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Abstract. This paper introduces the Gradient-driven Density Function
(∇dD) approach, and its application to Estimation of Distribution Al-
gorithms (EDAs). In order to compute the ∇dD, we also introduce the
Expected Gradient Estimate (EGE), which is an estimation of the gra-
dient, based on information from other individuals. Whilst EGE delivers
an estimation of the gradient vector at the position of any individual,
the ∇dD delivers a statistical model (e.g. the normal distribution) that
allows the sampling of new individuals around the direction of the esti-
mated gradient. Hence, in the proposed EDA, the gradient information
is inherited to the new population. The computation of the EGE vec-
tor does not need additional function evaluations. It is worth noting
that this paper focuses in black-box optimization. The proposed EDA
is tested with a benchmark of 10 problems. The statistical tests show a
competitive performance of the proposal.

Keywords: Gradient estimation, Estimation of Distribution Algorithm.

1 Introduction

Several Evolutionary Algorithms search the global optimum by simulations from
statistical models; e.g. EDAs, ES, etc. The evolutionary computation community
has been making a large effort to add new information into statistical models in
order to improve the search process. There are several approaches to add search
directions into statistical models [3] [2]. In this context, some popular algorithms
have demonstrated the feasibility of this idea (e.g. CMA-ES, NES, etc.). This
paper introduces contributions in this trend by building density functions based
on gradient estimates: Gradient-driven densities. The proposal developed here
only use the function evaluations gathered from the population to build gradi-
ent estimates on fixed individuals. Hence, the algorithm does not require any
extra evaluation of function. The first-order information is an important source
of promising directions to improve any individual. For that reason, a Gradient-
driven Density Function (∇dD) is introduced. Any simulation from ∇dD might
produce samples around the gradient estimation. Hence, the search process fo-
cuses in promising orientations. These novel ideas are merged to create a new
EDA. As a consequence of the gradient estimation, the proposed EDA generates
new individuals towards promising regions. The organization of the paper is as
follows. Section 2 introduces the Expected Gradient Estimation method. Sec-
tion 3 develops the Gradient-driven Density framework. Section 4 presents the
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EDA based on Gradient-driven Density Functions. Section 5 is devoted to test
the proposed EDA against others algorithms from the state of the art. Finally,
Section 6 provides some concluding remarks.

2 The Gradient Estimation

The gradient vector ∇F (x) models the local greatest rate of increase by speci-
fying a direction and magnitude at x. Since the information about the problem
comes from scattered samples on the search space, a neighborhood for an indi-
vidual might be choosen. For that reason, this paper considers that any gradient
estimate for individual x(i) requires itself and its neighborhood, i.e. a set of in-
dividuals Nx(i) = {x(i1),x(i2), ...,x(ik), ..., x(ir−1),x(ir)} from the population or
gathered from previous generations, where i �= i1 �= ... �= ik �= ... �= ir and r is
the neighborhood size. Furthermore, any criterion to select the neighborhood can
be used. Also, notice that this method permits to compute a gradient estimate
for each individual only by using known information about the problem. The
fitness values of {x(i), ...,x(i1), ...,x(ir)} provide knowledge about the problem.
Hence, that information can be used to estimate the gradient vector of x(i). The
common approach approximates the gradient by fitting a hyperplane in d + 1
dimensions, where d is the dimension size of x(i). Therefore, the estimation of
gradient might be tackled by the ordinary least square method [4]. Despite the
fact that the previous technique creates an intuitive gradient approximation, in
many contexts it might be inadequate (e.g. there are not enough samples to
create the overdetermined system, etc). This section presents a new gradient
estimation based on two mathematical concepts: the directional derivative and
the statistical expectation.

Definition 1. Let Nx(i) = {x(i1),x(i2), ...,x(ik), ...,x(ir−1), x(ir)} be the neigh-
bors of individual x(i), from the population. Then the Expected Gradient Estimate
for x(i) is defined by

̂∇F(x(i)) =
1

r

r
∑

k=1

F(x(ik))− F(x(i))

‖x(ik) − x(i)‖2 (x(ik) − x(i)) (1)

where i �= i1 �= ... �= ik �= ... �= ir, r is the neighborhood size and F(·) computes
the fitness value.

In order to justify equation (1), let us assume that x(ik) exists on the line
defined by the true gradient ∇F(x(i)). This means

x(ik) − x(i)

‖x(ik) − x(i)‖ = ± ∇F(x(i))

‖∇F(x(i))‖ . (2)

Since the orientation depends on the sign, each case will be examined sepa-
rately. Let u+ and u− be two normalized vectors as follows

u+ =
∇F(x(i))

h
, u− = −∇F(x(i))

h
(3)
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where h = ‖∇F(x(i))‖; please note u+ has the same direction as the true
gradient, opposite to u−. From the well-known directional derivative definition
and its properties observe that

(

lim
h→0

F(x(i) + hu+)−F(x(i))

h

)

u+ = ‖∇F(x(i))‖ ∇F(x(i))

‖∇F (

x(i)
) ‖ = ∇F(x(i))

(

lim
h→0

F(x(i) + hu−)−F(x(i))

h

)

u− = −‖∇F(x(i))‖ −∇F(x(i))

‖∇F (

x(i)
) ‖ = ∇F(x(i))

This is important because similar connections can be found just by considering
two individuals, mainly due to the assumption in equation (2); for instance

(

lim
l→0

F(x(i) + l · u)−F(x(i))

l

)

u = ∇F(x(i)) (4)

u =
x(ik) − x(i)

‖x(ik) − x(i)‖ , l = ‖x(ik) − x(i)‖ (5)

Equation (4) presents a different manner to remake the gradient function.
Notice that although the derivative is unavailable, an approximation by finite
differences can be considered. It leads us to introduce a gradient estimate for
x(i), just given one neighbor, as follows

g(ik) =

(F(x(i) + lu)−F(x(i))

l

)

u =
F(x(ik))−F(x(i))

‖x(ik) − x(i)‖2 (x(ik) − x(i)) (6)

However, there is no chance to ensure that x(ik) is on the line defined by
the true gradient, because the neighbors come from an unknown hidden random
process. Hence, the difference between fitness values is also a random variable.
Therefore, each estimate g(ik) arises from a random process. Please assume that
P is the hidden uncertainty model which describes the behavior of outcomes
g(ik). So, any instance of random variable g(i) ∼ P is an outcome g(ik). A
representative vector for the hidden model can be computed by the statistical
expectation. Moreover, the E(g(i)) can be approximated as follows

E(g(i)) =

∫

Rd

g(i)Pdg(i) ≈ 1

r

r
∑

k=1

g(ik) (7)

which is the Expected Gradient Estimate, equation (1).
To the best of our knowledge, the EGE developed above has not been ad-

dressed in literature. However, further theoretical study is necessary to verify its
relationship with other approaches [1]. In order to empirically contrast the ap-
proximated orientations of EGE versus the usual approximation by hyperplane,
a fixed population and a gradient estimation on each individual will be con-
sidered. An ideal population, at first generation, must cover the search domain
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evenly; thus in this experiment the population is built by the Halton quasi-
random sequence, from Matlab R© with default options. Also, please consider the
Sphere problem, the neighborhood size r = d + 1 and the r closer individuals
to x(i) (neighborhood, according to the Euclidean distance). Below there is an

angle-comparison between ̂∇F(x(i)) and ∇F(x(i)). So, the measurement vector
of angles α = {α(1), ..., α(i), ..., α(N)} includes an angle value for each individual,
where N is the population size. Figure 1 shows the histograms of orientation by
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Fig. 1. Histograms of orientation in Sphere problem, Expected Gradient Estimation
(EGE, solid line) versus hyperplane approach by ordinary least square (HLS, dashed
line). (a) 10 dimensions: HLS has a median value of 1.30488 and EGE has a median
value of 0.627966. (b) 30 dimensions: HLS has a median value of 1.48743 and EGE has
a median value of 0.617965. EGE shows better performance.

setting r = d+ 1, N = 10d and xk ∈ [−600, 300]; where d is the dimension size.
Notice that the EGE has more chances to compute better oriented vectors than
the hyperplane approach for higher dimensions. In addition, the median values
support the graphic observation. Here, the neighborhood size r = d + 1 was
chosen from literature [4]. In summary, the results suggest that the EGE might
outperform previous gradient approximations used in evolutionary computation.

3 The Gradient-Driven Density

Each generation has three different data sets: the individuals {x(i)}, the function
evaluations {F(x(i))} and the estimations of the gradient estimates {̂∇F(x(i))}.
These provide distinct information about the function and the algorithms’ be-
havior. Several stochastic optimization approaches (e.g. ES, EDA) aim to build
a multivariate density function on optimum locations; or at least in better re-
gions than the current ones. This section will begin with the same goal for a
fixed individual from the population. Therefore, there might exist a multivariate
density function p(x, θ) for x(i) based on its gradient estimate ̂∇F(x(i)), which
is able to simulate better individuals than the present x(i). Due to the fact that
only two vectors will be used here, there is no chance to ensure that all simula-
tions improve the current fitness value F(x(i)). However, the density modeling
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can be modified to take advantage of the gradient estimate by developing a new
estimation of parameters, updating the original parameters, improving the sim-
ulation, etc. For this reason, definition 2 introduces the ∇dD from the individual
perspective.

Definition 2. Let z be an individual in the domain space and G(z) a func-
tion which computes its gradient estimate. The density function p(x, θ) is a
Gradient-driven Density (∇dD) for individual z if the following two conditions
are satisfied:

1) The multivariate density p(x, θ) is a unimodal function,

2) G(z)
‖G(z)‖ = ∇p(z,θ)

‖∇p(z,θ)‖ .

The conditions set up above allow a wide range of future proposals. The first
condition permits a single mass of probability towards promising regions. The
random search must be led by G(z) because it is orienting towards promising
regions. In fact, the second condition just allows density functions which∇p(z, θ)
has the same direction as the gradient estimate G(z). There are many ways to
build a ∇d Density. Below, a suitable technique based on multivariate calculus
and the angular discrepancy are introduced .

Definition 3. Let p(x, θ) be a multivariate unimodal density. In order to ensure
that p(x, θ) is a ∇d Density, a parameter estimation on θ must be performed.
The minimum angle estimation solves this by,

̂θ = max
θ

G(z)t∇p(z, θ)

‖G(z)‖ ‖∇p(z, θ)‖ (8)

Notice that the minimum angle estimation solves the parameter estimation of
θ by maximizing the dot product of two normalized vectors. It is a natural
way because the angle between two vectors is related to the dot product. In
addition, even if finding the solution of (8) is not possible, a good approximation
can be discovered. The rest of this section uses the previous definition to build
∇d densities. Please assume that p(x, θ) is a multivariate normal density and
∇p(z, θ) its gradient function. Also, let

zG =
G(z)

‖G(z)‖ (9)

be the normalized gradient estimate of individual z. The estimation method
must calculate the mean vector μ and the covariance matrix Σ which satisfy
definition 2. Then, the statistical parameters can be found by solving

< μnew ,Σnew >= max
<μ,Σ>

zt
G

[N (z;μ,Σ)Σ−1(μ− z)
]

‖N (z;μ,Σ)Σ−1(μ− z)‖ . (10)
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Let us address this problem separately for each parameter. By taking the
derivative with respect to μ and setting it equal to zero, we found the equation

‖Σ−1(μ− z)‖2Σ−tzG − zt
GΣ

−1(μ− z)Σ−tΣ−1(μ− z) = 0. (11)

In a similar way, by taking the derivative with respect to Σ−1 and setting it
equal to zero, we found the equation

‖Σ−1(μ− z)‖2zG(μ− z)t − zt
GΣ

−1(μ− z)Σ−1(μ− z)(μ− z)t = 0. (12)

Notice that both are nonlinear matrix equations! In addition, the problem (12)
is a constraint equation, since Σ needs to be a symmetric positive semidefinite
matrix. So, it leads us to solve two more complex optimization problems than
the original one. However, a few interesting facts arise by inspecting equations
(10)-(12), when Σ−1(μ − z) = zG: Equation (10) reaches its maximum value,
i.e. 1; and Equations (11) and (12) are fulfilled. Furthermore, notice that μ
and Σ are closely related. In fact, there are an infinite number of symmetric
semipositive definite matrices Σ able to fulfill Σ−1(μ− z) = zG. This certainly
means that the nonlinear system has an infinity number of solutions. However,
straightforward solutions can be found by these observations. By assuming the
matrix Σ is fixed and solving for the mean vector in Σ−1(μ − z) = zG a new
formula is found:

Σ−1(μnew − z) = zG ∴ μnew = z +ΣzG. (13)

Given a fixed covariance matrix, its related mean vector can be computed by
(13). Furthermore, there is a unique mean vector for a given Σ. On the con-
trary, given a fixed mean vector, there is a number of infinite possible covariance
matrices. Definition 4 introduces a ∇d Density based on the previous analysis.

Definition 4. Let Σ0 be a fixed covariance matrix. Then the ∇d Normal (∇dN )
has parameters

μg = z +Σ0zG and Σg = Σ0 (14)

Notice that, simulations from the proposed densities will produce samples in a
similar direction as the gradient vector (or gradient estimate). The next section
applies the developed Gradient-driven densities in evolutionary computation.

4 The Gradient-Driven Density in EDAs

The Estimation of Distribution Algorithm (EDA) aims to simulate new individ-
uals on regions near optimum locations, preferably close to the global optimum.
Interesting optimization methods might be developed by considering the ∇dD
technique into EDAs. The EDA fits a target statistical model. A common one is
the multivariate normal function [5]. This section introduces an EDA, based on
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this density function, by computing the expectation and variance of a multi-
variate Gaussian mixture model. Please consider a mixture of two models: the
empirical normal density and a Gradient-driven Density. The first one promotes
the exploitation whilst the second one allows predictive samples on possible
promising regions (exploration). In order to build a simpler model, the mixture
of densities is approximated by a unique Multivariate Gaussian model [6]. The
target density for the proposed EDA is built by N (μnew,Σnew), where:

μnew = E(E(X|ϑ)) = (1− β)μ̂+ βμg,

Σnew = V ar(E(X |ϑ)) + E(V ar(X |ϑ)) = (1− β) ̂Σ + βΣg

+ (1 − β)(μ̂− μnew)(μ̂− μnew)t + β(μg − μnew)(μg − μnew)t
(15)

and β ∈ [0, 1] is the associated weight to the ∇dD. Also, β controls the amount
of credibility on each model. Please note that β = 0 produces the empirical
density and β = 1 yields the other one. In addition, since the simulation method
might build samples outside the search domain, a re-insertion technique is added,
line 10 of algorithm 2. Let γk = lupperk − llower

k be the domain length in dimen-
sion k, where lupperk and llower

k are the upper bound and lower bound in dimen-

sion k. For each dimension, the new sample y(i) = (y
(i)
1 , · · · , y(i)k , · · · , y(i)D ) is

tested/replaced by

– if y
(i)
k > lupperk then a = (y

(i)
k − lupperk )/γk and y

(i)
k = lupperk − γk(a− �a	)

– if y
(i)
k < llower

k then a = (llower
k − y

(i)
k )/γk and y

(i)
k = llower

k + γk(a− �a	)
which ensure any new individual is inside the domain. The algorithm 2 describes
the proposed EDA led by a Gradient-driven Density (EDA-LGD). Because of the
importance of the gradient estimate for the∇dD, this proposal just computes the
gradient of the best individual using the historical best individuals from previous
generations. So, if at generation (t) a new best individual xbest is found, then
xbest replaces the worst individual in Pbest and the next gradient estimate is over
xbest with the neighborhood {Pbest \xbest}. Then two populations are saved: the
usual population Pobt at each generation (t) and the historically best individuals
Pbest; in algorithm 2 the first one has N individuals meanwhile the second one
has d+ 2 individuals.

5 Experiment

This section contrasts the proposed EDA against two known Evolutionary Al-
gorithms based on multivariate densities: CMA-ES [3] and xNES [2]. Each algo-
rithm runs in 10 benchmark problems, see Table 1. In order to make a fair
comparison, the code was downloaded from authors homepage and 50 runs
were performed. Also, the initial center of densities was chosen randomly in
the search domain with an initial variance according to the domain (1/3 of this).
The three algorithms only have two stopping conditions: maximum number of
evaluations of function is reached (104 × d), or target error smaller than 10−8,
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1: t← 0, β ← 0.5, N ← �4 ∗ (1 + d0.7)�, M ← 2 ∗ �log(d)�+ 1, r ← d+ 1
2: Pobt ← U (Domain), compute F(x(i)), find the xbest � First population
3: Pbest ← Best r + 2 individuals from Pobt � Historical best population
4: while (Stop condition is not reached) do

5: ◦ Gradient estimate G(xbest) = ̂∇F(xbest)) with neighborhood {Pbest \ xbest}
6: ◦ Normalized vector xbest

G by (9) or negative for minimization

7: ◦ Empirical estimation of μ̂ and ̂Σ. Initial covariance Σ0 = diag(diag(̂Σ))
8: ◦ Parameters μg and Σg by definition 4. Parameters μnew and Σnew by (15)
9: ◦ S ← Simulate M individuals from N (x;μnew ,Σnew)
10: ◦ S ← Reinsertion(S) � if-outside-domain
11: ◦ Fitness values F(S)
12: ◦ Pobt+1 ← Best individuals among {Pobt,S}
13: ◦ Find the xbest

t+1 of Pobt+1

14: if xbest
t+1 has better fitness value than xbest then

15: xbest ← xbest
t+1 and xbest

t+1 replaces the worst individual in Pbest

16: end if
17: ◦ Msur ← Number of survivors from S into Pobt+1

18: if Msur
M

> 1/2 then
19: β ← β + 0.05; if β > 1 then β = 1 � Exploration
20: else
21: β ← β − 0.05; if β < 0 then β = 0 � Exploitation
22: end if
23: t← t+ 1
24: end while

Fig. 2. Pseudocode of the EDA led by a Gradient-driven Density (EDA-LGD)

Table 1. Benchmark problems [2] [5]. The minimum fitness value of all problems is 0,
except for F4, F6 and F10 where F∗

4 = 2, F∗
6 = −10 and F∗

10 = −0.1d.

Name Alias Domain Name Alias Domain
Sphere F1 xi ∈ [−600, 300] Different Powers F2 xi ∈ [−20, 10]
Brown F3 xi ∈ [−1, 4] Mishra 2 F4 xi ∈ [0, 1]

Ellipsoid F5 xi ∈ [−20, 10] Parabolic Ridge F6 xi ∈ [−20, 10]

Rosenbrock F7 xi ∈ [−20, 10] Ackley F8 xi ∈ [−20, 10]

Griewangk F9 xi ∈ [−600, 300] Negative Cosine Mixture F10 xi ∈ [−1, 0.5]

i.e. (F − F∗) < 10−8. Figure 3 contrasts the error F − F∗ reached for each
algorithm. Also, this Figure shows a comparison between two algorithms in the
second and third columns. For each problem there are three measures: 1) the first
row is the percentage of success rate, 2) the second row is the mean and standard
deviation of reached fitness values, 3) the third row is the mean and standard
deviation of needed evaluations of function. The mean values highlighted with
boldface, i.e. the winner algorithm, are supported by a statistical test. The last
column presents the results of two nonparametric bootstrap tests. Here, the hy-
potheses are based on the mean value μ. The hypotheses (H0 : μ1 ≥ μ2, H1 :
μ1 < μ2) yields the p-value ρ1 and (H0 : μ2 ≥ μ1, H1 : μ2 < μ1) produces



360 I.S. Domı́nguez, A.H. Aguirre, and S.I. Valdez

F EDA-LGD CMA-ES ρ1 vs ρ2

F1 100.00 100.00
8.7e-9±1.2e-9 5.5e-9±1.2e-9 1.0,1e-4
4.9e+4±1.7e+4 3.8e+3±1.4e+2 1.0,1e-4

F2 100.00 100.00
8.0e-9±1.6e-9 9.4e-9±5.9e-10 1e-4,1.0

5.5e+3±5.6e+2 9.0e+3±7.2e+2 1e-4,1.0
F3 100.00 100.00

8.6e-9±1.1e-9 5.1e-9±1.3e-9 1.0,1e-4
5.1e+3±2.1e+2 3.0e+3±1.4e+2 1.0,1e-4

F4 100.00 4.00
9.4e-9±5.0e-10 8.9e-2±8.9e-2 1e-4,1.0
2.9e+3±1.2e+2 1.9e+5±1.6e+4 1e-4,1.0

F5 100.00 100.00
8.6e-9±1.2e-9 5.4e-9±1.2e-9 1.0,1e-4

9.8e+3±7.9e+2 1.8e+4±3.0e+2 1e-4,1.0
F6 100.00 100.00

9.0e-9±9.0e-10 7.8e-9±1.0e-9 1.0,1e-4
7.6e+3±3.9e+2 9.3e+3±1.5e+3 1e-4,1.0

F7 28.00 88.00
5.5e-1±1.4e+0 4.7e-1±1.3e+0 0.6,0.3
1.9e+5±8.7e+3 4.2e+4±5.8e+4 1.0,1e-4

F8 82.00 56.00
2.4e-1±5.6e-1 1.5e+0±2.2e+0 3e-4,1.0

4.4e+4±7.3e+4 9.1e+4±9.7e+4 4e-3,0.9
F9 2.00 76.00

1.6e+0±2.5e+0 2.5e-3±4.9e-3 1.0,1e-4
1.9e+5±2.3e+4 5.1e+4±8.4e+4 1.0,1e-4

F10 12.00 6.00
2.7e-1±1.9e-1 3.0e-1±1.5e-1 0.1,0.8
1.7e+5±6.4e+4 1.8e+5±4.7e+4 0.2,0.8

(a)

EDA-LGD xNES ρ1 vs ρ2

100.00 100.00
8.7e-9±1.2e-9 8.9e-9±8.7e-10 0.2,0.7
4.9e+4±1.7e+4 2.8e+4±2.9e+2 1.0,1e-4

100.00 100.00
8.0e-9±1.6e-9 7.4e-9±2.0e-9 0.9,6e-2

5.5e+3±5.6e+2 1.6e+4±8.4e+2 1e-4,1.0
100.00 100.00

8.6e-9±1.1e-9 8.6e-9±1.1e-9 0.5,0.4
5.1e+3±2.1e+2 2.4e+4±3.3e+2 1e-4,1.0

100.00 94.00
9.4e-9±5.0e-10 2.4e+2±1.7e+3 7e-2,0.9

2.9e+3±1.2e+2 8.3e+4±3.1e+4 1e-4,1.0
100.00 38.00

8.6e-9±1.2e-9 1.7e-3±7.9e-3 5e-2,0.9
9.8e+3±7.9e+2 1.5e+5±5.8e+4 1e-4,1.0

100.00 96.00
9.0e-9±9.0e-10 9.3e-9±6.7e-10 2e-2,0.9
7.6e+3±3.9e+2 5.2e+4±3.3e+4 1e-4,1.0

28.00 100.00
5.5e-1±1.4e+0 8.6e-9±1.2e-9 0.9,2e-3
1.9e+5±8.7e+3 4.4e+4±2.3e+3 1.0,1e-4

82.00 100.00
2.4e-1±5.6e-1 9.3e-9±5.5e-10 0.9,1e-3
4.4e+4±7.3e+4 4.3e+4±4.3e+2 0.5,0.4

2.00 96.00
1.6e+0±2.5e+0 3.9e-4±2.0e-3 1.0,2e-4
1.9e+5±2.3e+4 3.2e+4±3.4e+4 1.0,1e-4

12.00 68.00
2.7e-1±1.9e-1 1.5e-1±5.0e-1 0.9,6e-2
1.7e+5±6.4e+4 8.7e+4±7.8e+4 1.0,1e-4

(b)

Fig. 3. Percentage of success rate, reached fitness values and needed number of eval-
uations (mean and standard deviation) for each algorithm in dimension 20. The last
column shows two nonparametric bootstrap tests. If ρ1 is boldface the winner is EDA-
LGD, if ρ2 is boldface the winner is either CMA-ES or xNES, otherwise there is no
winner.

the p-value ρ2. So, if ρ1 is boldface the winner is EDA-LGD, if ρ2 is boldface
the winner is either CMA-ES or xNES, otherwise there is no winner. The null
hypothesis is rejected with significance level α = 0.05 Comments (CMAES):
The problems F1,F2,F3,F5 and F6 do not seem difficult for EDA-LGD nor
CMA-ES, since both algorithms reach the perfect success rate. On the contrary,
the rest of the problems have a more difficult landscape. According to the boot-
strap test, there is statistical evidence to conclude that in 5 out of 10 problems
the proposed EDA requires fewer function evaluations than the CMA-ES. Com-
ments (xNES): According to the bootstrap test, there is statistical evidence to
conclude that in 5 out of 10 problems the proposed EDA requieres fewer function
evaluations than the xNES. Also, there appears to be a pattern related to the
landscape. For instance, note xNES has better results for problems F7 − F10,
but EDA-LGD has better results for problems F2 − F6. This kind of pattern
must be further studied in future work.
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6 Conclusion

This paper presents a new EDA based on the Gradient-driven densities (∇dD).
In order to build the proposed EDA (EDA-LGD) two main contributions were
developed: the Expected Gradient Estimate (EGE) and the ∇dD. Also, a tech-
nique has been proposed to compute a gradient estimate for any individual only
by using the actual knowledge about the problem. Hence, the estimation of the
gradient does not need extra evaluations of function. The ∇dD are statistical
models built by taking into account a gradient estimate. This new framework
can create a density function for any individual. Consequently, any simulation
from those densities has a random gradient component. Here, Gradient-driven
densities based on the Multivariate Normal have been constructed. However,
the developed framework allows for the assumption of other statistical mod-
els. The ideas discussed above motivated a new EDA: EDA-LGD. It is based
on the Gradient-driven Independent Normal, the EGE and the hierarchical la-
tent variable model. Moreover, it was tested in 10 benchmark problems; where
the EDA-LGD shows competitive performance against CMA-ES and xNES. In
summary, the EDA-LGD is an interesting approach because of the performance
of the algorithm and its mathematical foundation. Since the ∇dD will produce
samples in a similar direction as the gradient estimation, this density can be
regarded as a predictive model. Thus, the Gradient-Driven density allows for
exploration of the search domain whilst the empirical density intends fast con-
vergence (exploitation). Finally, notice that the main contributions developed
here can be extended to other evolutionary algorithms.
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