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Abstract. The adaptation of individual learning rates is important for
many learning tasks, particularly in the case of nonstationary learning en-
vironments. Sutton has presented with the Incremental Delta Bar Delta
algorithm a versatile method for many tasks. However, this algorithm
was formulated only for linear models. A straightforward generalization
to nonlinear models is possible, but we show in this work that it poses
some obstacles, namely the stability of the learning algorithm. We pro-
pose a new self-regulation of the model’s activation which ensures stabil-
ity. Our algorithm shows better performance than other approaches on a
nonstationary benchmark task. Furthermore we show how to derive this
algorithm from basic loss functions.
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1 Introduction

For many state-of-the-art learning algorithms the adaptation of learning rates
(or other algorithm parameters) is important. This is particularly true if these
algorithms shall behave well in nonstationary learning environments.

In 1992 Sutton [10] suggested the Incremental Delta Bar Delta (IDBD) al-
gorithm. IDBD deals with the learning rates for trainable parameters of any
underlying learning algorithm. The key idea of IDBD is that these learning rates
are not predefined by the algorithm designer but they are themselves adapted
as hyperparameters of the learning process. Sutton [10] expects such adaptable
learning rates to be especially useful for nonstationary tasks or sequences of re-
lated tasks and demonstrates good results on a small synthetic nonstationary
learning problem with 20 weights.

Sutton’s algorithm is proposed to work with a linear model. But as many learn-
ing tasks exhibit nonlinear characteristics, e. g., well-known benchmark tasks for
the control of physical objects like MountainCar or pole balancing, or real-world
applications like the control of complex processes in plants. It is our goal to ex-
tend Sutton’s IDBD to the nonlinear case. However, the nonlinear case poses some
obstacles because the varying steepness in input-output relations can cause insta-
bilities when IDBD is extended in a straightforward manner (by simply replacing
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the linear input-output relation with the nonlinear one). We demonstrate these
obstacles and describe a way to overcome them by using a weight decay method.

The paper is organized as follows: after briefly reviewing some related work in
the next paragraph, we present the IDBD method and our nonlinear generaliza-
tion n-IDBD in Sec. 2. In Sec. 3 we apply n-IDBD to a nonlinear, nonstationary
benchmark task. We show in Appendix A how the equations of n-IDBD can be
derived from basic loss functions.

1.1 Related Work

Several online learning rate adaptation schemes have been proposed over the
years: IDBD [10] from Sutton is an extension of Jacobs’ [4] earlier DBD (Delta
Bar Delta) algorithm: it allows direct instead of batch updates. In [11] Sutton
proposes the algorithms K1 and K2, two (linear) extensions to IDBD, and com-
pares them with LMS and Kalman filtering. Koop [5] uses the IDBD algorithm
for online adaptation and investigates general aspects of temporal coherence.
Almeida [1] discusses another method of step-size adaptation and applies it to
the minimization of nonlinear functions. Schraudolph [8] extends on the K1 al-
gorithm and showed that it is superior to the approach described by Almeida [1].

Recently, Mahmood and Sutton [7] proposed with Autostep an extension to
IDBD which has much less dependence on the meta-step-size parameter than
IDBD. In the same year, Dabney and Barto [3] developed another adaptive step-
size method for temporal difference learning, which is based on the estimation
of upper and lower bounds. Again, both methods are proposed only for linear
function approximation.

Schraudolph [9] and, more recently, Li [6] extended IDBD to the nonlinear
case: Schraudolph’s ELK1 performs an update with the instantaneous Hes-
sian matrix of a suitable chosen loss function. The algorithm’s complexity is
O(n2) where n is the number of parameters to learn. This algorithm is supe-
rior to several others on the “four region” classification benchmark. However,
this benchmark consists of a piecewise constant target function. Thus it does
not exhibit steep and nonlinear slopes in the input-output-relationships which
can be a major difficulty for adaptive learning, as we will show in this paper. –
Li’s KIMEL algorithm transforms the nonlinear input data with a kernel into a
high-dimensional but linear feature space where linear IDBD is applied.

2 Methods

2.1 The Benchmark: A Nonlinear Nonstationary Task

In this work we consider a nonstationary task as a testbed as in [10], but with
an additional nonlinearity: n = 20 real-valued inputs x1, . . . , xn are indepen-
dently drawn from the standard normal distribution. The concept to learn is the
weighted sum of the first 5 inputs, which is sent through a nonlinear function
with slope σnst
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y∗ = tanh

(
σnst

5∑
i=1

sixi

)
(1)

where all the si are either +1 or −1. To make this task nonstationary, one of the
five si is selected randomly and switched in sign every 20 examples. Thus, the
model has to learn that only the first five inputs are relevant and all other 15
inputs are irrelevant. At the same time the weights of the relevant inputs have
to be able to change quickly in order to follow the drifting target.

2.2 Nonlinear Least Mean Squares (NLMS)

As a baseline learning algorithm we use a Nonlinear Least-Mean-Square (NLMS)
model with constant learning rate α and error signal δ(t) = y∗ − y(t):

y(t) = tanh (N(t)) with N(t) =

n∑
i=1

wi(t)xi (2)

wi(t+ 1) = wi(t) + αδ(t)
∂y

∂wi

= wi(t) + αδ(t)(1 − y2(t))xi (3)

2.3 Incremental Delta Bar Delta (IDBD)

Sutton’s IDBD algorithm [10] introduces for a linear unit y(t) = Σiwixi indi-
vidual learning rates αi = eβi for every weight wi.

Algorithm 1. IDBD in pseudo code

1: Initialize: hi = 0, βi = βinit∀i and set θ, the meta-learning rate.
2: for ( each new example (x1, . . . , xn, y

∗)) do
3: y = Σn

i=1wixi

4: δ = y∗ − y
5: for (every weight index i ) do
6: Set βi ← βi + θxiδ hi

7: Set αi ← eβi

8: Set wi ← wi + αixiδ
9: Set hi ← hi[1− αix

2
i ]

+ + αixiδ with [d]+ = d for d > 0, =0 else
10: end for
11: end for

The main idea behind this algorithm is simple: The memory term hi is a de-
caying trace of past weight changes. The increment in βi is proportional to the
product of the current weight change xiδ and past weight changes hi. Accumu-
lated increments correspond to the correlation between current and recent weight
changes [10]. In case of positive correlation the learning rate can be larger, while
negative correlation indicates overshooting weight increments where the learning
rate should be reduced.
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2.4 Generalizing IDBD to Nonlinear Output Units

A simple approach to generalize IDBD to the nonlinear case would be to sub-
stitute the linear equation in Step 3 of the IDBD algorithm with the nonlinear
Eq. (2). Then the difference is mainly the ’outer’ derivation of the nonlinearity
with respect to the net input N(t) in Eq. (2). If we choose tanh() as nonlinearity,
this derivative yields the term (1− y2) in several places. The explicit derivation
will be shown later in Appendix A.

However, there is a severe problem with this simple approach: If the task
exhibits a steep slope σnst in the nonlinear activation function, the adaptation
of learning rates can quickly lead to a fully saturated system which does not learn
the required concept. This is because large values of σnst lead to big error signals
δ, and consequently to large learning rate changes and large weight changes.
The output is driven into saturation sooner or later (near +1 or −1). With
1 − y2 ≈ 0 the gradient information becomes unreliable. As a consequence,
the mean squared error (MSE) will be big or even the whole system becomes
unstable.

2.5 Controlling the Activation

To keep the average activation sufficiently small, we add an accumulator with

kacc(t+ 1) = (1− γ)kacc(t) + γ [y(t)]2 and kacc(0) = 0, (4)

where γ = 0.001 is a sufficiently small constant. It is easy to show that the
corresponding initial value problem has the solution

kacc(t) =

∫ t

0

y2(τ) γeγ(τ−t)dτ (5)

For t � 1/γ the function f(τ) = γeγ(τ−t) plays the role of a density function,

since
∫ t

0 f(τ)dτ ≈ 1. Thus the accumulator kacc(t) is a memory trace of the
square of recent activations. If for example the output is constant, y(t) = y0, then
kacc(t) will show an exponential decay towards y20 . The smaller the parameter γ,
the more long-term averaging the memory trace kacc(t) will be. The idea is now
to add to the normal nonlinear weight update in Eq. (3) a new weight decay
term proportional to kacc(t) with strength parameter ωk

wi(t+ 1) = wi(t) + αi(t)δ(t)(1 − y2(t))xi(t)− ωkkacc(t)wi(t)x
2
i (t) (6)

The purpose of the weight decay term is as follows: If the average recent activa-
tion is high in absolute value (i.e. the activations are close to saturation), then
all weights will be decaying to move the output out of the saturated zone. If
on the other hand the activation is close to zero, then nearly no weight decay
will take place. The special setting ωk = 0 allows to recover the ’old’ situation
without weight decay.

We summarize our new n-IDBD method in Algorithm 2. The main difference
to (linear) IDBD is the term Y = 1− y2 in several places and the weight decay
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Algorithm 2. n-IDBD: nonlinear IDBD in pseudo code

1: Initialize: hi = 0, βi = βinit ∀i, γ = 0.001, set the meta-learning rate θ, and set
the weight decay parameter ωk.

2: for ( each new example (x1, . . . , xn, y
∗)) do

3: Calculate y according to Eq. (2)
4: Set δ = y∗ − y, Y = 1− y2 and Z = Y + 2yδ
5: Update accumulator kacc ← (1− γ)kacc + γy2 according to Eq. (4)
6: for (every weight index i ) do
7: Set βi ← βi + θY xihiδ
8: Set αi ← eβi

9: Set wi ← wi + αiY xiδ − ωkkaccwix
2
i

10: Set hi ← hi[1− (αiY Z + ωkkacc)x
2
i ]

+ + αiY xiδ
11: end for
12: end for

term with ωkkacc in Steps 9 and 10 of the algorithm. It is a necessary prerequisite
to achieve stable and fast learning. The precise form of the equations in Steps
7, 9, and 10 is derived in Appendix A.

Fig. 1. Dependence on the
weight decay parameter
ωK : n-IDBD has a broad
minimum near ωK = 0.1.
Shown is the asymptotic
MSE at t = 400 000. For
NLMS the x-axis shows
instead of ωK the ten-fold
learning rate 10α (i.e.
we vary α ∈ [0, 0.05]).
For ELK1 there is no
parameter ωK .
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3 Results

3.1 Does Weight Decay Help?

The first experiment answers the question whether n-IDBD performs better than
ordinary NLMS (or LMS) on the benchmark task and what influence the weight
decay has. In Fig. 1 we vary the weight decay parameter ωk between 0 (no weight
decay) and 0.5 (strong weight decay) and find a broad minimum near ωk = 0.1.
The mean squared error (MSE) is taken at t = 400 000 to get past any transient
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Fig. 2.
Development
of relevant / ir-
relevant learning
rates (αR, αI) and
accumulator kacc.
After 40 000 time
steps n-IDBD
adapts to the
ratio αR/αI ≈ 9.

phases. It is measured as the average of the squared error δ2 between time steps
300 000 and 400000.

Without weight decay the MSE rises sharply to values above 1.5. A closer
inspection of the model shows that it is in this case fully saturated (kacc = 1)with
arbitrary large weights and large learning rates. It does not learn anything, it
only jumps erratically between +1 and −1. The learning rates surpass sensible
bounds (e.g., αi > 100). A similar behavior is observed for ELK1 [8] which does
not have any weight decay and exhibits in most cases large MSEs.

With weight decay the situation changes completely for a broad range of ωk:
n-IDBD has a low error everywhere, both weights and learning rates stabilize at
roughly constant and sensible values. The overall activation of the unit stabilizes
at a plateau kacc < 1.1 The MSE of n-IDBD is consistently lower than that of
NLMS. This holds for all possible learning rates α of NLMS.

Fig. 2 shows the development of learning rates in one example of n-IDBD.
Already after 10 000 time steps the algorithm differentiates well between relevant
learning rates (αR = 1

5Σ
5
i=1αi) and irrelevant learning rates (αI = 1

15Σ
20
i=6αi).

After approximately 22 000 time steps both the learning rates and the activation
kacc stabilize at constant plateaus.

Fig. 3 compares the situation with and without weight decay again, but with a
focus on the longer time scale. The model with weight decay is consistently better
(has a lower MSE) than the one without. Whenever MSE becomes larger than
1.2, a closer inspection of the model shows that it is fully saturated (kacc = 1.0)
and the weights are unrealistically large. Even for very gentle slopes σnst, where
the model without weight decay does not saturate (not shown in the figure), we
find that weight decay is helpful to reduce the overall MSE.

1 The precise value of kacc ∈ [0.2, 0.7] depends on the other algorithm parameters.
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Fig. 3. Comparison of
MSE without weight de-
cay (circles, ωK = 0) to
MSE with weight decay
(triangles, ωK = 0.1).
Shown is the MSE aver-
aged over the last 100 000
time steps. The results
with weight decay are al-
ways better.
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3.2 Does Nonlinear IDBD Find the Optimal αi?

We have seen in the first experiment that n-IDBD automatically found large
learning rates for the relevant weights and small learning rates for the irrelevant
weights. Similar to [10] we want to test in a second experiment whether the
learning rates found by n-IDBD are optimal. Therefore we build an ’ideal’ NLMS
for the task, where the irrelevant weights are already clamped to zero and the
relevant weights get a predefined learning rate αR. The ’ideal’ NLMS has the
same sigmoid and the same weight decay as n-IDBD. We get MSE-curves as
shown in Fig. 4. The MSE is shown after 400 000 time steps, averaged between
time steps 300 000 to 400 000. The red point for n-IDBD shows the average αR

(relevant weights) and the correspondingMSE. It is right at the minimum of each
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Algorithm
σnst LMS NLMS IDBD n-IDBD

(linear) (nonlinear)

1.0 0.54 0.61 0.34 0.25
2.0 0.70 0.78 0.47 0.38
4.0 0.79 0.87 0.56 0.47

Table 1. Comparison of the best MSE for
all algorithms tested on the nonstationary
task with varying slopes σnst. ’Best’ means
that each algorithm has its free parame-
ters tuned to the best possible value. Pa-
rameters are θ = 0.01, ωk = 0.1 for IDBD,
α = 0.2 for LMS, and α = 0.1 for NLMS.

ideal curve. This shows that there is no other setting of learning rate parameters
which will perform better. (The MSE is slightly higher for n-IDBD than for
NLMS, because n-IDBD has the irrelevant weights not clamped precisely to
zero, they fluctuate at a small level.)

We finally compare in Tab. 1 the best MSE for all algorithms. It is remarkable
that linear IDBD is better on the task than nonlinear NLMS. But n-IDBD is
clearly better than all other tested algorithms for all sigmoidal slopes σnst.

4 Conclusion

We have extended the adaptive, linear IDBD to the nonlinear case. It was shown
that a simple extension would lead to an instable nonlinear system due to satu-
ration effects. Similarly, the well-known ELK1 method showed diverging weights
for most parameter settings as well. We proposed an additional self-regulative
mechanism to control the average activation. This makes the adaptive system
stable again. As in the linear case [10], the adaptive system finds the best pos-
sible learning rate on the benchmark task. The n-IDBD algorithm exhibits a
smaller MSE on the benchmark task than either LMS, NLMS or linear IDBD.
In an upcoming paper [2] we will show that n-IDBD can be applied to a game-
learning task (Connect-Four) with more than half a million of weights as well.

A Appendix: Derivation of n-IDBD

Similar to [10], the equations of n-IDBD can be derived from a few simple prin-
ciples. We start with two loss functions

L1(t) =
1

2
δ2(t) and L2(t) =

1

2

∑
i

w2
i (t)x

2
i (t). (7)

Both L1(t) and L2(t) should be minimized by the learning algorithm. The first
term rewards small errors and the second term regularizes the complexity of the
network: Weights with active inputs (x2

i > 0) should be as small as possible in
their square sum.2 In each learning step a weight change will be made in the
steepest-descent direction for L1 and for L2:

2 It is also possible to use a simpler L2 = 1
2
Σiw

2
i (t) without the term x2

i (t). Then
every weight decays in each time step. This leads to the same qualitative results in
the benchmark task of Sec. 2.1, but might lead to different results in larger systems
with sparse input activations.
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wi(t+ 1) = wi(t)− α
∂L1(t)

∂wi(t)
−Ω

∂L2(t)

∂wi(t)

= wi(t)− αδ(t)
∂δ(t)

∂wi(t)
−Ωwi(t)x

2
i (t)

= wi(t) + αδ(t)
∂y(t)

∂N(t)

∂N(t)

∂wi(t)
−Ωwi(t)x

2
i (t)

= wi(t) + αδ(t)(1 − y2(t))xi(t)−Ωwi(t)x
2
i (t) (8)

with constants α and Ω. If we identify the constant α with the slowly varying
learning rate αi and the constant Ω with ωkkacc(t) (which is justified, because
kacc(t) approaches – after a transient phase – a roughly constant value), then
Eq. (8) reproduces the weight update rule Eq. (6) for n-IDBD.

The β-update rule is governed by the minimization of L1

βi(t+ 1) = βi(t)− θ
∂L1(t)

∂βi(t)

= βi(t)− θδ(t)
∂δ(t)

∂βi(t)

= βi(t) + θδ(t)
∂y(t)

∂N(t)

∂N(t)

∂wi(t)

∂wi(t)

∂βi(t)

= βi(t) + θδ(t)(1 − y2(t))xi(t)hi(t) (9)

where we have defined hi(t) ≡ ∂wi(t)
∂βi(t)

as in [10]. We abbreviate Y (t) ≡ (1−y2(t))

and derive the h-update rule:

hi (t+ 1) =
∂

∂βi
wi(t+ 1)

=
∂

∂βi

(
wi(t) + eβiδ(t)Y (t)xi(t)−Ωwi(t)x

2
i (t)

)
= hi(t) +

[
eβiδ(t)Y (t) + eβi

∂δ(t)

∂βi
Y (t) + eβiδ(t)

∂Y (t)

∂βi

]
xi(t)−Ωhi(t)x

2
i (t)

= hi(t) + αi

[
δ(t)Y (t) +

∂δ(t)

∂βi
Y (t) + δ(t)

∂Y (t)

∂βi

]
xi(t)−Ωhi(t)x

2
i (t) (10)

The terms in square brackets come from the threefold product rule when taking
the partial derivative of eβiδ(t)Y (t) with respect to βi. We know from Eq. (9)
that

∂δ(t)

∂βi
= −Y (t)xi(t)hi(t)

Similarly we obtain

∂Y (t)

∂βi
=

∂(1− y2(t))

∂βi
= −2y(t)

∂y(t)

∂βi
= −2y(t)Y (t)xi(t)hi(t)
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If we put everything together and collect terms in Eq. (10), it is straightforward
to derive

hi(t+ 1) = hi(t)
[
1− (αiY (t)Z(t) +Ω) x2

i (t)
]
+ αiδ(t)Y (t)xi(t) (11)

with Z(t) = Y (t) + 2y(t)δ(t)

which is, after adding a positive-bounding operation for the term in square brack-
ets, the h-update rule of n-IDBD. Here the Ω-term ensures stability as well: Even
close to saturation (when y2(t) ≈ 1, hence Y (t) ≈ 0) the Ω-term guarantees the
decay of hi.
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