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Abstract. The increasing use of time-consuming simulations in the in-
dustry has spawned a growing interest in coupling optimization algo-
rithms with fast-to-compute surrogate models. A major challenge in this
approach is to select the approximated solutions to evaluate on the real
problem. To address this, the Kriging meta-model offers both an esti-
mate of the mean value and the standard error in an unknown point.
This feature has been exploited in a number of so-called prescreening
utility functions that seek to maximize the outcome of an expensive
evaluation. The most widely used are the Probability of Improvement
(PoI) and Expected Improvement (ExI) functions.

This paper studies this challenge from an investment portfolio point-
of-view. In short, the PoI favors low risk investments whereas the ExI
promotes high risk investments. The paper introduces the investment
portfolio improvement (IPI) approach as a strategy mixing the two ex-
tremes. The novel approach is applied to seven benchmark problems and
two real world examples from the pump industry.

Keywords: Expected improvement, prescreening methods, Kriging.

1 Introduction

During the last couple of decades, the increasing use of time-consuming simula-
tions in engineering-related industries poses a serious challenge to optimization
algorithms. To address this challenge, researchers have studied a number of sur-
rogate models that allow fast evaluation of an approximation of the real problem.
This approximation is typically build from a low number of sample points of the
real problem. Approximation models can be evaluated in a few hundred mil-
liseconds, which is significantly faster than, e.g., a 5 hour flow simulation of a
centrifugal pump. However, the result is only an approximation and there are
usually differences between the real problem and the approximation of it. Thus,
the optimization specialist trades evaluation accuracy for evaluation speed.

The Kriging meta-model has become increasingly popular as it provides both
a mean value and standard error of the approximation of an unknown point.
By viewing the standard error as a confidence interval for the approximation,
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authors have proposed to maximize a prescreening function expressing the po-
tential improvement gained by performing the expensive/time-consuming eval-
uation of the real function. Three widely used prescreening functions are the
Lower Bound (LB) approach by Dennis and Torczon [1], the Probability of Im-
provement (PoI) introduced by Ulmer et al. [2], and the Expected Improvement
(ExI) popularized as the Efficient Global Optimization (EGO) algorithm by
Jones et al. [3]. The ExI is the most popular and it has been extensively used
for solving numerous real-world problems, e.g., [4,5,6]. The focus in this paper
is on single-objective problems, but the ExI function has also been adapted to
multi-objective problems, e.g., [5,7].

The aim of this paper is twofold. First, to study and discuss LB, PoI, and
ExI in relation to their theoretical ability to provide a return-of-investment,
i.e., an improved solution to the problem. Second, to suggest an algorithm for
optimizing a portfolio of solutions that spread the risk of investment by using
the novel prescreening approach called Investment Portfolio Improvement. The
algorithm is based on the Differential Evolution (DE) algorithm [10,11].

The paper is structured as follows. Section 2 introduces the optimization
methodology, in particular the Differential Evolution algorithm and the Krig-
ing meta-model. Subsection 2.3 elaborates on LB, PoI, and ExI in relation to
the investment strategy these prescreening functions implement. Subsection 2.4
describes the novel algorithm. Following this, section 3 introduces the experi-
mental setup and the optimization problems. Section 4 contains the results and
a discussion of these. Finally, section 5 concludes the paper.

2 Kriging-Based Prescreening Optimization

Successful application of a Kriging-based prescreening optimization algorithm
to a time-consuming or costly real-world problem involves three main decisions.
First, the choice of the optimization algorithm. Second, the choice of the Kriging
variant. Third, the choice of the prescreening function.

Regarding optimization algorithms, a good choice is the differential evolution
(DE) algorithm suggested by Storn and Price in 1995 [10,11]. Since then, it has
become widely accepted as one of the best algorithms for numerical optimization
as it has proven its worth on numerous problems, e.g., [4,8,9].

Concerning Kriging, numerous variants have been described and tested in the
literature and choosing the best variant can be a challenge on its own [12,13].
From an optimization perspective, the main choice is a trade-off between accu-
racy and ability to find a new solution that is better than the best known point.
The use of prescreening methods may reduce the disadvantages of choosing a
sub-optimal Kriging variant substantially as the methods allow the algorithm to
employ an explorative search behavior. Thus, the prescreening method allows a
choice of Kriging variant that does not return large overshoots of the best known
point. For this reason, this paper uses simple Kriging with a “conservative” ker-
nel function.
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2.1 Differential Evolution

The algorithm presented in this paper is based on the rand/1/bin standard DE
scheme. However, it is out of the scope to provide a detailed description of DE.
Instead, see the original work of Storn and Price [10,11] or refer to Ursem [9] for
a shorter version.

2.2 Kriging

As mentioned, a large number of Kriging variants exists. Kriging has been de-
scribed many times in the literature and a full mathematical description is be-
yond the scope of this paper. Instead, see e.g. [14]. In short, Kriging predicts
a normal distribution Y (x) ∼ N(ŷ, ŝ) as an interpolation based on a so-called
kernel function of the distances to a number of known points.

The used Kriging model is based on the DACE Matlab toolbox by Lophaven
et al. [15] with the Exp kernel function. This kernel function was tested in
preliminary runs and showed the desired absence of extreme prediction values.

2.3 Prescreening Procedures

The main idea behind prescreening functions is to utilize the standard error of
Kriging to assess the potential improvement achieved by evaluating an unknown
point x. The most widely used prescreening functions are the Lower Bound (LB),
the Probability of Improvement (PoI), and the Expected Improvement (ExI).

LB(x) = ŷ(x)− w · ŝ(x) (1)

PoI(x) = P (Y (x) ≤ fmin) =

∫ fmin

−∞
φ(Y (x))dY = Φ

(
fmin − ŷ(x)

ŝ(x)

)
(2)

ExI(x) =

∫ fmin

−∞
(fmin − y)φ

(
y − ŷ(x)

ŝ(x)

)
dy (3)

= (fmin − ŷ(x))Φ

(
fmin − ŷ(x)

ŝ(x)

)
+ ŝ(x)φ

(
fmin − ŷ(x)

ŝ(x)

)
(4)

In this, assume we are using a Kriging model to minimize a function f(x) with
the best known function value fmin. Here, ŷ(x) is the approximated value with
the corresponding standard error ŝ(x), and for LB is w a user-defined weight.
Furthermore, φ(·) is the probability density function of the normal distribution,
and Φ(·) is the cumulative distribution function.

Over the years, several papers have been published that extend these pre-
screening functions. To control the balance between global and local search,
Schonlau et al. [16] introduced the g parameter and the Generalized Expected
Improvement (GEI). Following this, Sasena et al. [17] suggested to use an an-
nealing scheme to control the g parameter of the GEI prescreening function.
Authors have also suggested to parallelize the use of ExI. For example, Janu-
sevskis et al. [18] suggested the q-EI as a way to generate multiple points to
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evaluate in each optimization run thereby lowering the number of runs. In a
similar direction, Ponweiser et al. [19] introduced the MGEI and the CMGEI
criteria and compared these with the annealing of Sasena et al. [17]. In this com-
parison, GEI turned out to be the best approach. Although the parallelization of
ExI is interesting, saving optimization run-time is less relevant as 90-95% of the
computation time is typically spent on the actual evaluation of new solutions.

At this point, it may be worthwhile to take a step back and study the func-
tions from a more mathematical perspective. In the following, assume (WLOG)
that fmin = 0.0 and that both function values and standard errors have been
normalized. Thus, a negative ŷ corresponds to a value that is better than the
best known solution. Figure 1 displays the surface plot of PoI and ExI for differ-
ent values of ŷ and ŝ. The plot for LB is omitted as it resembles the plot for ExI.
The contour lines illustrate solutions that are considered equal by the plotted
prescreening function.
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Fig. 1. Surface and contour plots of PoI (left) and ExI (right). Yellow circle is max (in
the given range).

As seen in the figure, PoI has maximum when (or rather if) the optimization
algorithm achieves a solution that outcompetes the current best known, i.e.,
ŷ < 0, and the standard deviation ŝ is small. In case the evaluated solution
is worse than the best known, i.e., ŷ > 0, then PoI favors solutions with large
standard deviation ŝ. Furthermore, the PoI function is 0.5 for all values of ŝ
when ŷ = 0. In contrast to PoI, the ExI function clearly favors solutions with
the largest possible ŝ regardless of the approximated mean ŷ.

In an investment perspective, PoI implements a low risk strategy as it pro-
motes a low standard deviation when a solution with a potential improvement
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(ŷ < 0) is found. For example, given two solutions x1 and x2 both with ŷ = −0.05
then PoI will favor the solution with lowest ŝ. In contrast, ExI represents a high
risk strategy as ExI (and also LB) prefer unknown points that maximize the
standard deviation. Considering financial investment as another field involving
risk strategies, one general recommendation is to employ a risk spreading strat-
egy. Thus, the strategies implemented by LB, PoI, and ExI are in conflict with
this general recommendation.

2.4 Investment Portfolio Improvement Prescreening

The main idea in investment portfolio improvement (IPI) prescreening is to
optimize toward a target standard deviation t. This idea can be represented
by numerous IPI functions. In this study, a number of functions were tested in
preliminary runs. The IPI function defined in equation 5 turned out to have the
best performance on the standard benchmark functions introduced in section 3.

IPI(x) = 0.5 · Φ
(
fmin − ŷ

1.05− t

)
+ Φ

(−(ŝ− t)2

0.05

)
(5)

Figure 2 shows the function for t = 0.4 and t = 0.8. For a low t, the function
promotes a search toward local improvements of the best known point. For a high
t, the function primarily induces a search for a solution with the desired standard
deviation and secondly an improvement over best known solution. The functions
studied in preliminary runs did not impose a sufficiently strong selection pressure
for improvement, i.e., the found solutions had the desired standard deviation,
but with suboptimal performance.

To perform actual portfolio optimization, the algorithm needs to search with
multiple values for t simultaneously. Naturally, this can be done in numerous
ways. For instance, one may use an island model [20], a cellular EA [20], a
multinational model [21], or other variants of diversity maintaining techniques.
In this study, the target values t are set from the individual’s population index
i in the differential evolution algorithm. Thus, the IPI function for individual i
at iteration j is defined as in equation 6.

IPI(xi, j) = 0.5 · Φ
(
fmin − ŷ(xi)

1.05− ti

)
+ Φ

(−(ŝ(xi)/nf − ti)
2

0.05

)
(6)

ti =
i

popsize− 1
(target for individual i) (7)

nf = max
i

(ŝ(pi,j−1)) (normalization factor) (8)

In this, the calculation of the normalization factor is based on measurements from
the previous generation j − 1 where pi,j−1 denotes parent i. Optimizing under
this scheme results in a population where the low-index individuals seek a low
standard deviation and high-index individuals have a high standard deviation.

In a real-world application, the resources for evaluating found solutions
are often limited by the time and costs required to perform the full evaluation.
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Fig. 2. Surface and contour plots for IPI with t = 0.4 and t = 0.8. Yellow circle is max.

The optimization specialist is therefore often only interested in 3-5 distinct candi-
date solutions per round [22]. The IPI algorithm therefore returns a user-defined
number of candidates KNC as follows. After the stopping criterion is met, the
algorithm divides the population into KNC segments and return the highest IPI
scoring individual from each segment. For example, setting KNC = 3 will result
in a low-risk, a mid-risk, and a high-risk solution taken from the first third, the
middle third, and the last third of the population.

3 Experimental Setup

The experiments focus on comparing the performance of the novel IPI algorithm
with the established PoI and ExI prescreening functions, and a DE version of
the annealing GEI algorithm [17]. To complete the picture, the DE algorithm is
also optimizing only the mean value (OMV), thereby allowing comparison with
the traditional approach. The GEI prescreening function is defined according to
equation 9 and g values are set from table 1 as in [17].

E(I0) = P (y < fmin) = Φ

(
fmin − ŷ(x)

ŝ(x)

)
= Φ(u) g = 0 (9)

E(Ig) = ŝ(x)g
g∑

k=0

(−1)k
(
g

k

)
ug−kTk g = 1, 2, ...

T0 = Φ(u), T1 = −Φ(u), Tk = −uk−1φ(u) + (k − 1)Tk−2 k = 2, 3, ...
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Table 1. Annealing values for g depending on number of iterations

Iteration 1-4 5-9 10-19 20-24 25-34 ≥35

g 20 10 5 2 1 0

The DE algorithm was run with 100 individuals, CR = 0.2, F = 0.35, and
1000 iterations to ensure convergence. In the IPI algorithm, the number of can-
didates was set to KNC = 3 as this represent a typical number of simulations
that can be performed per day for an industrial problem. Thus, the algorithm
returned a low-risk, a medium-risk, and a high-risk solution.

The test suite includes seven benchmark problems and two model-calculated
pump design problems. The tested benchmark problems are the well-known1

Branin function, the six hump camel back function, the Hartmann 3D function,
the Hartmann 6D function, the Colville function, the Rastrigin 2D function, and
the less known Sasena “mystery” function [23], which is defined in equation 10.

min f(x1, x2) = 2 + 0.01(x2 − x2
1)

2 + (1− x1)
2 + 2(2− x2)

2 + (10)

7 sin(0.5x1) · sin(0.7x1x2)

xi ∈ [0 : 5], i = 1, 2

The benchmark problems are chosen to represent engineering-like problems
that typically have a few local optima and a single global optimum. However,
the Rastrigin function does not fulfill this selection criterion as it has 11 optima
per dimension (Rastrigin 2D has 120 local optima and one global). Nevertheless,
it is included to investigate the performance on a simple problem often used in
traditional tests of optimization algorithms.

The two model-calculated pump design problems are based on classic pump
textbook theory [24] coupled with in-house loss models for modeling the Grund-
fos pumps. The details of the two pump design problems cannot be revealed as
it would violate the need for business confidentiality. However, the first problem
has 6 design parameters and the objective is to maximize the hydraulic effi-
ciency in the design point. The second problem has 12 design parameters and
the objective is also to maximize the hydraulic efficiency in the design point.

All nine problems are fast to calculate and allow a statistical comparison of
the methods based on 20 repetitions each executed as follows:

1. Generate 20 random solutions and evaluate them.
2. While (Total number of new solutions≤50)

(a) Train Kriging approximator on database.
(b) Run the DE algorithm with the prescreening function.
(c) Add 1-3 new solution(s) to database (IPI adds 3, others add 1).

3. Report the best found solution.

1 Details are omitted due to space limitations.
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The initial database of 20 random solutions and the following 50 samples
represents a typical setup in the industry. For example, a computational fluid
dynamics (CFD) simulation of a full pump curve can take up to 2-3 hours in a
steady-state setup and up to 4-5 days for a full transient simulation. The number
of initial solutions was deliberately kept at 20 individuals to stress the algorithms
as the problem dimensionality increased.

4 Results and Discussion

The results of the experiments are listed in table 2. In the table, a number
marked in bold denote the algorithm with the best mean. Furthermore, a dagger
(†) indicates that the algorithm is best wrt. Mann-Whitney rank sum test, i.e.,
the null-hypothesis2 H0 is rejected at 5% confidence level and a double dagger
(‡) at 1% confidence level.

Table 2. Mean and standard deviation for the seven benchmark problems and the two
pump problems

Function OMV PoI ExI GEI IPI

Branin 2D 2.57±1.795 2.95±2.371 0.41±0.017 0.42±0.019 0.40±0.003‡
Sasena 2D 1.29±1.780 1.51±2.297 -1.23±0.965 -1.41±0.117 -1.45±0.022†
Six hump 2D 0.73±3.387 0.00±0.907 -0.90±0.110 -0.75±0.209 -0.92±0.116†
Rastrigin2D 10.36±5.256 11.23±4.413 2.69±2.440 7.14±5.173 3.15±2.470†
Hartmann 3D -2.96±0.486 -3.26±0.482 -3.77±0.106 -3.71±0.170 -3.82±0.056†
Colville 4D 8519±17993 4480±6256 749±1153 472±620 829±1108†
Hartmann 6D -1.39±0.500 -1.23±0.576 -1.72±0.660 -1.99±0.707 -2.77±0.472†
Pump 6D 45.97±3.137 46.54±2.407 49.39±1.484 48.85±1.167 49.53±1.205

Pump 12D 59.57±1.806 59.57±1.477 61.28±1.133 60.52±1.243 61.34±1.690

As seen, OMV and PoI clearly have the worst performance on all problems.
Comparing ExI, GEI, and IPI, the IPI achieves a better mean on seven of the
nine tested problems and three of these seven are further supported by the Mann-
Whitney rank sum tests. Interestingly, the GEI does not seem to be significantly
better than traditional ExI. One possible explanation is that a g value higher
than 1 actually induces an even stronger focus on finding solutions with high
standard deviation. Stepping from traditional ExI (g = 1) to PoI (g = 0) occurs
rather late in the annealing process and this step represents a rather large change
in search strategy, i.e., from high-risk to low-risk as discussed earlier. Thus, the
annealing approach could probably have benefited from smaller steps in the g
value from, e.g., 1.0 to 0.9, and gradually toward 0.0. However, this is not possible
with the current formulation of GEI.

Scrutinizing the IPI data, a typical run benefits from the portfolio optimiza-
tion as follows (recall that KNC = 3 and the algorithm adds 50 new solutions).

2 The null-hypothesis states that the samples are drawn from the same distribution.
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In the beginning of the run, the medium or high-risk solutions often locate a
new best point, which are further improved by the low risk solution in following
rounds. Towards the end, the high-risk solutions often explore regions with sub-
optimal performance as these parts have not yet been explored. In a few runs,
the high-risk solution discovers a new best point towards the end of the run.
Thus, the algorithm clearly benefits from implementing the portfolio strategy.

5 Conclusions

This paper presents the investment portfolio improvement prescreening approach
and demonstrates its performance on seven benchmark problems and two real-
world pump design problems. The experiments show that the suggested tech-
nique yields a better mean value in seven of the nine tested functions. Thus,
the experiments support the initial analysis of the search strategies employed
by established prescreening functions like Probability of Improvement (low risk)
and Expected Improvement (high risk). Hence, it is an advantage to use a risk-
spreading strategy as this simultaneously allows search in the vicinity of the best
known solution and explorative search in new regions of the search space.

Regarding future work, this initial paper only presents the main idea and
demonstrates its potential. The scheme is easy to extend and some next steps
could be to investigate an annealing scheme where the target standard deviation
t is gradually lowered or alternatively a self-adaptive version. Another idea is to
implement an island version of the method.
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