
Evolving Mixtures of n-gram Models

for Sequencing and Schedule Optimization

Chung-Yao Chuang and Stephen F. Smith

The Robotics Institute, Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh, PA 15213, USA

cychuang@cmu.edu, sfs@cs.cmu.edu

Abstract. In this paper, we describe our work on Estimation of Dis-
tribution Algorithms (EDAs) that address sequencing problems, i.e., the
task of finding the best ordering of a set of items or an optimal sched-
ule to perform a given set of operations. Specifically, we focus on the
use of probabilistic models that are based on n-gram statistics. These
models have been used extensively in modeling statistical properties of
sequences. We start with an EDA that uses a bigram model, then ex-
tend this scheme to higher-order models. However, directly replacing the
bigram model with a higher-order model often results in premature con-
vergence. We give an explanation on why this is the case along with some
empirical support for our intuition. Following that, we propose a tech-
nique that combines multiple models of different orders, which allows
for smooth transition from lower-order models to higher-order ones. Fur-
thermore, this technique can also be used to incorporate other heuristics
and prior knowledge about the problem into the search mechanism.

1 Introduction

Estimation of Distribution Algorithms (EDAs) are a class of population-based
stochastic search techniques that search the solution space by learning and sam-
pling probabilistic models [1,2]. Using probabilistic models in the search mech-
anism enables EDAs to adopt techniques from machine learning and statistics
to automatically discover patterns exhibited in a set of promising solutions. In
past studies, EDAs have been applied to a variety of academic and real-world
optimization problems [2,1], achieving competitive results in many scenarios:
chemical applications [3], power systems [4], and environmental resources [5], to
name a few. Most of these studies were focused on domains in which a solution
can be naturally represented as a fixed-length string with no ordering dependen-
cies. However, many interesting and important optimization problems require
the determination of a best ordering of a set of items or an optimal sequence to
perform a given set of operations. In this work, we are interested in solving such
kind of sequencing problems through the paradigm of EDAs.

One classical example of this kind of problem is the Traveling Salesman Prob-
lem (TSP). The objective of the TSP is to find the shortest route for a traveling
salesman who is on the mission to visit every city on a given list precisely once
and then return to the initial city. This task is equivalent to finding the Hamilto-
nian cycle that has the smallest cost in a complete weighted graph. The TSP is

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 312–321, 2014.
c© Springer International Publishing Switzerland 2014

Evolving Mixtures of n-gram Models 313

celebrated because many scientific and engineering problems can be formulated
as TSPs and it has long been used to study sequencing and scheduling problems.
In this paper, we will use the TSP as our model problem for evaluation purposes.

Some previous works can be found in the literature that deal with sequencing
and scheduling problems by means of EDAs. However, most of these approaches
are direct adaptations of EDAs designed for discrete or continuous problems
that have no ordering properties. Earliest attempts [6] applied discrete EDAs
as if a solution has no sequential dependencies. The obvious drawback is that
the information of relative ordering among items is not explicitly considered in
the constructed models. This deficiency may be the cause of low success rate
in finding the global optimum as reported in [6,7,8]. Adaptation of continuous
EDAs [6,9] has also been explored. Most of the research in this direction uses the
random keys representation [10]. Using this representation, some of the informa-
tion about the relative ordering of the items can be encoded in the probabilistic
model. However, with this type of construct, an algorithm has to search for so-
lutions in a largely redundant real-valued space. This inefficiency is reflected in
their relatively inferior performance in the review by Ceberio et al. [11].

The limitation of these direct adaptation of EDAs designed for problems
without ordering properties encourage the EDA community to invent other ap-
proaches that specifically target the sequencing problems. More relevant to this
research is the work done by Tsutsui et al. [7,8]. They proposed an approach
called Edge Histogram Based Sampling Algorithm (EHBSA), which constructs
an edge histogram matrix by counting the number of occurrences that item i and
item j appear consecutively in the sequences. For TSP, this is how many times
the link between the i-th and j-th city is observed in promising solutions. Based
on this statistics, a distribution is estimated that gives conditional probability
of the next item given the previous one. This approach is equivalent to estimat-
ing a bigram model from the current population. In this research, we work on
generalizing this idea to n-gram models.

Although this generalization seems straightforward, as we will show empiri-
cally, the naive approach of increasing the order of the model (e.g., using trigram
instead of bigram) does not work. Instead, we developed a method that uses lin-
ear interpolation to combine multiple models of different orders, and utilize a
holdout set to estimate the weight associated with each model. In this way, we
can gradually shift the emphasis from a low-order model to higher order ones
as longer patterns emerge in the population. Furthermore, as we will show in
Sect. 5, this technique can also be used to incorporate other heuristics and prior
knowledge about the problem into the search mechanism.

In the next section, we will describe the formulation of the n-gram models.
After that, Sect. 3 introduces our approach of using n-gram models for guiding
the search process. It also discusses the difficulty encountered when moving from
bigram model to higher-order models. In Sect. 4, we present a method that is
able to combine multiple models of different orders, and thus provides a smooth
transition from lower-order model to higher-order ones. Sect. 5 further describes
how we can use this same method to incorporate other heuristics and prior
knowledge about the problem into the search mechanism. We briefly discuss
some characteristics of our proposal in Sect. 6. Finally, Sect. 7 summarizes this
paper and points out the future direction of our work.

314 C.-Y. Chuang and S.F. Smith

2 Modeling Sequence Properties with n-gram Statistics

An n-gram is a pattern of n consecutive items, which is usually a segment from a
longer sequence. Such a construct is often used in the tasks of modeling statisti-
cal properties of sequences, especially in the field of natural language processing
(NLP). For example, a classic task in NLP is to predict the next word given the
previous words. Such task can be stated as attempting to estimate the condi-
tional probability of observing some item wi as the next item given the history
of items seen so far. The n-gram approach to this estimate is to make a Markov
assumption that only prior local context—the last few items—affects the next
item. More formally, we are interested in estimating

P (Wi = wi|Wi−n+1 = wi−n+1, . . . ,Wi−1 = wi−1)

where the sequence w1, w2, · · · is some instantiation of a sequence of random
variables W1,W2 · · · . In the following, we will use P (wi|wi−n+1 · · ·wi−1) as a
shorthand for this probability function.

The obvious first answer to the above formulation is to suggest using a max-
imum likelihood estimate (MLE):

PMLE(wi|wi−n+1 · · ·wi−1) =
C(wi−n+1 · · ·wi−1wi)∑
v∈V C(wi−n+1 · · ·wi−1v)

where C(wi−n+1 · · ·wi−1wi) is the frequency of a certain n-gram in the train-
ing samples, and V is the set of possible items. However, a drawback is that
MLE assigns a zero probability to unseen events, which effectively zeros out the
probability of sequences with component n-grams that just happened not ap-
pearing in the training samples. For our scenario, this creates a risk of arbitrarily
discarding some portion of the unexplored search space. Thus, we need a more
suitable estimator that takes previously unseen patterns into consideration.

A simple solution to this problem is to smooth the distribution with some
pseudocount κ:

Pκ(wi|wi−n+1 · · ·wi−1) =
C(wi−n+1 · · ·wi−1wi) + κ

∑
v∈V (C(wi−n+1 · · ·wi−1v) + κ)

where κ is usually set to a value smaller than 1. In this work, we use this
simple method to allocate probability mass for unobserved events, though more
sophisticated estimators are possible for this task.

3 An EDA Framework with n-gram Models

This section describes the basic approach that uses n-gram models in the EDA
framework for sequencing and scheduling problems. To briefly recap the opera-
tions performed by an EDA: At each iteration, we start with a set of promis-
ing solutions, then the algorithm constructs a probabilistic model based on the
statistics gathered from those solutions. Once a model is learned, a number of
new solutions will be generated by sampling the model to replace solutions in
the current population according to some replacement strategy.

Evolving Mixtures of n-gram Models 315

Table 1. Observations on solving gr48

Method
Success
Rate

of Evaluations
mean std

2G 30/30 277024 34535.4
3G 9/30 224640 118490.2

2G 800 iter.−−−−→3G 30/30 240032 20753.3

In this work, instead of generating an entire solution anew, we first take an ex-
isting solution from the current population and randomly extract a subsequence
from that solution. This segment will then be taken as the first part of the new
solution and serve as the “history” on which the further sampling is based. This
kind of partial sampling technique has been used by previous researchers such
as Chuang and Chen [12] and Tsutsui et al. [8], achieving better usage of diver-
sity and resulting in significant improvement in performance. For our purpose,
this has an additional benefit of providing a convenient basis to initialize the
sampling from the n-gram models.

Once we have the first part of the new solution, we will further generate the
rest of the solution by repeatedly sampling the n-gram model, with previous
n− 1 items as the history. In order to have a valid solution, the set of possible
items V may be varied as the sampling goes on. For example, when dealing with
the TSPs, the set of possible next cities V has to be altered to exclude cities
that have already been included in the constructed partial solution.

To summarize the overall flow of the algorithm: At each iteration, we slide a
window of size n through each solution in the current population to obtain the
frequency counts of n-gram patterns. This statistics is then used for estimating
an n-gram model in the form of a conditional distribution. To generate a new
solution, we use partial sampling on an existing solution in the current popula-
tion. Each solution in the current population is visited once for such sampling.
Following each partial sampling, a replacement competition is hold between the
new solution and the solution from which that new solution’s starting segment
was extracted. Note that we use replacement as the sole means for selecting
promising solutions, i.e., better solutions are preserved under the replacement
process. This is similar to the evolution strategies [13], in which every solution in
the current population is seen as a potentially good solution because they have
survived previous replacement competitions.

As a first step, we examine the performance of using a bigram model

P2G(wi|wi−1) =
C(wi−1wi) + κ

∑
v∈V (C(wi−1v) + κ)

for solving a 48-city TSP instance, gr48, taken from TSPLIB1 [14]. Let � denote
the problem size. In this experiment, the population size N is set to 5�, the
pseudocount is set to κ = 0.01, and the termination criterion is when either
the optimal tour is found or when the algorithm reaches 50� iterations. We ran
the algorithm 30 times to observe the average performance. The result of the
experiment is presented in Table 1. It shows the success rate in finding the
optimal tour and the average number of objective function evaluations used by

1 http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

316 C.-Y. Chuang and S.F. Smith

the algorithm among the successful runs. It can be seen that the bigram approach
gives a pretty decent performance. It shows a high success rate in finding the
global optimum, and a reasonable usage of function evaluations.

A tempting thought to proceed is to increase the order of the model. For
example, instead of using bigram, we could use a trigram model

P3G(wi|wi−2wi−1) =
C(wi−2wi−1wi) + κ

∑
v∈V (C(wi−2wi−1v) + κ)

for learning the patterns. However, as shown in Table 1, this results in a signifi-
cant drop in success rate. Our explanation is that at early stage of a run, there
are not so many long patterns that are of good quality. If we attempt to use a
higher-order model to learn longer patterns when there are none, we will end up
encoding mediocre patterns into the model. Thus, a better way to proceed may
be to use a low-order model like bigram model at the beginning of a run and
switch to higher-order ones after longer patterns have emerged in the population.

To provide some empirical support for this conjecture, we modified the process
to begin with a bigrammodel, and then switch to the trigram after 800 iterations.
As shown in the third row of Table 1, the success rate returns to the same level as
using the bigram model and it shows some improvement on function evaluations
over the bigram approach. It seems that we can use this technique to gradually
move to higher-order models. However, choosing an appropriate schedule to make
such switches is a nontrivial task. To address this issue and avoid having to
choose a fixed switching point to elevate to a higher-order model, we propose an
approach that estimates multiple n-grammodels of different orders and combines
those models into one composite model. The method automatically calibrates the
degree of emphasis placed on each n-gram model. The detail of our formulation
is presented in the next section.

4 Combining Multiple Models with Linear Interpolation

Specifically, we formulate the synthesis of multiple models as a linear combina-
tion of distributions

P (wi|hi) =
∑

j

λjPj(wi|hi) (1)

where hi represents the history of items we have seen so far, j is the index to a
particular model, and λj is the weight associated with the j-th model such that
λj > 0 and

∑
j λj = 1. A combination of bigram and trigram model will be

P2G+3G(wi|hi) = λ2GP2G(wi|wi−1) + λ3GP3G(wi|wi−2wi−1)

Assuming that we want to combine K models together, for this formulation,
we have to determine K weights, λ1, λ2, . . . , λK , associated with those models.
To do this, we reserve a portion of the population for the task of estimating
appropriate values for those λj ’s. Suppose that there are M items in such a
holdout set for which we can give conditional probabilities. For each model Pj , we
create a probability stream pj = (pj1, pj2, . . . , pjM) where pji is the probability
of item wi predicted by the model Pj , i.e., pji = Pj(wi|hi). These K probability

Evolving Mixtures of n-gram Models 317

Algorithm 1. Estimating the Weights λj ’s

Input: A set of probability streams {p1,p2, . . . ,pK},
such that each pj = (pj1, pj2, . . . , pjM) is of length M .

Initialize Λ(0) = {λ(0)
1 , λ

(0)
2 , . . . , λ

(0)
K } s.t. each λ

(0)
j > 0 and

∑K
j=1 λ

(0)
j = 1

repeat from t = 0

For j = 1 . . .K, update λj using λ
(t+1)
j = 1

M

∑M
i=1

λ
(t)
j pji

∑
K
k=1 λ

(t)
k pki

t = t+ 1
until the difference between Λ(t) and Λ(t−1) is small
return Λ(t)

streams (each of length M) are then used as the input to Algorithm 1 [15]. The
resulting λj ’s optimize the average likelihood with respect to this holdout set2.

Fig. 1. Typical variation of weights as-
sociated with P2G and P3G. This illustra-
tion is from a run on gr48 with N = 450
and 30% of the population as holdout set.

To illustrate the search behavior,
Fig. 1 shows the variation of weights
in a typical run that uses a combina-
tion of the bigram and trigram mod-
els. The weight for the bigram model
starts out with a high value and grad-
ually decreases. On the other hand, the
weight of the trigram model will begin
to dominate in later part of the search,
meaning that we do more and more sam-
pling with the trigram model. Based on
this self-adaptive behavior, which ad-
justs the weights automatically, we call
our proposal the “evolving mixture.”

To evaluate our proposal, we per-
formed a set of experiments on ten TSP instances from TSPLIB. The parameters
to the algorithms are listed in Table 2. As before we ran each algorithm 30 times
to give the average performance. The outcomes are presented in Table 3. In
each table, we listed the success rate of each algorithm and its average usage of
function evaluations among the successful runs. Note that the trailing number
in each instance’s name represents the number of cities in that instance.

The result of using evolving mixture to combine bigram and trigram is listed
in the third row of each table. Comparing to the trigram approach (second row of
the table), it gives a significantly better success rate, which is at the same level of
the bigram approach. On the other hand, when compared with bigram approach,
the evolving mixture approach uses less function evaluations on average.

5 Incorporating Other Heuristics

In its formulation of Eq. (1), we did not put a restriction on the type of the
models that can be included. It does not have to be an n-gram model for the

2 For simplicity, we use maxj |λ(t)
j −λ

(t−1)
j | < 0.001 as condition to terminate Algo. 1.

318 C.-Y. Chuang and S.F. Smith

Table 2. Parameter Settings

(a) For problem size � < 70

Parameters Value
population size N = 5�
pseudocount κ = 0.01
size of holdout set R = �N

10�
max iterations 50�

(b) For problem size � >= 70

Parameters Value
population size N = 5�
pseudocount κ = 0.001
size of holdout set R = �N

10�
max iterations 80�

evolving mixture to work. The only constraint is that the model takes the form of
a (conditional) probability distribution. We can even push the envelop to include
something that just looks like a probability distribution.

For example, if we want to incorporate a distance-based heuristic for TSP into
the search mechanism, we could do so by crafting an “artificial distribution”

PDH(wi|wi−1) =
d(wi−1, wi)

−10

∑
v∈V d(wi−1, v)−10

where d(u, v) is the distance between city u and city v. In short, this formula
assigns a larger probability mass to a city that has shorter link to the last city
in the partial tour constructed so far.

To see the effect of incorporating such a heuristic, we performed experiments
on the same set of TSP instances as previous section. The results are presented
in the fourth rows of Table 3. It can be observed that the performance improves
significantly. Comparing to using only n-gram models, it uses far less function
evaluations, especially for larger instances, while retaining a high success rate.
For completeness, we also include the results of using solely the distance-based
heuristic for updating the population.

6 Discussion

Fig. 2. Typical variation of weights as-
sociated with P2G, P3G and PDH. This
illustration is from a run on st70 with
N = 500 and 30% of the population as
holdout set.

The previous section showcased how we
can use evolving mixture to incorporate
other heuristics and prior knowledge
about the problem into the search mech-
anism. The results also provide some
support for our intuition that different
methods or heuristics may be more suit-
able than others at different stages of
the optimization process. For example,
Fig. 2 shows the shifts of weights among
three distributions in a run for solv-
ing st70. It illustrates how the evolv-
ing mixture adjusts the emphasis on
different models and heuristics at differ-
ent stages of the process. This adjust-
ment is dynamically determined based
on the promising solutions in the holdout set. We believe that this dynamic be-
havior may lead to a more efficient search strategy for finding the global optima.

Evolving Mixtures of n-gram Models 319

Table 3. Experiment Results

(a) ulysses16

Method
Success
Rate

of Evaluations
mean std

2G 30/30 5461.3 902.4
3G 23/30 7207.0 10552.4

2G+3G 30/30 5040.0 1250.3
2G+3G+DH 30/30 4597.3 973.0

DH 30/30 17725.3 12070.3

(b) gr24

Method
Success
Rate

of Evaluations
mean std

2G 30/30 18436.0 2356.7
3G 25/30 16574.4 11117.6

2G+3G 30/30 16492.0 2325.1
2G+3G+DH 30/30 11432.0 1717.7

DH 30/30 13340.0 6265.2

(c) bay29

Method
Success
Rate

of Evaluations
mean std

2G 30/30 36332.0 3914.3
3G 22/30 40336.4 43365.6

2G+3G 30/30 31218.5 3409.1
2G+3G+DH 29/30 22785.0 3251.0

DH 19/30 107063.4 44051.6

(d) att48

Method
Success
Rate

of Evaluations
mean std

2G 27/30 298053.3 54469.6
3G 10/30 196176.0 127370.7

2G+3G 26/30 215021.5 18175.5
2G+3G+DH 30/30 111544.0 10272.6

DH 28/30 265637.1 90849.8

(e) gr48

Method
Success
Rate

of Evaluations
mean std

2G 30/30 277024.0 34535.4
3G 9/30 224640.0 118490.2

2G+3G 30/30 230048.0 23985.8
2G+3G+DH 30/30 154984.0 20243.5

DH 0/30 N/A N/A

(f) eil51

Method
Success
Rate

of Evaluations
mean std

2G 19/30 493572.6 73781.0
3G 2/30 199665.0 39308.1

2G+3G 21/30 391182.1 90013.1
2G+3G+DH 29/30 217031.4 52819.1

DH 8/30 448513.1 157609.4

(g) berlin52

Method
Success
Rate

of Evaluations
mean std

2G 29/30 264276.6 74339.8
3G 9/30 320348.9 237082.3

2G+3G 29/30 217171.7 26798.3
2G+3G+DH 30/30 113906.0 9854.6

DH 30/30 180882.0 77478.7

(h) st70

Method
Success
Rate

of Evaluations
mean std

2G 30/30 1426938.3 201534.3
3G 12/30 554983.3 69040.0

2G+3G 29/30 930444.8 76827.8
2G+3G+DH 30/30 298841.7 16886.3

DH 0/30 N/A N/A

(i) kroA100

Method
Success
Rate

of Evaluations
mean std

2G 30/30 3484900.0 208750.7
3G 7/30 2068357.1 233884.2

2G+3G 30/30 2773483.3 107248.1
2G+3G+DH 30/30 650783.3 46476.1

DH 0/30 N/A N/A

(j) lin105

Method
Success
Rate

of Evaluations
mean std

2G 30/30 3772142.5 230364.5
3G 3/30 1984325.0 154667.8

2G+3G 28/30 2844131.3 119353.2
2G+3G+DH 30/30 572197.5 19629.8

DH 0/30 N/A N/A

320 C.-Y. Chuang and S.F. Smith

Table 4. Performance Comparison

(a) Solving gr48

Method N
Success
Rate

of Evaluations
mean std

OX 120 0/10 N/A N/A
OX 960 2/10 287852 6706
eER 120 0/10 N/A N/A
eER 960 5/10 166286 4932
PMX 120 0/10 N/A N/A
PMX 960 0/10 N/A N/A

EHBSA-WT 120 10/10 144032 29115
2G+3G 120 10/10 131724 16748

2G+3G+DH 120 10/10 83508 17105

(b) Solving pr76

Method N
Success
Rate

of Evaluations
mean std

OX 120 0/10 N/A N/A
OX 960 0/10 N/A N/A
eER 120 0/10 N/A N/A
eER 960 3/10 394887 22321
PMX 120 0/10 N/A N/A
PMX 960 0/10 N/A N/A

EHBSA-WT 120 9/10 457147 65821
2G+3G 120 10/10 405660 54893

2G+3G+DH 120 10/10 195960 28123

Readers who are familiar with the Ant Colony Optimization (ACO) [16] might
relate ACO to our approach in the aspect that they both use some distance-based
heuristics to provide partial guidance for the search process. However, the cru-
cial difference between the two is that ACO holds the heuristic term constant
throughout a run with a user-specified parameter. On the other hand, our pro-
posal dynamically adjusts the weights associated with the incorporated models
and heuristics as the search proceeds. As mentioned previously, we think this
dynamic adjustment may be more efficient than the static combination. Further-
more, it also simplifies some of the manual tuning associated with incorporating
multiple models and heuristics.

7 Summary and Future Works

In this work, we have experimented with a set of EDAs that use probabilistic
models estimated from n-gram statistics. To provide a smooth transition from
lower-order model to higher-order ones, we proposed using a method that com-
bines multiple models in the form of a linear combination. The weights associated
with those models are estimated automatically from a reserved portion of the
population. An additional advantage of this approach is that it also provides a
convenient way to incorporate other heuristics and prior knowledge about the
problem into the search mechanism.

As future work, we would like to compare our proposal to other approaches
that also deal with sequencing problems. To provide some initial comparison,
we adopt some experiment results from Tsutsui et al.’s work [8] which lists the
performance of their method, EHBSA-WT3, along with three other classical EA
approaches, OX [17], eER [18] and PMX [19], on two TSP instances taken from
TSPLIB. Note that EHBSA-WT gave the bset empirical performance on TSPs
in the review by Ceberio et al. [11]. To compare our proposals with those ap-
proaches, we adopted their settings for running our algorithms. Table 4 shows
the results of our methods along with the data taken from [8]. Note that in these
experiments, we followed their setting which only performs ten runs per algo-
rithm. For statistical significance, this might not be enough. So, the comparison
should be taken merely as suggestive. However, the margin between our proposal
and other methods seems to be quite prominent. Thus, we believe our proposal
offers a promising direction for further investigation and development.

3 A variant of EHBSA. More specifically, we adopt the results of configuration EHBSA-
WT2, which is more similar to our proposal in the way of doing partial sampling.

Evolving Mixtures of n-gram Models 321

References
1. Larrañaga, P., Lozano, J.A.: Estimation of Distribution Algorithms: A New Tool

for Evolutionary Computation. Kluwer Academic Publishers (2001)
2. Pelikan, M., Sastry, K., Cantú-Paz, E.: Scalable optimization via probabilistic mod-

eling: From algorithms to applications. Springer (2006)
3. Mendiburu, A., Miguel-Alonso, J., Lozano, J.A., Ostra, M., Ubide, C.: Parallel

EDAs to create multivariate calibration models for quantitative chemical applica-
tions. Journal of Parallel and Distributed Computing 66(8), 1002–1013 (2006)

4. Chen, C.H., Chen, Y.P.: Real-coded ECGA for economic dispatch. In: Proceedings
of the 9th GECCO, pp. 1920–1927. ACM (2007)

5. Ducheyne, E.I., De Baets, B., De Wulf, R.: Probabilistic models for linkage learning
in forest management. In: Knowledge Incorporation in Evolutionary Computation,
pp. 177–194. Springer (2005)

6. Robles, V., deMiguel, P., Larranaga, P.: Solving the traveling salesman problemwith
EDAs. In: Estimation of Distribution Algorithms, pp. 211–229. Springer (2002)

7. Tsutsui, S.: Probabilistic model-building genetic algorithms in permutation rep-
resentation domain using edge histogram. In: Guervós, J.J.M., Adamidis, P.A.,
Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002.
LNCS, vol. 2439, pp. 224–760. Springer, Heidelberg (2002)

8. Tsutsui, S., Pelikan, M., Goldberg, D.E.: Using edge histogram models to solve per-
mutation problems with probabilistic model-building genetic algorithms. Technical
Report 2003022 (2003)

9. Lozano, J.A., Mendiburu, A.: Solving job scheduling with estimation of distribution
algorithms. In: Estimation of Distribution Algorithms: A New Tool for Evolution-
ary Computation, pp. 231–242. Kluwer Academic Publishers (2002)

10. Bean, J.C.: Genetic algorithms and random keys for sequencing and optimization.
INFORMS Journal on Computing 6(2), 154–160 (1994)

11. Ceberio, J., Irurozki, E., Mendiburu, A., Lozano, J.A.: A review on estimation
of distribution algorithms in permutation-based combinatorial optimization prob-
lems. Progress in Artificial Intelligence 1(1), 103–117 (2012)

12. Chuang, C.Y., Chen, Y.P.: On the effectiveness of distributions estimated by prob-
abilistic model building. In: Proceedings of the 10th annual conference on Genetic
and evolutionary computation, pp. 391–398. ACM (2008)

13. Beyer, H.G., Schwefel, H.P.: Evolution strategies–a comprehensive introduction.
Natural Computing 1(1), 3–52 (2002)

14. Reinelt, G.: TSPLIB–a traveling salesman problem library. ORSA Journal on Com-
puting 3(4), 376–384 (1991)

15. Jelinek, F., Mercer, R.L.: Interpolated estimation of markov source parameters from
sparse data. In: Proceedings of the Workshop on Pattern Recognition in Practice
(1980)

16. Dorigo, M., Gambardella, L.M.: Ant colony system: A cooperative learning ap-
proach to the traveling salesman problem. IEEE Transactions on Evolutionary
Computation 1(1), 53–66 (1997)

17. Oliver, I.M., Smith, D.J., Holland, J.R.C.: A study of permutation crossover opera-
tors on the traveling salesman problem. In: Proceedings of the Second International
Conference on Genetic Algorithms on Genetic Algorithms and Their Application,
pp. 224–230. Erlbaum Associates Inc., Hillsdale (1987)

18. Starkweather, T., Mcdaniel, S., Whitley, D., Mathias, K., Whitley, C.: A compar-
ison of genetic sequencing operators. In: Proceedings of the Fourth International
Conference on Genetic Algorithms (1991)

19. Goldberg, D.E., Lingle, R.: Alleles, loci and the traveling salesman problem. In:
Proceedings of the First International Conference on Genetic Algorithms and Their
Applications, pp. 154–159 (1985)

	Evolving Mixtures of n-gram Modelsfor Sequencing and Schedule Optimization
	1 Introduction
	2 Modeling Sequence Properties with n-gram Statistics
	3 An EDA Framework withn-gram Models
	4 Combining Multiple Models with Linear Interpolation
	5 Incorporating Other Heuristics
	6 Discussion
	7 Summary and Future Works
	References

