
A Study on Multimemetic Estimation

of Distribution Algorithms

Rafael Nogueras and Carlos Cotta

Dept. Lenguajes y Ciencias de la Computación, Universidad de Málaga,
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Abstract. Multimemetic algorithms (MMAs) are memetic algorithms
in which memes (interpreted as non-genetic expressions of problem-
solving strategies) are explicitly represented and evolved alongside
genotypes. This process is commonly approached using the standard ge-
netic procedures of recombination and mutation to manipulate directly
information at the memetic level. We consider an alternative approach
based on the use of estimation of distribution algorithms to carry on this
self-adaptive memetic optimization process. We study the application of
different EDAs to this end, and provide an extensive experimental evalu-
ation. It is shown that elitism is essential to achieve top performance, and
that elitist versions of multimemetic EDAs using bivariate probabilistic
models are capable of outperforming genetic MMAs.

1 Introduction

Memetic algorithms [8, 14] can be regarded as a pragmatic integration of ideas
from population-based global search techniques and trajectory-based local search
techniques [12]. One of the central tenets in the paradigm is the notion of meme,
famously defined by Richard Dawkins as units of imitation [5]. Within this opti-
mization context, memes translate to computational problem-solving procedures.
While this definition is broad enough to encompass a wide variety of techniques,
it is typically the case that memes are assimilated to local-search procedures.
Even more so, these procedures are often fixed or pre-defined and therefore the
MA can be regarded as operating with static implicit memes. This said, the ex-
plicit management of memes is a topic that has been around for some time now,
and can be found in, e.g., multimemetic algorithms (MMAs) [9], in which each
solution carries memes indicating how self-improvement is going to be conducted.
Such memes are subject to evolution using the standard genetic procedures of
recombination and mutation, thus conforming a self-adaptive search approach.

In this work we are going to consider the use of estimation of distribution algo-
rithms (EDAs) [10,11,17] as the underlying search engine for multimemetic opti-
mization. While the use of local search procedures in combination with EDAs is a
widely-known approach to inject problem-dependent knowledge and improve the
efficiency of the optimization process –see, e.g., [16, 18, 19, 22]– the use of EDAs
for self-adaptive memetic optimization has been less explored. The contribution
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of this work is taking some steps in this direction, studying different approaches
for the application of EDAs to multimemetic optimization, and providing an
extensive empirical evaluation of their performance.

2 Multimemetic EDAs

As mentioned above, the core idea of MMAs is the explicit treatment of memes
within the evolutionary process. Hence, we shall firstly describe the representa-
tion of memes, before getting into the deployment of EDAs in this context.

2.1 Meme Representation and Application

Memes, conceived as non-genetic expressions of problem-solving strategies, can
be represented in many ways depending on the level of abstraction and problem
dependance considered. In this work we follow some ideas posed by Smith [20]
in the context of pseudoboolean function optimization. Therein, memes are
expressed as pattern-based rewriting rules [condition→action] as follows: let
[C → A] be a meme, where C,A ∈ Σr with Σ = {0, 1,#} and r ∈ N being some
constant. In this ternary alphabet ‘#’ represents a wildcard symbol; let g1 · · · gn
be a genotype; a meme [c1 · · · cr → a1 · · · ar] could be applied on any substring of
the genotype into which the condition fits, i.e., for which gi · · · gi+r−1 = c1 · · · cr
(for this purpose, wildcard symbols in the condition are assumed to match any
symbol in the genotype). If the meme were to be applied on position i, its ac-
tion would be to implant the action a1 · · · ar in that part of the genotype, i.e.,
letting gi · · · gi+r−1 ← a1 · · · ar (in this case, wildcard symbols in the action are
taken as don’t-change symbols, that is, keeping unchanged the corresponding
symbol in the genotype – we depart here from [20] in which wildcards in the
action represented the binary complement of the original gene). The genotype
is scanned in a randomized order to check for potential application sites of the
meme so as to avoid positional bias. If a match is found the meme is applied and
the resulting neighboring genotype is evaluated. A parameter w determining the
maximal number of meme applications per individual is used to keep the total
cost of the process under control. The best neighbor generated throughout the
precess is kept if it is better than the current genotype.

2.2 EDA Approaches

The underlying idea in the MMA model considered is to have genetic and
memetic information linked within a single individual, i.e., each individual car-
ries a genotype and a meme. Once an individual is generated, its genotype is
evaluated and the meme is subsequently applied in order to improve it. Whereas
these individuals are generated by means of evolutionary operators –such as
recombination and mutation– in standard genetic MMAs, multimemetic EDAs
approach this by probabilistic sampling of a certain distribution which is evolved
during the run. Let us focus on how this is done.
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EDAs try to learn the joint probability distribution p(x) representing the most
promising individuals at each generation. Such generations comprise a cycle of
(1) sampling p(x) to obtain a population pop, selecting the most promising
individuals pop′ from pop, and updating p(x) using pop′. Different EDAs can be
considered depending on the way they model the joint probability distribution
p(x). In this work, we have considered the following ones:

– Univariate models : variables are assumed to be independent and hence the
joint probability distribution p(x) is factorized as

p(x) =

n∏

i=1

p(xi).

The simplest such EDA is UMDA [13], in which p(xi) is estimated as

p(xi = v) =
1

k

k∑

j=1

δ(pop′ji, v),

where k = |pop′|, pop′ji is the value of the i-th variable of the j-th individual
in pop′, and δ(·, ·) is Kronecker delta (δ(a, b) = 1 if a = b and δ(a, b) = 0
otherwise). A generalization of UMDA is PBIL [2], an algorithm in which
the probabilistic model is updated using a linear combination of its current
value and the new value learnt from the sample, i.e.,

p′(xi = v) = (1 − η)p(xi = v) + η
1

k

k∑

j=1

δ(pop′ji, v)

for some learning rate parameter η (0 < η � 1). Note that PBIL reduces to
UMDA for η = 1.

– Bivariate models : these models can capture low order dependencies by as-
suming relations between pairs of variables. More precisely, in the models
considered here p(x) is factorized as

p(x) = p(xi1 )

n∏

j=2

p(xij |xia(j)
),

where i1 · · · in is a permutation of the indices 1 · · ·n, and a(j) < j is the
permutation index of the variable which xij depends on. The particular
EDAs considered within this class are based on MIMIC [3] and COMIT [1].
In the first case, we assume a(j) = j − 1 (i.e., each variable depends on the
previous one in the permutation) and the permutation is built by picking i1
as the variable with the lowest entropy H(Xk) in the selected sample pop′,
and then picking ij (j > 1) as the variable (among those not yet selected)
that minimizes the conditional entropy H(Xk|Xij−1 ). Along this line, we
build a COMIT-based approach by not restricting a(j) = j− 1, thus picking
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ij as the variable that minimizes H(Xk|Xis , s < j). Thus, while in the first
case we have a linear dependence structure, in this second case we have a
tree dependence structure. Note finally that in these bivariate multimemetic
EDAs we compute separate models for both genotypes and memes.

In all cases, the probability estimation for model updating includes Laplace cor-
rection [4] in order to prevent premature convergence, always allowing a non-zero
rate of exploration. Furthermore, we also consider for each of the EDAs presented
an elitist counterpart1, in which the new population is created by truncation se-
lection from the union of of the selected sample in the previous step and the
sample extracted from the current model. As shown by [7], Laplace-corrected
elitist EDAs can converge to a population containing the global optimum.

3 Experimental Analysis

In order to analyze the performance of the multimemetic EDAs described in
previous section we have considered a collection of pseudoboolean optimization
problems. These are described in Sect. 3.1; subsequently we shall analyze the
results in Sect. 3.2.

3.1 Benchmark and Settings

The test suite comprises four different problems defined on binary strings, namely
Deb’s trap function [6], Watson et al.’s hierarchically consistent test problems
(HIFF and HXOR) [21] and Boolean satisfiability. These are described below.

Deb’s 4-bit fully deceptive function (TRAP henceforth) is defined as

ftrap(b1 · · · b4) =
{
0.6− 0.2 · u(b1 · · · b4) if u(b1 · · · b4) < 4

1 if u(b1 · · · b4) = 4
(1)

where u(s1 · · · si) =
∑

j sj is the unitation (number of 1s in a binary string)
function. This function is used as the basic block to build a higher-order problem
by concatenating k such blocks, and defining the fitness of a 4k-bit string as
the sum of the fitness contribution of each block. In our experiments we have
considered k = 32 subproblems (i.e., 128-bit strings, opt = 32).

As to the hierarchically consistent test problems, they are recursive epistatic
functions defined for binary strings of 2k bits by means of two auxiliary functions
f : {0, 1,×} → {0, 1} (used to score the contribution of building blocks), and
t : {0, 1,×} → {0, 1, •} (used to capture the interaction of building blocks),
where ‘•’ is used as a null value. In the case of the Hierarchical if-and-only-if
(HIFF) function f and t are defined as:

1 Note that the original definition of COMIT was already intrinsically elitist. Here we
consider both an elitist and a non-elitist version of this approach.
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f(a, b) =

{
1 a = b �= •
0 otherwise

t(a, b) =

{
a a = b

• otherwise

We use these two functions as follows:

HIFFk(b1 · · · bn) =
n/2∑

i=1

f(b2i−1, b2i) + 2 · HIFFk−1(b
′
1, · · · , b′n/2) (2)

where b′i = t(b2i−1, b2i) and HIFF0(·) = 1. The Hierarchical XOR (HXOR) works
similarly but changing f so as to provide a fitness contribution of 1 when a = 1
and b = 0 or vice versa, and having in that case t(a, b) = a (and t(a, b) = ×
otherwise). We have considered k = 7 (i.e., 128-bit strings, opt = 576)

Finally, the Boolean satisfiability problem is a classical NP-complete problem
which amounts to finding a truth assignment to n variables such that a certain
Boolean formula Φ is satisfied. We consider this formula is expressed in conjunc-
tive normal form with n = 128 variables and k = 3 variables per clause; this
problem is known to have an easy-hard-easy phase transition when varying the
ratio m/n. The difficulty peak is located around m = 4.3n. We use a problem
generator approach in this case, generating a different satisfiable instance with
this critical clauses/variable ratio (opt = m = 550) in each run of the MMA.

We consider multimemetic EDAs as described in Sect. 2, with a population
size of μ = 128 individuals. Selection is done by truncation, keeping the best
50% individuals to update the probabilistic model, and a learning rate η = 0.1 is
used in PBIL. The memes are expressed as rules of length r = 3 and we consider
w = 1 (one rewriting is done and kept if the solution is improved). In all cases
the cost of applying a meme is accounted as a fractional evaluation (i.e., as the
fraction of the fitness function that needs being recomputed due to genotypic
changes) and added to the total number of evaluations. A run is terminated upon
reaching 50,000 evaluations, and 20 runs are performed for each problem and
algorithm. To gauge the results, we also include in the experimentation an equiv-
alent evolutionary MMA –termed sMMA henceforth– using the same population
size (μ = 128) and a generational reproductive plan with binary tournament for
parent selection, one-point crossover (pX = 1.0), bit-flip mutation (pM = 1/�,
where � = 128 is the number of bits), local-search (conducted using the meme
linked to the individual) and replacement of the worst parent (an inherently eli-
tist strategy, following the model presented in [15] – previous experiments with a
non-elitist sMMA yielded globally inferior results, and so did a MA using a fixed
bit-flip meme). In this sMMA, offspring inherit the meme of the best parent,
which is then subject to mutation with probability pM .

3.2 Experimental Results

Full numerical results are provided in Table 1. Firstly, notice that elitist versions
of multimemetic EDAs (denoted by a subscript e) perform in general much better
than their non-elitist counterparts. Furthermore, while the latter are in most
cases inferior to the sMMA, elitist multimemetic EDAs provide top performance
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Table 1. Results (20 runs) of the different MMAs on TRAP, HIFF, HXOR and SAT.
The median (x̃), mean (x̄) and standard error of the mean (σx̄) are shown.

TRAP HIFF HXOR SAT
x̃ x̄± σx̄ x̃ x̄± σx̄ x̃ x̄± σx̄ x̃ x̄± σx̄

sMMA 31.4 30.0 ± 0.5 408.0 427.6 ± 13.9 360.0 360.2 ± 4.4 547.0 546.6 ± 0.4

UMDA 20.0 20.5 ± 0.2 363.0 385.9 ± 19.5 320.5 324.6 ± 5.2 548.0 548.0 ± 0.3
UMDAe 23.9 25.2 ± 0.8 576.0 517.5 ± 16.9 348.0 341.6 ± 6.9 548.0 548.3 ± 0.2
PBIL 19.2 19.2 ± 0.0 276.5 275.1 ± 3.4 270.5 271.0 ± 2.4 543.0 543.8 ± 0.5
PBILe 24.6 25.7 ± 0.7 441.5 441.7 ± 12.1 259.0 258.6 ± 2.2 548.5 548.3 ± 0.3

MIMIC 20.3 20.2 ± 0.1 328.5 330.3 ± 5.0 310.0 312.9 ± 2.5 546.0 545.7 ± 0.4
MIMICe 31.6 31.3 ± 0.2 472.0 493.6 ± 16.3 393.5 397.6 ± 4.7 548.0 548.2 ± 0.2
COMIT 21.0 21.0 ± 0.2 337.5 342.9 ± 5.9 330.0 328.1 ± 3.7 548.0 548.0 ± 0.2
COMITe 32.0 32.0 ± 0.0 424.0 443.8 ± 12.2 408.0 419.4 ± 7.8 548.0 548.0 ± 0.3

Table 2. Statistical comparison among the different multimemetic EDAs using
Wilcoxon ranksum (α = 0.05). For each problem/EDA three symbols are provided,
respectively indicating how the algorithm compares with its (non-)elitist counterpart,
with sMMA, and with the algorithm with the highest median for the corresponding
problem (which is marked with a star � in this third position). A white/black circle
(◦/•) indicates the algorithm labeled in the column has a worse/better median with
statistical significance. A ‘=’ sign indicates no statistically-significant difference.

UMDA UMDAe PBIL PBILe MIMIC MIMICe COMIT COMITe

TRAP ◦◦◦ •◦◦ ◦◦◦ •◦◦ ◦◦◦ •=◦ ◦◦◦ ••�
HIFF ◦◦◦ ••� ◦◦◦ •=◦ ◦◦◦ ••= ◦◦◦ •=◦
HXOR ◦◦◦ •◦◦ •◦◦ ◦◦◦ ◦◦◦ ••◦ ◦◦◦ ••�
SAT =•= =•= ◦◦◦ ••� ◦=◦ ••= =•= =•=

in all problems, and are also globally superior to non-memetic EDAs (results not
shown). This is further investigated in Table 2. As it can be seen, the superiority
of elitist algorithms over non-elitist ones is statistically significant in all cases,
except in PBIL for HXOR and UMDA and COMIT for SAT. Moreover, the
superiority of elitist algorithms over sMMA (mid-symbol in each entry of Table
2) is also statistically significant in most cases. Among the different elitist EDAs,
COMITe seems to provide the best overall results, being the top algorithm in
TRAP (see Fig. 1 for an illustration of fitness evolution on this problem) and
HXOR, and being indistinguishable from PBILe in SAT. It is interesting to
notice the good performance of UMDAe on this problem. This can be due to
the fact that the optimal solution in this case is a homogeneous string (all 0s or
all 1s), a structure which is easily captured by memes; as soon as the simpler
nature of UMDA’s probabilistic model directs the search towards a state with
predominance of either symbol, the memes can facilitate reaching the optimum.
This hypothesis is supported by the comparatively worse results of univariate
algorithms on the HXOR problem, in which the optimal solution contains a 50%-
50% mixture of 1s and 0s, placed in precise locations (so as to make any half of
the solution be maximally dissimilar from the other half).
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Fig. 1. Evolution of best fitness in TRAP for non-elitist multimemetic EDAs (left) and
elitist ones (right). The results of sMMA are included in both figures.

Table 3. Results (20 runs) of the different MMAs on TRAP, HIFF, HXOR and SAT,
without Laplace correction in meme probability estimation. The median (x̃), mean (x̄)
and standard error of the mean (σx̄) are shown.

TRAP HIFF HXOR SAT
x̃ x̄± σx̄ x̃ x̄± σx̄ x̃ x̄± σx̄ x̃ x̄± σx̄

UMDA∗
e 23.8 25.2 ± 0.8 576.0 516.9 ± 17.3 342.0 342.8 ± 7.6 549.0 548.4 ± 0.3

PBIL∗
e 24.7 25.7 ± 0.7 443.0 451.5 ± 15.9 262.5 259.9 ± 2.2 549.0 548.6 ± 0.3

MIMIC∗
e 32.0 31.7 ± 0.2 464.0 473.6 ± 12.6 412.0 417.0 ± 5.3 548.5 548.5 ± 0.2

COMIT∗
e 32.0 32.0 ± 0.0 464.0 480.0 ± 13.9 416.0 427.6 ± 10.0 548.0 548.4 ± 0.3
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Fig. 2. Evolution of meme diversity in TRAP for multimemetic EDAs using Laplace
correction in the probabilistic modeling of memes (left) and without using such correc-
tion (right)
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Fig. 3. Evolution of meme success (percentage of meme applications that result in
an improvement) in TRAP for multimemetic EDAs using Laplace correction in the
probabilistic modeling of memes (left) and without using such correction (right)

Let us now turn our attention to the effect that the utilization of Laplace
correction has on the algorithms. While its use is fundamental within the geno-
typic model (experiments without this correction indicate quick convergence of
the probabilistic model to suboptimal states within a few dozens generations),
its use at the memetic level seems more questionable. As it can be seen in Fig. 2
(left), the entropy of memes generated remains very high in all EDAs, unlike the
sMMA which stabilizes at a low entropy level. This indicates that the EDAs are
facing difficulties to focus the search of adequate memes, either by the limita-
tions of the underlying probabilistic model or by the exploratory disturbance of
the Laplace correction. We have therefore performed experiments with the elitist
EDAs deactivating this correction in meme modeling. Not surprisingly, this has a
larger influence in the bivariate models, which are now capable to converging to
particular states, than in univariate models, which remain incapable of grasping
the structure of memes in many cases – see Fig. 2 (right). This also has in general
a positive influence in performance as shown in Table 3. While the univariate
models perform slightly better, the difference is not statistically significant. In
the case of the bivariate models, there is a statistically significant difference in
favor of MIMIC∗

e (the superscript * denoting deactivation of Laplace correction)
for TRAP and HXOR, and in favor of COMIT∗

e for HIFF. It is interesting to
notice how meme success (the percentage of meme applications that result in an
improvement) is higher in these variants – see Fig. 3 – supporting the hypothesis
that the search is more focused in this case.

4 Conclusions

We have studied the use of EDAs in a multimemetic context. They appear to be a
promising approach to this kind of self-adaptivememetic optimization due to their
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well-known advantages, namely their requiring less parameterization effort than
their genetic counterparts and their amenability to model combinatorial struc-
tures such as memes. Indeed, the experimentation with multimemetic EDAs has
provided encouraging results: when endowed with elitism, multimemetic EDAs
are markedly superior to a MMA manipulating genes and memes using genetic
operators. We have also observed that the memetic search is more focused when
no Laplace correction is used in meme modeling. Of course, this may need fur-
ther investigation in other contexts in which memes are represented in a different
way (and indeed in the general context of EDA optimization, since the use of this
technique is not widespread). This is not the only line for future research: on one
hand, the use of more complex probabilistic graphical models such as Bayesian
networks is an appealing option. As a matter of fact, it may be conceivable that
the structure used to model the probability distribution over the memetic space be
different than its genotypic counterpart. This could pave the way to a fully decou-
pled evolutionary model in which genotypes and memes evolve in different popu-
lations, subject to separate selection processes, and interacting via some strategy
for genotype-meme pairing and application, in the line of coevolutionarymemetic
algorithms [20].
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7. González, C., Lozano, J., Larrañaga, P.: Mathematical modeling of discrete estima-
tion of distribution algorithms. In: Larrañaga, P., Lozano, J.A. (eds.) Estimation
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