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Abstract. For expensive black-box optimization problems, surrogate-
model based approaches like Efficient Global Optimization are frequently
used in continuous optimization. Their main advantage is the reduction
of function evaluations by exploiting cheaper, data-driven models of the
actual target function. The utilization of such methods in combinatorial
or mixed search spaces is less common. Efficient Global Optimization
and related methods were recently extended to such spaces, by replacing
continuous distance (or similarity) measures with measures suited for the
respective problem representations.

This article investigates a large set of distance measures for their ap-
plicability to various permutation problems. The main purpose is to iden-
tify, how a distance measure can be chosen, either a-priori or online. In
detail, we show that the choice of distance measure can be integrated into
the Maximum Likelihood Estimation process of the underlying Kriging
model. This approach has robust, good performance, thus providing a
very nice tool towards selection of a distance measure.

1 Introduction

One frequent issue in real-world optimization problems are costly objective
function evaluations. These may be caused by time-consuming simulations or
complex trials and measurements. In continuous optimization, surrogate-model
based approaches use cheaper, data-driven models to reduce the number of ob-
jective function evaluations, e.g. in the Efficient Global Optimization (EGO)
algorithm [16]. In combinatorial optimization, surrogate models received less at-
tention. Recently, approaches from continuous modeling and optimization have
been extended to mixed or purely combinatorial problem spaces: Radial Ba-
sis Function Networks (RBFN), Kriging, and EGO [22,34]. A short overview of
these previous studies will be given in Sec. 2.

The employed modeling tools base their prediction on measures of similarity or
distance between candidate solutions. The core idea of the extension is therefore
to replace the distance measures used in continuous spaces (e.g., Euclidean)
with distance measures more suited for the given problem representation. Two
questions arise in this context: First, which distance measure is most suited?
And second, how can this measure be chosen a priori as well as during the
optimization procedure for a given problem?
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This article tries to provide answers to both questions for an important so-
lution representation type: permutations. The permutation representation is re-
quired in a large array of problems [2]. The reader may consider production
processes, which have to be divided into several jobs to be scheduled for one or
more machines in order to achieve a timely completion. Here, several distance
measures will be used to handle various problem classes and instances. The em-
ployed distance measures, Kriging and EGO will be introduced in Sec. 3. Their
performance will be examined in an experimental study, as outlined in Sec. 4.
Observations will be described and discussed in Sec. 5. Finally, a summary and
an outlook on future research are given in Sec. 6.

2 Previous Research

Compared to their frequent use for continuous problem domains, surrogate model
driven approaches are relatively unknown in combinatorial or mixed optimiza-
tion [15]. Voutchkov et al. [31] introduce an expensive optimization problem for
signed permutations, concerning weld sequence optimization. Regarding data-
driven approaches for black-box problems (which are in the focus of this paper),
Li et al. [21] proposed Radial Basis Function Network (RBFN) models based
on a weighted distance measure, replacing the usual distance measure employed
in RBFN. Their RBFN models were able to model to mixed-integer problems.
Mixed problems also occur in algorithm tuning, where continuous, discrete, and
categorical parameters may occur. In this context, Random Forest models have
been used due to their ability to capture discrete and categorical parameters [4].
Hutter [14] also describes a Kriging model with a Hamming distance based kernel
function to handle categorical variables.

Moraglio and Kattan [22] adapted an RBFN to arbitrary distance measures
to model arbitrary combinatorial optimization problems. Their approach has
also been applied to Quadratic Assignment Problems (QAP) [23]. The same
conceptual extension for Kriging was recently investigated by Zaefferer et al. [34].
This allowed to apply the Kriging based Efficient Global Optimization (EGO)
algorithm to combinatorial problems. Kriging-based EGO performed very well,
in comparison to other model-driven or model-free approaches. Furthermore,
the choice of distance measure was shown to have a very strong influence on
optimization performance.

In this article, we will focus on Kriging-based EGO only. We will look at a
much larger array of permutation problems and distance measures. Our goal is to
derive recommendations for the selection of problem-specific distance measures.

3 Methods

3.1 Distance Measures

Previously, distance measures for permutations were investigated, e.g., for the
purpose of landscape analysis [27] or diversity preservation [29]. These previous
studies illustrate that a large array of distance measures is available. For the
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Table 1. Investigated distance measures. Second column lists runtime complexity.
Third column lists median runtime of 1000 evaluations for permutations of length 30.

Name complexity runtime [µs] Abbrev.

Levenshtein O(n2) 7 Lev
Swap O(n2) 6 Swa.
Interchange O(n2) 14 Int.
Longest Common Subsequence O(n2) 8 LCSeq
Longest Common Substring O(n2) 8 LCStr
R O(n2) 5 R
Adjacency O(n2) 6 Adj.
Position O(n2) 6 Pos.
Position2 O(n2) 6 Posq.
Hamming O(n) 2 Ham.
Euclidean O(n) 6 Euc.
Manhattan O(n) 4 Man.
Chebyshev O(n) 3 Che.
Lee O(n) 6 Lee

purpose of distance-based modeling, only Hamming, Swap and Interchange dis-
tance [23,34] were used. In this study, we will analyze 14 different distance mea-
sures, as summarized in Table 1. The given runtime complexity refers to the
employed implementations. More efficient variants may be available. To avoid
scaling bias, all distance measures are scaled to yield values from [0; 1].

In the following, we describe basic features of these distance measures. Since
naming of measures in literature varies, this clarification is useful to avoid con-
fusion.
– Levenshtein and Edit distance are sometimes used as synonyms. In fact, Lev-

enshtein is only one example of an edit distance. It counts the minimum num-
ber of deletions, insertions, or substitutions required to transform one string
(or here: permutation) into another. For an implementation we refer to [32].

– A swap operation is the transposition of two adjacent elements in a permuta-
tion. The Swap distance is defined as the minimum number of swaps required
to transform one permutation into another. It has also been called Precedence
distance [27], or Kendall’s Tau [19,29]. For permutations of length n it is [29]:

δSwa.(π, π
′) =

∑n
i=1

∑n
j=1 zij where zij =

{
1 if πi < πj and π′

i > π′
j ,

0 otherwise.

– An interchange operation is the transposition of two arbitrary elements. Re-
spectively, the Interchange (also: Cayley) distance is the minimum number of
interchanges required to transform one permutation to another [27].

– The longest common subsequence distance counts the largest number of el-
ements that follow each other in both permutations, with interruptions. We
use the algorithm described in [13].

– The longest common-substring distance counts the largest number of elements
that follow each other in both permutations, without interruption, i.e., all
elements are adjacent. We use the implementation in [33].
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– The R-distance [9,29] counts the number of times that one element follows
another in one permutation, but not in the other. It is identical with the uni-
directional adjacency distance [25]. It is computed by

δR(π, π
′) =

∑n−1
i=1 yi where yi =

{
1 if ∃j : πi = π′

j and πi+1 = π′
j+1,

0 otherwise.

– The (bi-directional) adjacency distance [25,27] counts the number of times
two elements are neighbors in one, but not in the other permutation. Unlike
R-distance (uni-directional), the order of the two elements does not matter.

– The Position distance [27] is identical with the Deviation distance or Spear-
man’s footrule [29],

δPos(π, π
′) =

∑n
k=1 |i− j| where πi = π′

j = k .

– The Squared Position distance is Spearman’s rank correlation coefficient [29].
In contrast to the Position distance, the term |i− j| is replaced by (i− j)2

– The Hamming distance or Exact Match distance simply counts the number
of unequal elements in two permutations, i.e.,

δHam.(π, π
′) =

∑n
i=1 ai where ai =

{
0 if πi = π′

i,
1 otherwise.

– The Euclidean distance is

δEuc.(π, π
′) =

√∑n
i=1(πi − π′

i)
2 .

– The Manhattan distance (A-Distance [29,9]) is

δMan.(π, π
′) =

∑n
i=1 |πi − π′

i| .
– The Chebyshev distance is

δChe.(π, π
′) = max

1≤i≤n
(|πi − π′

i|) .
– The Lee distance [20] can be adapted to permutations with

δLee(π, π
′) =

∑n
i=1 min(|πi − π′

i|, n− |πi − π′
i|) .

The reversal distance (number of reversals required to transform one per-
mutation to another) was not used, even though it is especially promising for
the Traveling Salesperson Problem (TSP). Calculating the reversal distance for
unsigned permutations is NP-hard [10].

3.2 Kriging for Combinatorial Optimization

Kriging is a very flexible predictor, that models the correlation between samples,
assuming that they are derived from a Gaussian process. Kriging also provides
an estimate of uncertainty of its own prediction. For a detailed description of
Kriging, we refer to Forrester et al. [11]. The adaptation to combinatorial or
mixed problems was described by Zaefferer et al. [34].

Training a Kriging model requires the set of m solutions X = {x(i)}i=1...m

with observations y = {y(i)}i=1...m. The predicted mean of a new candidate
solution x is referred to as ŷ(x), the estimated error of that prediction is ŝ(x).
The Kriging model has the parameters θ, p, σ̂ ,and μ̂. Maximum Likelihood
Estimation (MLE) is used to determine these parameters and requires a matrix
inversion. In [34], standard inversion was used. We observed a problem with
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standard inversion for 4 out of the 14 distance measures (Int., Lev., LCSeq,
Che.). While all others worked well, these four measures may produce numerical
instability. Hence, the more stable inversion via Cholesky decomposition is used,
which requires a positive semi-definite correlation matrix.

3.3 Choosing a Distance Measure in Kriging

In standard Kriging, the distance measure is not fixed. Rather, it can partially be
understood as a parametrized distance measure. E.g., it may resemble Euclidean
(p = 2) or Manhattan (p = 1) distance.

The choice of distance measure can also be understood as a (categorical)
parameter of the model. Hence, we suggest to perform MLE for each distance
measure separately. Afterwards, the distance measure with maximum likelihood
is chosen for the model. This procedure repeats every time the model is build,
i.e., in each iteration of a single EGO run. In the experimental study this will
be referred to as “All”.

A wrong decision may occur, especially while data is still very sparse. There-
fore, we expect the performance of choosing a distance measure with MLE to
be equal to or worse than the best single measure. An exception would be the
case where the underlying optimization problem has a dynamic behavior. Then,
different measures may be preferable in different phases of the optimization run.

3.4 Efficient Global Optimization

EGO was introduced by Jones et al. [16]. In this algorithm, a Kriging model is
first build based on an initial set of solutions. If the uncertainty ŝ(x) > 0, one
can compute the Expected Improvement (EI) of a candidate solution, otherwise
EI(x) = 0. EI determines how much improvement can be expected from the
candidate solution, and thus balances exploitation vs. exploration. The solution
that maximizes EI is evaluated with the target function. The result is used to
update the Kriging model. This is repeated until a termination criterion (e.g.,
function evaluation budget) is fulfilled.

4 Experimental Setup

4.1 Correlation between Distances

As a first step, correlation between the 14 different distance measures is inves-
tigated. Distances between all permutations of length n = 7 are computed (i.e.,
5040 distance values for each measure), and the correlation is calculated.

4.2 Matrix Condition

To quickly assess whether all measures yield positive semi-definite correlation
matrices (as required for MLE), we performed an experimental test. Ten so-
lutions were created randomly, while another 90 were created by consecutive
interchange mutations. This yields 100 solutions of varying distances. This was
done for various permutation lengths (n = {5, 6, 7, 8, 9, 10, 20, 50, 100}). In case
of the smallest instance, the 100 solutions represent a very large section of the
search space (which has a size of n! = 120). Larger instances are less crowded.
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Since θ will also influence the correlation matrix condition, it was varied from
10−10 to 1010. For each distance measure, each dimension n, and each θ the
correlation matrix is computed and its condition checked.

4.3 Benchmark Problems

For all further experiments, five permutation problem classes are used.
– As in [34], four instances of the Quadratic Assignment Problem (QAP) [6] from

the QAPLIB [7] are chosen (nug30, nug12, tho30 and kra32). In the QAP
n facilities have to be assigned to n locations. Assignment cost is minimized,
based on flow between facilities and distance between locations.

– Four instances of the Flow-shop Scheduling Problem (FSP) [30] are chosen
(reC05, reC13, reC19, reC31 [24]) from the OR-Library [5]. Here, the finishing
time of the last of n jobs sequenced on m machines is minimized.

– Three TSP instances are chosen from the TSPLIB [26] (bayg29, fri26, gr24). In
the TSP, the cost or length of a route through several locations is minimized.
Each location has to be visited once.

– Three instances of the Asymmetric TSP (ATSP) are generated (atsp10, atsp20,
atsp30). For each instance, a distance matrix is created randomly with a uni-
form distribution. The three instances are of size 10, 20, and 30. In contrast
to TSP, the cost of traveling between two locations depends on direction.

– Finally, four instances of the single-machine total Weighted Tardiness problem
(WT) [1] are chosen, also from the OR-Library [5] (the first four of length 40,
i.e., wt40a, wt40b, wt40c, wt40d). Here, n jobs are sequenced on one machine
that can handle one job at a time. The tardiness of a schedule for all jobs,
weighted by a set of n given weights is minimized. It depends on the given
processing times and due dates of each job.

For QAP, TSP, ATSP and WT the length of the permutation n is given by the
number in the instance name. For FSP, n is 20, 20, 30 and 50 for reC05, reC13,
reC19 and reC31 respectively.

We use this benchmark set under the artificial assumption of costly target
function evaluation. While some of these problems have actual real world rele-
vance (e.g., based on real world data), none may be considered expensive. This
allows for a more in-depth study, providing first results, which of course should
be validated with actually expensive problems in future studies.

4.4 Local Fitness Distance Correlation

Fitness Distance Correlation [17] is a measure for the analysis of fitness land-
scapes. It measures correlation between fitness value and distance to the known
global optimum. When the optimum is unknown, it can be replaced by the best
solution in the set, thus yielding the Local FDC (LFDC) [18]. Here, LFDC will
be calculated based on 20,000 unique, randomly created individuals for each
instance. When minimizing an easy problem, positive correlation is expected
to occur. Thus, the LFDC values may represent an indicator of problem diffi-
culty. We are interested in LFDC from a different perspective. It is investigated,
whether LFDC can be used to identify a suitable distance measure for a given
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problem. LFDC may be unsuited towards this end, as previous studies already
showed that FDC may be misleading for certain problems [3].

4.5 Optimization Performance

Finally, we compare optimization performance. To that end, EGO, a model-free
Genetic Algorithm (GA), Random Search (RS) and a simple 2-opt local search
are employed with a strictly limited budget of 200 function evaluations. GA, RS
and 2-opt are baselines in this comparison. Their main purpose is to identify
whether the various EGO variants work at all.

The GA used in the comparison will use cycle crossover and the mutation
operator is an interchange of arbitrary elements. Furthermore the algorithm will
use a population size of ten, crossover rate 0.5, mutation rate 1/n, tournament
selection with tournament size two and tournament probability 0.9. The EGO
algorithm will start with an initial set of ten solutions. Kriging parameter p is set
to one, while the others are determined with MLE. Internally, EGO will perform
optimization of the (assumed to be cheap) surrogate model. Hence, the same
GA is used with 10,000 model evaluations, and a population size of 20.

For a fair comparison of actual competitors, most of the mentioned parameters
would require tuning. Since the basic GA is just a baseline, this is not necessary.
The EGO variants use identical settings thus yielding a fair comparison among
themselves.

5 Observations and Discussion

5.1 Correlation and LFDC

Correlation between distance measures and LFDC values are depicted in Fig. 1.
Measures that correlate also have comparable LFDC (e.g., Pos. and Posq.). The
LFDC for QAP, TSP & ATSP as well as FSP & WT have similar structure.

Fig. 1. Heatmaps of distance measure correlation (left), and LFDC values (right)
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5.2 Matrix Condition

For most distance measures, a positive semi-definite matrix could be determined
for each n. Only Adjacency distance with n = 5 and n = 6 did not yield any pos-
itive semi-definite matrices. Hence, one should avoid using Adjacency distance
when the training samples represent a large portion of the search space.

5.3 Optimization Performance

Figure 2 shows the results of the optimization experiments. Each EGO variant
is referred to by the name of the employed distance measure. Results of 2-opt
are not shown, for the sake of brevity. 2-opt usually ranks worse than GA and
only outperforms GA for the three TSP instances. Still, it can not compete with
the model-based approaches. Chebyshev distance (Che.) and RS are consistently
outperformed by the GA and hence not included in the plot.

Fig. 2. Optimization performance: Dots are median, black bars are interquartile range,
thick grey bars are range from minimum to maximum. Smaller values are better.
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Three main groups with similar structure can be identified: first, the QAP
instances, second, the TSP and ATSP instances, and third, the WT and FSP
instances. Members of each group have a similar pattern, although the best per-
forming method may not be identical for all members. These three blocks do
coincide with the structure that is visible in the LFDC results. LFDC may iden-
tify the best measure (see e.g., R-Distance and atsp10) or may fail completely
(e.g., Posq. and reC19). LFDC is apparently unsuited to identify a proper dis-
tance measure.

Overall, the model-free GA is always outperformed by at least 5 EGO variants.
Choosing the wrong distance measure may however lead to performance worse
than the model-free GA. Choosing a distance measure with MLE (All) never
ranks worse than 3rd best, making it the most robust method in this test bed.
All ranks first place in 7 of 18 instances. It seems that the underlying problem
does profit from a dynamic choice of distance measure. This behavior may be re-
lated to dynamic behavior observed for the choice of mutation operators through
self-adaption [28]. Many distance measures can be related to specific mutation
operators. The single best distance measure is Hamming distance, yielding best
results in 6 of the 18 test problems, but receiving lower ranks for other instances.
For each problem class, the single best distance measures are: Ham. for QAP,
Lev. for FSP, Adj. for TSP, R for ATSP, Pos. for WT. While the scheduling
problems rather reflect the importance of a relative order, TSP or ATSP are
more concerned with adjacency of neighboring cities. Hence, it makes sense that
a bi-directional adjacency measure is used for TSP, while uni-directional adja-
cency (R-Distance) is used for the ATSP instances. In ATSP, direction matters,
whereas in TSP it does not.

The nice and robust performance of choosing a distance measure with MLE
makes for a promising result. Here, the only issue is to carefully avoid numerical
problems, i.e., to use matrix inversion via Cholesky decomposition. Should the
increased computational effort necessitate a smaller set of distance measures,
Hamming distance should always be included, due to good performance and
lowest cost.

6 Summary and Outlook

This work investigated the suitability of various distance measures in surrogate
modeling for the optimization of several permutation problems. It was shown,
that each problem class or instance may require a different distance measure.
Correlation between distance and fitness values (LFDC) proved to be a poor
way of selecting a distance measure for a given problem class or instance. On
the other hand, integrating the selection of a measure into the MLE process of
a Kriging model proved to be a very well performing and robust approach.

Further research may focus on learning distance measures for Kriging-based
models in combinatorial spaces. Learning of correlation functions with Genetic
Programming is not new [12]. Also, distance measures have been evolved with
GA [8] in the context of string matching. Combining both ideas to evolve better
measures for distance-based models may thus be an interesting path to follow.
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If interpretable distance measures evolve, this may also give interesting insight
into the underlying problems.
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