints. Given a sequence of N moons, the variable vector
has dimension 4N + 2 and encodes the initial position, the flyby parameters,
burn times and duration of each leg:

x = [t0, u, v, T0] +

N−1∑

i=1

[βi, rpi/rPlanet, ηi, Ti] + [βN , rpN /rPlanet]

The two last variables in the x vector denoted βN and rpN /rPlanet describing the
last flyby are added to the traditional formulation of the MGA-1DSM model.
These additional variables are necessary for the computation of the equality
constraints associated with the shape of the final insertion orbit around Jupiter.
The spacecraft is assumed to depart from a position located at Rinit = 1000 JR
from Jupiter center. Details on the problem statement and its mathematical for-
mulation can be found in the problem description of the GTOC 6 competition.1

The initial position of the spacecraft r0 is described in spherical coordinates as
r0 = Rinit(cosθcosφî + sinθcosφĵ + sinφk̂) where the two angles, θ and φ are
defined as θ = 2πu and φ = arccos(2v − 1) − π/2, respectively. The u and v
variables are employed instead of θ and φ to get a uniform distribution over the
starting sphere of radius equal to 1000 JR. The launch date is represented by
t0 using the Modified Julian Date 2000 (MJD2000). The total duration of the
first leg is given by T0. After reaching the first moon, the trajectory is propa-
gated in a Keplerian model during η1T1. A Lambert’s solver is then employed
to match the spacecraft position to the second moon in the sequence during
(1−η1T1). The flyby geometry at each moon is illustrated in Figure 1. The flyby
is modeled as an hyperbolic path about the moons where the magnitude of the
relative incoming hyperbolic velocity is equal to the magnitude of the relative
outgoing hyperbolic velocity, i.e, v∞−out = v∞−in. The flyby angle δ describes
how the spacecraft approaches the respective moon. More details on the flyby
characteristics and the calculations of the b-plane angle β can be found in [8,5].

3 Constrained Evolutionary Optimization

Population based evolutionary techniques are all based on a common structure: a
randomset of solutions encoded into a chromosome is randomly initialized, then the

1 http://sophia.estec.esa.int/gtoc_portal/

http://sophia.estec.esa.int/gtoc_portal/
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Fig. 1. Flyby geometry

chromosomes evolve through proper algorithm operators to create a new potential
set of solutions. The process iterates from one solution set to another until a stop-
ping condition is met. For each chromosome x a fitness function F (x) is assigned
as a measure of quality for the solution.

The self adaptive Differential Evolution (DE) algorithm [9] is an evolutionary
technique that has already shown promising results in the design of interplan-
etary trajectory problems [7]. The parameters of the DE algorithm (variant
rand/1/exp) [10,11], which represent the mutation parameter and the crossover
constant, are encoded in the chromosome even though they do not evolve with
the same operators. The possibility of having a dynamic updating rule for the
algorithm parameters is particularly interesting in trajectory design problems,
where the solutions in the early design phase are highly diversified.

3.1 Constraint Handling Techniques

DE and its self-adaptive variant jDE have been designed for single-objective
unconstrained optimization. To solve for constrained single-objective optimiza-
tion problems the evolutionary algorithm needs to be coupled with a constraint
handling technique. Within the past few years several techniques have been de-
veloped to handle constrained optimization problems [12]. In this investigation
a few of them have been selected based on their applicability and their different
ways of dealing with the constraints.

Death Penalty. The rejection of the infeasible individuals is the most straight-
forward approach to handle constraints in evolutionary optimization. The fitness
update rule of each individual has a penalty factor which become activated for
infeasible individuals and assign to their fitness a large constant value. The pro-
cess can easily get stuck if no feasible individual can be found. The Kuri variant
of the method is considered [13], where the fitness function is updated as

F (x) =

{
f(x) if x feasible
K −∑s

i=1 K/m otherwise

wherem is the number of constraints, s is the number of non violated constraints
and K is a large constant.
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Adaptive Penalty. More advanced adaptive penalty approaches have been
developed to overcome the limitations of the previously presented techniques. In
particular the co-evolution method proposed in [14] is considered for this study. It
makes use of two populations P1 and P2. The first one, P1, encodes the penalty
coefficients while the second one, P2, encodes the optimization variables. The
fitness of each individual belonging to P2 is updated using the following fitness:

F (x) = f(x)+y1

mI∑

i=1

max[0, gi(x)]+y2NviomI +y3

mE∑

i=1

max[0, hi(x)]+y4NviomE

where (yj1, . . . , y
j
4) is the encoding of the j-th individual in P1, mI and mE are

respectively the number of inequality and equality constraints g(x) and h(x),
NviomI and NviomE are respectively the number of inequality and equality vi-
olated constraints. The fitness of each individual in the population P1 depends
on the entire population P2 that is associated to it and it is a measure of its
infeasibility. The two sets of populations are evolved cooperatively towards fea-
sibility and optimality. The main drawback of such approach is its efficiency.
The adopted formulation diverges from the original formulation of Coello Coello
where equality and inequality constraints were aggregated in a single term.

Immune System. The technique emulates the biological behavior of an im-
mune system making use of two populations and two optimization strategies [15].
In biological immune systems the antigenic molecules are recognized and then
eliminated by the antibodies. Two populations are employed: one representing
the antigenes and one representing the antibodies. The fitness of an individ-
ual is determined by its ability to recognize antigenes. Hence the population
of antibodies, generated after the immune system simulation, is able to recog-
nize antigenes in the population and to evolve towards immunity and, therefore,
feasibility.

Repair Methods. Repair methods are hybrid techniques that combine heuris-
tic strategies with local searches. The infeasible individuals of the population are
repaired to get closer to the feasible region. The repairing method considered in
this investigation is a variation of the algorithm proposed in [16]. The infeasible
individuals are repaired by means of a gradient descent algorithm that aims at
minimizing the sum of the constraint violations. The outer optimization loop
minimizes a penalized formulation of the original problem. This has been added
to the original algorithm to preserve the repaired solutions reinjected into the
population.

4 Experiments

The test case selected in this investigation considers 4 flybys in the Jupiter system.
The predefined sequence of moons selected is Seq4 = {C,G,G,G}. This capture
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Table 1. Bounds on the variables vector

Variables lb ub

t0 [MJD 2000] 7305 11323
u [-] 0 1
v [-] 0 1
T0 [days] 180 210
T1 [days] 0.1 10
T2 [days] 3 80
T3 [days] 3 40

βi (i = 1..3) [rad] -2π 2π
rpi/rPlanet (i = 1..3) [-] 50 2000
ηi (i = 1..3) [-] 0 1

β4 [rad -2π 2π
rp4/rPlanet [-] 50 2000

Table 2. Bounds on the constraints for
i=0..3 and j=1..3

Constraints lb ub

ΔVi/Ti [m/s2] −∞ 5 · 1e− 05
∑3

i=0 Ti [days] −∞ 328.725
dj [JR] 2 ∞
e [-] 0.7-0.02 0.7+0.02

sequence corresponds to the one employed in previous work [7]. The values for the
lower and upper bounds for the chromosome x, are defined in Table 1. The bounds
of the inequality constraints introduced in Section 2 are reported in Table 2. The
maximum acceleration is set by considering a thrust of 0.1 Newton and a space-
craft of 2000 kg, the maximum time of flight is constrained to 0.9 years and the
minimum distance to the center of the system is constrained to 2 Jupiter radius.
Concerning the equality constraints related to the shape of the final orbit, an ec-
centricity constraint is introduced as a proof of concept for this test case where
efinal = 0.7. A high eccentricity is desirable, for example for the exploration
of Jupiter and its environment. In particular the region between Callisto and
Ganymede is interesting for magnetospheric/plasma physics science [17]. The
implementation of the evolutionary and constraints handling techniques pre-
sented in Section 3 are made available as part of the open source scientific library
PaGMO2, and its python front-end PyGMO3. The framework also provides a
generic interface to multiple well known optimization libraries. In particular, the
local technique used in the experiments for the repair algorithm is the Nelder
and Mead simplex algorithm from the GSL library 4. The parameters involved
in the constraints handling schemes have been tuned benchmarking a variety
of constrained optimization problems taken from the 2006 IEEE Congress on
Evolutionary Computation (CEC) competition, and have been kept the same in
the different scenarios.

4.1 Problems Definition

Within gravity assist maneuvers, the desirable trajectories are the ones that
do not require deep space maneuvers to reach a certain orbit. These specific
trajectories are called ballistic trajectories and are defined such as

∑N
i=0 ΔVi = 0.

2 https://github.com/esa/pagmo/wiki
3 http://esa.github.io/pygmo/
4 http://www.gnu.org/software/gsl/

https://github.com/esa/pagmo/wiki
http://esa.github.io/pygmo/
http://www.gnu.org/software/gsl/
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These solutions, are very challenging to obtain within the feasible region because
of the highly multimodal landscape of the fitness space. In the following, multiple
problems definitions are considered with an increased complexity in terms of
constraints satisfaction, see Table 3:

– Case 1: Ballistic capture trajectory around Jupiter. This case finds
ballistic solutions under inequality constraints on the minimum distance to
Jupiter and the maximum time of flight. The parameters of the final orbit
around Jupiter, such as eccentricity, inclination and semi-major axis are free.

– Case 2: Ballistic capture trajectory around Jupiter targeting a
desired final eccentricity. An extra equality constraint targeting a desired
final eccentricity is added to the problem presented in case 1. The inclination
and semi-major axis of the final orbit around Jupiter are free.

– Case 3: Ballistic capture trajectory around Jupiter targeting a de-
sired final eccentricity with constraints on maximum acceleration.
A maximum acceleration constraint on each trajectory leg is added to the
problem definition of case 2.

Table 3. Details of the 3 test problems. ρ = |F |/|S| is the estimated ratio between the
feasible region and the search space, LI and NI are respectively the number of linear
and nonlinear inequality constraints, LE and NE are respectively the number of linear
and nonlinear equality constraints. a is the number of active constraints at optimality.

Problem Constraints ρ LI NI LE NE a

Case 1 minimum distance to Jupiter, maximum time of
flight

35.2097% 0 4 0 0 0

Case 2 minimum distance to Jupiter, maximum time of
flight, final eccentricity

0.0000% 0 5 0 1 1

Case 3 minimum distance to Jupiter, maximum time of
flight, final eccentricity, maximum acceleration

0.0000% 0 9 0 1 5

4.2 Results

All experiments have been sequentially run on a 1.8GHz i5 dual core proces-
sor. For each experiment, 250 runs are performed with a population size of
50 individuals. At each run, 400 evolutions for each algorithm are considered.
Each algorithm contains 5000 internal generations to reach a maximum num-
ber of 1e8 cost function evaluations. To keep the experiments computationally
tractable within a reasonable time, the CPU time is limited to 2700s (45 min-
utes). The tolerances are set to 1e-8 for both the cost function convergence and
the algorithms internal tolerances. A special treatment is introduced for the case
3 by sequentially activating the acceleration constraints linked to each leg. This
has been added because the constraint on the trajectory leg between Callisto
and Ganymede is hard to be satisfied due to the limited time of flight allowed
in the problem definition. Figure 2 illustrates the convergence of the different



Evolutionary Constrained Optimization for a Jupiter Capture 269

constraints handling techniques towards ballistic solutions, with respect to the
required CPU time. Table 4 reports the probability of finding a ballistic solution.
Some observations on the results obtained can be stated:

– Case 1: The first test case shows comparable trend for the death penalty
and repair techniques in terms of performance (probability of convergence)
and efficiency (CPU time). The immune system has the best convergence
performance but the worst convergence rate. Finally the co-evolution is the
method that requires the highest CPU time to achieve convergence.

– Case 2: The behavior of the techniques is similar to the above case, except
for the immune system that, even though it is able to reach feasibility, is not
able to converge to the global optimum (ballistic solutions).

– Case 3: Only the co-evolution method is able to reach feasibility and global
optimality. The required CPU time is comparable to the one of case 2.

The plot of a representative solution, for each of the test cases, is reported in
Figure 3. For all constraints handling techniques, the solutions converge to an
area of the search space where the orbits have very similar shapes. In order to
achieve a greater variety in the set of final orbits, within ballistic solutions, also
the sequence of moons needs to be enlarged and optimized.

To summarize, all the constraints handling techniques, but the immune sys-
tem, were able to find feasible and ballistic solutions for the cases 1 and 2.
For the case 3, only the co-evolution could find solutions. The repair method

Fig. 2. Convergence performance, in terms of CPU time, towards ballistic solutions,
of each constraints handling techniques

Table 4. Probability of convergence to a ballistic solution over 250 runs

Constraints handling
technique

Convergence
probability case 1

Convergence
probability case 2

Convergence
probability case 3

Co-evolution 0.272 0.1 0.152
CORE + Kuri 0.324 0.132 0
Death penalty 0.320 0.148 0
Immune system 0.192 0 0
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Fig. 3. Selected trajectories for the case 1, case 2 and case 3

CORE+Kuri and death penalty constraints handling technique are very similar
in term of computational performance and probability of convergence for the
first two cases, which highlights, that the repairing process does not have a large
effect. Indeed if the constrained problem has a wide feasible region, easily reach-
able in the early stage of the evolution, the two techniques become comparable.
They both fail in finding feasible solutions in the last test case. The adaptability
of the penalty approach embedded in the co-evolutionary algorithm is the only
strategy, between the selected ones, able to converge to feasibility and global
optimality in each of the test case. As expected its main drawback, as illustrated
in the first two cases, is its efficiency.

5 Conclusion and Prospects

In this paper an automatic procedure, using evolutionary constrained optimiza-
tion techniques, for interplanetary trajectory design has been introduced. The
trajectories are designed to reach a desired target orbit around Jupiter with
minimum fuel consumption while satisfying mission design constraints on maxi-
mum thrust level, maximum time of flight and minimum closest distance to the
planet. To optimize these trajectories, four constraints handling techniques have
been introduced: the Kuri variant of the death penalty, the CORE+Kuri repair-
ing method, the co-evolution and the immune system. All the techniques but
the immune system could find feasible ballistic solutions within a respectable
time. The immune system can’t reach ballistic solutions as soon as the equality
constraint on the final orbit eccentricity is targeted. The co-evolution technique
is the only one able to find such solutions when maximum thrust level con-
straints are added to the problem. As a proof of concept only an eccentricity
constraint is considered in this investigation. However as future work, additional
equality constraints on semi-major axis and inclination can be included in the
problem definition. Moreover another interesting aspect would be to optimize
the sequence and number of moons to achieve a ballistic capture at Jupiter with
insertion into any desired final orbit shape.
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