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Abstract. Viability Evolution is an abstraction of artificial evolution
which operates by eliminating candidate solutions that do not satisfy
viability criteria. Viability criteria are defined as boundaries on the values
of objectives and constraints of the problem being solved. By adapting
these boundaries it is possible to drive the search towards desired regions
of solution space, discovering optimal solutions or those satisfying a set
of constraints. Although in previous work we demonstrated the feasibil-
ity of the approach by implementing it on a simple genetic algorithm,
the method was clearly not competitive with the current evolutionary
computation state-of-the-art. In this work, we test Viability Evolution
principles on a modified (1+1)-CMA-ES for constrained optimization.
The resulting method shows competitive performance when tested on
eight unimodal problems.

Keywords: Stochastic optimisation, constrained optimisation, evolu-
tion strategy, viability evolution, constraint handling.

1 Introduction

Evolutionary computation methods are often used to solve real-valued black-box
optimization problems, a large number of which require satisfying constraints.
Without loss of generality, solving a real-valued constrained optimization prob-
lem in R

n means minimizing the objective function f(x), x ∈ R
n, subject to

inequalities1 defined on m constraints function gi(x) ≤ 0, i = 1, . . . ,m.
Several approaches have been proposed to solve constrained problems us-

ing evolutionary algorithms [1], ranging from rejecting solutions that violate
constraints (infeasible solutions) to more sophisticated strategies that modify
the ranking of individuals by penalizing the fitness using a function of con-
straint violations (penalty functions). Other popular approaches include stochas-
tic ranking of solutions [2], ε-constrained optimization [3], feasibility rules to

1 Equality constraints can always be rewritten as inequalities by using a tolerance
value on the equality.
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rank solutions [4], and transformation of constraints into objectives. Although
these methods are necessary to handle infeasible solutions and constraints, an
efficient optimizer is essential to progress during the search.

Currently, many state-of-the-art algorithms for unconstrained optimization
are based on Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [5].
In CMA-ES, a covariance matrix describing correlations between decision vari-
ables is learned and adapted during the search to maximize the likelihood of
generating successful solutions. Although CMA-ES is a powerful optimizer in
unconstrained settings [6], it may suffer from premature convergence in presence
of constraints, a common problem in strategies with adaptive step-size control
[7]. Furthermore, methods for constrained optimization based on CMA-ES often
require providing a feasible solution as a starting point.

A different modelling of objectives and constraints in CMA-ES may offer novel
possibilities for handling constraints and allow the initialization of the algorithm
from infeasible solutions. Viability Evolution [8,9] is an abstraction of artificial
evolution that models an optimization process using viability boundaries, which
are modified over time to drive the search towards desirable regions of a search
space, as shown in Figure 1. Under this abstraction, mutations can produce vi-
able solutions, which survive, or non-viable solutions, which are eliminated from
the population. Viability boundaries are generally defined as admissible ranges of
problem objectives and constraints. At the beginning of the search the boundaries
are relaxed to encompass all randomly generated initial solutions and then gradu-
ally tightened. Once viability boundaries reach the desired target boundaries they
are not tightened further, and the evolutionary process is considered complete.

generations

Viable Region

Viable Solution

Viability Boundaries

Fig. 1. Viability boundaries initially encompass all randomly generated solutions. We
represent the viable region as a projection on a two-dimensional plane of the viability
boundaries (shaded area). During the search, the boundaries are made more stringent.
Viable solutions are retained in the population (dots in the shaded area), whereas so-
lutions that do not satisfy viability boundaries are eliminated. Mutations can generate
solutions (circled dots) that fall outside or inside the viable region.
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In this work, we borrow concepts from Viability Evolution, and combine them
with active covariance updates for CMA-ES [10], to derive a novel algorithm for
constrained optimization. Here, we restrict ourselves to testing our method only
in the case where it is started from a feasible solution, as done in [10] which
reports current state-of-the-art performance on a set of eight unimodal functions.

The paper is structured as follows. In Section 2 we discuss the state-of-the-art
of constraint handling in evolution strategies and we elucidate the workings of a
(1+1)-CMA-ES with constraint handling proposed in [10]. In Section 3 we dis-
cuss Viability Evolution principles and the proposed approach for constrained
optimization. Experimental setup and results of the proposed approach are pre-
sented in Section 4. Finally, we conclude with a brief discussion of the proposed
approach in Section 5, and we propose future continuations of the work.

2 Related Work

Classical approaches to handle constraints in evolution strategies consist of sim-
ply discarding and resampling infeasible solutions [11] or using penalty functions.
Penalty functions usually depend on the amount of constraints violation or num-
ber of violated constraints [12], and in some cases also on the fitness of selected
feasible solutions [13]. The penalty functions can also be adaptive: for example the
relative weight of each constraint in the penalty can be modified according to the
number of iterations where infeasible solutions are discovered [14], or according
to the ratio between feasible and infeasible individuals [15].

Other methods do not use penalty functions. An approach performs selection
based on three feasibility rules [16]: feasible individuals are compared on objec-
tives, infeasible ones are compared on total constraint violations, and feasible
individuals are always ranked before infeasible ones. Similarly, a recently pro-
posed method modifies the ranking of individuals based on three independent
rankings: by objective function, by constraint violation amount, and by number
of violated constraints depending on if the solution is feasible or infeasible [17].
Other approaches reduce the probability of generating infeasible solutions when
in the proximity of the constraint, by moving the mean of the population [18]
or by explicitly controlling the step size using a lower bound [7].

Another way in which constraints can be handled is learning surrogate models
for linear constraints. One of these methods has been shown to be a promising
approach to reduce the number of constraint function evaluations by predicting if
solutions are feasible or infeasible, adapting directly the covariance matrix using
the learned information, and repairing solutions that turn out to be infeasible
[19]. The work has been recently extended to non-linear constraints, learning
models using support vector machines [20]. Another recently proposed variant
of CMA-ES [21] makes use of repair mechanisms, but the algorithm is very
specific to the problem being solved (financial portfolio optimization).

2.1 (1+1)-CMA-ES with Active Covariance Matrix Adaptation

Among the various methods proposed for handling constraints in CMA-ES,
Arnold and Hansen [10] recently proposed a modification of a (1+1)-CMA-ES
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that has displayed great performance improvements with respect to other meth-
ods on unimodal constrained problems when started from a feasible solution.
The method maintains a (low-pass filtered) vector representing the direction of
violations of steps with respect to each constraint. These vectors are used to
update the covariance matrix such that the variance in the direction of viola-
tion is reduced. A (1+1)-CMA-ES combines (1+1) selection [22] with covariance
matrix adaptation [5]. Given a parent solution x ∈ R

n, an offspring solution y
is sampled according to y ← x + σAz where A is the Choleski decomposition
of the covariance matrix C = ATA and z ∼ N (0, I) is sampled from a normal
distribution. The global step size σ ∈ R+ is changed according to a modified
1/5 rule proposed in [23]. The probability Psucc ∈ [0, 1] of generating successful
solutions and σ are updated at each iteration

Psucc ← (1− cp)Psucc + cp1f(y)≤f(x) (1)

σ ← σexp

(
1

d

(
Psucc − Ptarget

1− Ptarget
(1− Psucc)

))
(2)

where 1f(y)≤f(x) is 1 if the condition is true or 0 otherwise, the learning rate
cp ∈ (0, 1] determines the fading of Psucc and the damping factor d controls the
step size variation. Ptarget determines the probability threshold that decreases or
increases σ. The covariance matrix is adapted using the original rank-one update

rule of CMA-ES, C(g+1) = αC(g) + βv(g)v(g)T , which increases the variance in
the direction of the provided vector v from one iteration g to the following one.
Using a vector of fading successful steps s, called the evolution path, in place of
vector v, allows the strategy to increase the likelihood of sampling new solutions
in the direction of already successful steps. In fact, there is no need to maintain
the covariance matrix C, as updates can be performed directly on the Choleski
factor A as proved in [23] according to

A← √αA+

√
α

‖w‖2
(√

1 +
β

α
‖w‖2 − 1

)
swT (3)

where w = A−1s and β = c+cov ∈ R
n. In practice the evolution path s and α

are updated depending on Psucc. If the probability of success is small (Psucc <
Pthresh) then the covariance matrix is updated considering the current step Az,
such that s ← (1 − c)s +

√
c(2− c)Az and α = 1 − c+cov. Otherwise (Psucc ≥

Pthresh), the update does not consider the current step in order to avoid the
variance increasing too much in the direction of already successful mutations.
In this case the covariance matrix is always updated using Equation 3 but the
evolution path is set to s← (1− c)s and α = 1− c+cov + c+covc(2− c).

An alternative “active” covariance matrix update that also considers particu-
larly unsuccessful steps worse than the fifth ancestor of the current solution was
proposed in [24]. In this case, the covariance matrix is updated using the current
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unsuccessful step Az and the following rule that decreases the variance in the
direction of that step2

A← √αA+

√
α

‖z‖2
(√

1− β

α
‖z‖2 − 1

)
AzzT (4)

where α =
√
1 + c−cov and β = c−cov.

Interestingly, the same rule can be used to decrease variance in the direction of
constraint violations. Similarly to what is done with the evolution path, Arnold
and Hansen [10] proposed to use fading vectors of steps that violate constraints
in combination with active covariance updates. Specifically, for each constraint
i that is violated by step Az, the vector vi ← (1 − cc)vi + ccAz is updated.
Whenever even a single constraint is violated, the covariance matrix is updated
according to

A← A− B∑m
i=1 1gi(y)>0

m∑
i=1

1gi(y)>0
viw

T
i

wiwT
i

(5)

wherewi = A−1vi. The parameters used in the algorithm are set to the following
[24]: d = 1 + n

2 , c =
2

n+2 , cc =
1

n+2 , cp = 1
12 , B = 0.1

n+2 , Ptarget =
2
11 , Pthresh =

0.44, c+cov = 2
n2+6 , and c−cov = 0.4

n1.6+1 . We will refer to this method in the following
as (1+1)-acCMA-ES (active constrained CMA-ES).

3 Introducing Viability in CMA-ES

Modelling an evolutionary algorithm using the Viability Evolution abstraction
offers novel possibilities. For example, in the case of constrained optimization
viability boundaries can be defined to relax problem constraints at the begin-
ning of the search, and be made more stringent over time to lead solutions into
the feasible regions. The key idea proposed here is to use changing viability
boundaries that define admissible regions of the search space (viable regions) in
combination with the active covariance matrix updates proposed by Arnold and
Hansen [10]. Active covariance updates are used to decrease the variance in the
direction of boundary violations. As the boundaries defined on constraint func-
tions values can be relaxed, the algorithm is compatible with infeasible starting
solutions. On the other hand, whenever a viable solution is generated, the stan-
dard covariance matrix update rule of (1+1)-CMA-ES is employed to increase
the variance in the direction that generated the viable solution. Because differ-
ent boundaries may affect the global probability of generating viable solutions
Psucc, we maintain a vector of probability of success psucc, that tracks which
boundary is more likely to cause the generation of non viable solutions. As de-
picted in Figure 2A, when the covariance matrix is well adapted to a boundary,
the probability of generating a new viable solution is greater or equal to 50%.
Otherwise, when the probability of success is lower than 50% for at least one

2 Note that the sign in the parenthesis is inverted. Furthermore, if ‖z‖2 ≥ 1+c−cov
2c−cov

then

c−cov = 1
2‖z‖2−1

.
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Algorithm 1. (1+1)-VIE-CMA-ES pseudo-code. Problem objectives and con-
straints are modelled using the viability boundaries abstraction. Parameters
d, c, cc, cp, B, Ptarget, c

+
cov and c−cov are defined as in [24].

Require: σ ∈ R+ initial global step size
1: α← 1− c+cov, β ← c+ccov, s← 0
2: A← I
3: for i = 1 . . .m+ 1 do
4: vi ← [0, . . . , 0]n×1 � The last vi and bi correspond to the objective
5: end for
6: b← [max(0, g1(x)), . . . , max(0, gm(x)), ∞]
7: psucc ← [ 12 , . . . ,

1
2 ]

8: x← randomly generate solution
9: while ¬ termination condition do

10: z ∼ N (0, I)
11: y ← x+ σAz
12: V ← [1g1(y)>b1 , . . . ,1gm(y)>bm ,1f(y)>bm+1

] � Boundary violations
13: if ∃ i : Vi = 1 then
14: for all i : Vi = 1 do
15: vi ← (1 − cc)vi + ccAz
16: wi ← A−1vi

17: end for
18: A← A−B

∑m
i=1 1gi(y)>0

viw
T
i

wiwT
i

� Decrease variance

19: psucc ← (1− cp)psucc + cp[1V1=0, . . . ,1Vm+1=0] � Update success
probability

20: if ∃ i : psucci <
1
2 then

21: Psucc ← (1− cp)Psucc � Decrease global Psucc

22: end if
23: else
24: Psucc ← (1− cp)Psucc + cp � Increase success probabilities
25: psucc ← (1− cp)psucc + cp

26: σ ← σexp
(

1
d

(
Psucc − Ptarget

1−Ptarget
(1 − Psucc)

))
27: s← (1 − c)s+

√
c(2 − c)Az

28: w ← A−1s

29: A← √αA+
√
α

‖w‖2

(√
1 + β

α‖w‖2 − 1

)
swT

30: b1..m ←
[
max

(
0,min

(
b1, g1(y) +

b1−g1(y)
2

))
, . . . ,

31: max
(
0,min

(
bm, gm(y) + bm−gm(y)

2

))]
32: if Vi:1,...,m = 0 then � Update boundary on objective when feasible

33: bm+1 ← f(y) + f(x)−f(y)
2

34: end if
35: x← y
36: end if
37: end while
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A B C

Infeasible 
Region

Fig. 2. Possible scenarios encountered during a search. A) The covariance matrix (el-
lipsoid in solid line) is well adapted with respect to a boundary (dashed line). The
probability of generating a successful solution in the viability region (shaded area) is
greater than 50%. Isocline of the objective function are shown as thin dotted lines and
the gradient direction is shown by the arrow. The mean of the search distribution is
represented as a dot. B) The covariance matrix should be adapted. Probability of gen-
erating successful solutions is lower than 50%. C) The method encounters difficulties
when the direction to reach the optimum (shown as a cross) is the same that generates
infeasible solutions that violate the constraint (thick dotted line).

boundary, as shown in Figure 2B, the covariance matrix should be modified and
the global step size reduced. To achieve this, we reduce the global Psucc prob-
ability. Conversely, the overall Psucc probability and all elements of the psucc

vector are increased whenever a viable solution is generated. Note that in the
method presented in [10] not adapting Psucc on failure may lead to the use of
outdated information for step-size adaptation.

The pseudo-code of our method, referred to as (1+1)-VIE-CMA-ES, is pre-
sented in Algorithm 1. The user must only provide an initial step size σ. The
algorithm sets the initial viability boundaries b as either the target boundary (0
for the constraints) or a relaxed value if an infeasible solution is provided. The
initial boundary for the objective is set to∞. At each iteration, boundary viola-
tions V are checked. The active covariance matrix update for feasible solutions
(Equation 4) and the stall of updates of the original method in presence of high
probability of success are not used. A single update rule is applied whenever a
viable solution (that does not violates the boundaries b) is generated. When this
happens, the mean of the population is updated to the new viable solution and
the boundaries are tightened.

4 Results

The proposedmethod was tested on all the eight benchmark functions used in [10].
These benchmark functions include problems from two to ten dimensions with up
to eight non-linear constraints. The experimental setup is identical to the one re-
ported in [10], including the same number of repetitions, equivalent generation of
initial solutions, the same termination condition, and the same parameter settings
for the (1+1)-CMA-ES.For each benchmark functionwe counted the total number
of objective function and constraints function evaluations. We tested the method
starting it 99 times from different initial solutions, uniformly sampled from the
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Table 1. Experimental results of the (1+1)-VIE-CMA-ES and comparison against the
(1+1)-acCMA-ES proposed in [10]

g06 g07 g09 g10

VIE-CMA acCMA VIE-CMA acCMA VIE-CMA acCMA VIE-CMA acCMA

Function Evaluations

10th 282 272 1578 1939 1305 1430 1387 2794

50th 333 308 1794 2211 1452 1674 1697 3976

90th 385 364 2049 2703 1595 2074 2554 5369

Constraint Evaluations

10th 797 827 7184 10435 3474 3626 7360 15621

50th 900 1060 7545 11283 3660 4106 8295 18781

90th 986 1223 8032 12704 3913 5075 11322 23088

TR2 2.40 2.41 HB

VIE-CMA acCMA VIE-CMA acCMA VIE-CMA acCMA VIE-CMA acCMA

Function Evaluations

10th 465 376 863 1326 820 1483 638 623

50th 520 443 1023 1990 954 2271 734 768

90th 561 510 1209 3326 1100 3581 841 1150

Constraint Evaluations

10th 751 616 3166 4551 3183 5235 2659 2338

50th 812 708 3570 6994 3449 8108 2893 2912

90th 884 839 3899 11114 3801 12056 3185 3970

solution space until a feasible solution is found. Iterations needed to obtain the
starting feasible solution are not counted in the results, as in [10].

Results are reported in Table 1. Themethod is competitive on seven out of eight
problem. Our method has medians lower than what were reported by Arnold and
Hansen [10] for constraint function calls by a factor of 0.15, 0.33, 0.11, 0.56, 0.49,
0.57 on g06, g07, g09, g10, 2.40, 2.41 respectively and almost identical perfor-
mance on HB. In the linear constrained sphere function problem TR2, our method
exceeds values reportedbyArnold andHansen [10] by a factor 0.15. In one problem,
g06, our method, while being better on the overall number of constraint evalua-
tions, performs slightly worse on number of objective function evaluations.

In our view, one of the reasons of decreased performance in the TR2 problem
probably lies in the specific orientation of the constraint. From experimental in-
vestigation, we observed that the mean of the search distribution tends to align
to the normal direction to the optimum (a situation similar to the one depicted
in Figure 2C), which in this case is also the same direction that is most likely to
violate the constraint. Probably, in cases like this one when the direction of con-
straint violation is very close to the direction of viable solutions generation, the
covariance matrix update should be stalled, or the variance should be decreased
along the other axis.
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5 Discussion and Future Work

In this paper, we proposed (1+1)-VIE-CMA-ES, a method that combines viability
boundaries and active covariance matrix updates in a (1+1)-CMA-ES. Our algo-
rithm showed competitive performance with respect to state-of-the-art methods
on all the benchmark problems except on the constrained sphere function problem
TR2. Further investigations are needed to solve the lower performance experienced
on TR2. Here, we tested the method only when starting from feasible initial solu-
tions, but our algorithm is also compatible with infeasible starting solutions. In
the future, we will proceed with a rigorous evaluation of the method when ini-
tialized from infeasible solutions. Also, more research will be needed for tackling
multimodal problems using the approach presented here.

It is important to note that dealing with constraints and objectives using
the same algorithmic framework allows one to readily extend the method to
situations not directly manageable by standard CMA-ES. We anticipate that the
coupling of changing viability boundaries and active covariance updates could
also potentially be used in multi-objective optimization. For example, a “virtual”
boundary may be learned on the Pareto front and made more stringent over
time to push solutions towards the optimal Pareto front. The combined use of
viability boundaries and active covariance updates might pave the way for a
new class of powerful algorithms that can manage unconstrained, constrained
and multi-objective problems under the same algorithmic scheme.
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