
Compressing Regular Expression Sets

for Deep Packet Inspection

Alberto Bartoli, Simone Cumar, Andrea De Lorenzo, and Eric Medvet

Department of Engineering and Architecture, University of Trieste, Italy

Abstract. The ability to generate security-related alerts while analyz-
ing network traffic in real time has become a key mechanism in many
networking devices. This functionality relies on the application of large
sets of regular expressions describing attack signatures to each individ-
ual packet. Implementing an engine of this form capable of operating
at line speed is considerably difficult and the corresponding performance
problems have been attacked from several points of view. In this work we
propose a novel approach complementing earlier proposals: we suggest
transforming the starting set of regular expressions to another set of ex-
pressions which is much smaller yet classifies network traffic in the same
categories as the starting set. Key component of the transformation is
an evolutionary search based on Genetic Programming: a large popula-
tion of expressions represented as abstract syntax trees evolves by means
of mutation and crossover, evolution being driven by fitness indexes tai-
lored to the desired classification needs and which minimize the length
of each expression. We assessed our proposals on real datasets composed
of up to 474 expressions and the outcome has been very good, resulting
in compressions in the order of 74%. Our results are highly encouraging
and demonstrate the power of evolutionary techniques in an important
application domain.

Keywords: Genetic programming, evolutionary optimization, intrusion
detection, traffic classification.

1 Introduction

The ability to generate security-related alerts while analyzing network traffic in
real time has become a key mechanism in many networking devices, ranging
from intrusion detection systems to firewalls and switches. While early systems
classified traffic based only on header-level packet information, modern systems
are capable of detecting malicious patterns within the actual packet payload.
This deep packet inspection capability is usually based on pattern descriptions
expressed in the form of regular expressions, because fixed strings have become
inadequate to describe attack signatures.

Implementing a regular expression evaluation engine capable of analyzing net-
work traffic at line speed is considerably difficult, also because there are usually
hundreds or thousands of regular expressions to be analyzed and this set needs to

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 394–403, 2014.
c© Springer International Publishing Switzerland 2014



Compressing Regular Expression Sets for Deep Packet Inspection 395

be periodically updated to address novel attacks. For this reason, there has been
a considerable amount of recent proposals aimed at handling the corresponding
performance problems. Such proposals have addressed different dimensions of
the design space: optimization of the evaluation algorithm in representations of
regular expressions based on Deterministic Finite Automata (DFA) [1–3]; DFA
representations leading to faster hardware implementations and which require
less memory [4–6]; optimization of the hardware implementation of DFA [7];
development of engines suitable for parallel hardware implementation [8, 9].

In this work, we address a different dimension of the design space and propose
an approach which complements the existing proposals. Rather than optimizing
the steps from the set of regular expressions to their run-time evaluation, we
explore the possibility of greatly reducing the size of the set itself. To this end,
we use an heuristic approach: rather than attempting to construct a new set of
expressions formally equivalent to the original one (but simpler to evaluate at
run-time) [10], we aim at constructing a set with the same detection behavior on
the traffic of interest. As it turns out, this relaxed problem formulation allows
a broad range of compressions and simplifications which would not be possible
when insisting on having exactly the very same detection behavior on all possible
strings.

Key component of our proposal is an evolutionary search phase based on
Genetic Programming (GP). We create a population of regular expressions com-
posed of the set of expressions to be simplified and further randomly-generated
expressions. We then evolve this population by randomly combining expressions
with genetic operators (crossover and mutation) for a predefined number of steps.
The evolution is driven by a multi-objective optimization strategy aimed at min-
imizing two fitness indexes of each expression taken in isolation: classification
errors on the traffic of interest and length of the expression. Finally, we con-
struct a set of regular expressions meant to replace the original one by selecting
a subset of the final population. We select this subset with a greedy procedure
ensuring that the resulting subset tends to have the same detection behavior on
the traffic of interest as the original set.

We assess our proposal on several real sets of regular expressions used in the
Snort1 intrusion detection system—one of the standard testbeds in this specific
research field, e.g., [7, 10, 3]. We considered sets with a number of regular expres-
sions ranging from 10 to 474 and an aggregate length ranging from 260 to about
59 742 The results are highly promising: we obtain a decrease in the number of
regular expressions and a decrease in aggregate length in the order of 74%, on
the average.

2 Our Approach

2.1 Problem Statement

We associate each set of regular expressions R with a numerical cost c(R), which
models the effort required for applying all expressions in R to a given string.

1 http://www.snort.org

http://www.snort.org


396 A. Bartoli et al.

This index should quantify the run-time cost of using R and its actual value
depends on the specific technology used [7]. In this work we use the sum of the
lengths of all expressions in R as a proxy for c(R), i.e., we set c(R) =

∑
r∈R �(r),

where �(r) is the length of the regular expression r represented as a string. It will
be clear from the following sections that our approachmay be applied with widely
differing cost definitions: for example, one could consider the number of states of
the Nondeterministic Finite Automata (NFA) implementing each expression [10]
as well as the presence of specific hard-to-evaluate constructs [11].

We say that a regular expression r matches a string s, denoted r ←↩ s, if
r extracts at least one non-empty substring of s. We say that a set of regular
expressions R matches a string s, denoted R ←↩ s, if at least one of the regular
expressions r ∈ R matches s. We say that a set of regular expressions R1 is
equivalent to another set R2 if the set of all the strings matched by R1 is equal
to the set of all the strings matched by R2. Given a finite set S of sample strings,
we say that R1 is S-equivalent to R2 if the set of all the strings in S matched by
R1 and R2 is the same, i.e., {s ∈ S : R1 ←↩ s} = {s ∈ S : R2 ←↩ s}.

Given a starting set of regular expressions Rs, we generate synthetically from
this set a positive set S+ of matched strings and a negative set S− of strings which
are not matched. We aim at identifying a different set of regular expressions Rf

such that:(i) Rs and Rf are (S+ ∪ S−)-equivalent; and, (ii) c(Rf ) < c(Rs).
To solve this problem, we proceed as follows.

1. We generate S+ and S− from Rs with the same cardinality. We then ran-
domly partition each set in three subsets to be used in the two next phases of
the algorithm and for testing: i.e., we partition S+ in S+

evolution, S
+
selection and

S+
testing, and the same for S−. In this work we chose to use three equally-sized

subsets, but different choices are possible.
2. In the evolution phase, we evolve the starting set of regular expressions Rs

with a stochastic procedure based on GP. The evolution is driven by a multi-
objective optimization strategy aimed at minimizing two performance in-
dexes of each expression r taken in isolation: errors of r on S+

evolution, S
−
evolution

and length of the expression �(r). We execute n independent evolutions, each
evolution producing a set of regular expressions Ri

e, with i = 1, . . . , n.
3. In the selection phase, we construct a candidate target set Ri

f based on the

set Ri
e generated in the previous phase, with i = 1, . . . , n. The construction

of each set Ri
f is made with a set coverage algorithm aimed at selecting a

subset of Ri
e matching all examples in S+

selection and no example in S−
selection.

The coverage is driven by a greedy strategy aimed at minimizing the cost of
Ri

f . We select as target set Rf the set Ri
f with smallest cost.

We emphasize that the evolution phase optimizes performance indexes of each
regular expression taken in isolation, while the selection phase optimizes an index
resulting from the coordinated effort of all the regular expressions.

We assessed our procedure on several sets of regular expressions used in Snort.
For each set Rs, we assessed the generated target set Rf by comparing its cost
c(Rf ) to the cost of the original set c(Rs). Furthermore, we verified that Rf

matches all strings in S+
testing and does not match any string in S−

testing.



Compressing Regular Expression Sets for Deep Packet Inspection 397

The starting set of expressions Rs is obtained from detection rules generated
by administrators, each expression in Rs being associated with exactly one de-
tection rule. Transforming Rs to a different set Rf , much cheaper to evaluate at
run-time, implies that when Rf matches a given string there is usually no imme-
diate correspondence with detection rules. This issue is intrinsic to any approach
aimed at optimizing Rs as a whole, e.g., [10], as opposed to optimizations where
the original regular expressions are left unchanged. We remark, though, that
identifying the detection rule in order to generate a meaningful alert description
may be done rather simply: once Rf has classified a certain packet as a positive,
it suffices to apply Rs on that packet. The key observation is that packet process-
ing has to be performed at line speed, while alert description may proceed at a
much slower pace. Indeed, this strategy also allows correcting any false positive
misclassifications due to the tranformation from Rs to Rf—a packet classified
as positive by Rf which is actually not matched by any expression in Rs would
not generate any alert.

2.2 Representation

We represent each regular expression as an abstract syntax tree. A regular ex-
pression r is produced from a tree by concatenating node labels encountered
in a depth-first post order visit of the tree. The label of each leaf node is an
element from a predefined terminal set whereas the label of each branch node is
an element from a predefined function set.

The terminal set is composed of constants (a, . . . , z, A, . . . , Z, 0, . . . , 9, \x00,
. . . , \x07, -, ?, (, ), {, }, ., @, #, , , . . . ) and character classes (\w, \W, \d, \D,
\s, \S, a-z and A-Z). The function set is composed of the following operators:
the concatenator ··, which concatenates its two children (the dot character ·
represents a placeholder for the children nodes of the corresponding node); the
character class operators [·] and [^·], the non-capturing group (?:·) operator,
the capturing group (·) operator, the disjunction ·|· operator and the greedy
quantifiers (·*, ·+, ·?, ·{·,·}).

2.3 Set Equivalence by Sample Strings

An essential component of our heuristic approach is the choice of the sets S+,
S− of sample strings to be used for checking the (relaxed) equivalence of the
starting set and final set of regular expressions. These samples may be chosen in
several ways, for example by using a synthetic traffic generator specialized for
evaluating deep packet inspection architectures [12]. Another possibility consists
in using samples of real traffic explicitly collected for assessing intrusion detection
systems [13, 14]. In this paper, we chose to use a simpler approach in which
we generate traffic synthetically based solely on the structure of the regular
expressions in the starting set Rs, as described below. Further experimentation
with traffic generation strategies like those of the cited works is certainly required
in order to better validate our results.



398 A. Bartoli et al.

For each regular expression r ∈ Rs, we generate k positive strings s such
r(s) = s—where r(s) denotes the leftmost non-empty substring of s extracted
by r. Then, we generate k|Rs| random strings such that R does not match any
of these negative strings. The outcome of the procedure consists of the sets S+,
S−, such that(i) ∀s ∈ S+, Rs ←↩ s, (ii) ∀s ∈ S−, Rs �←↩ s, and (iii) |S+| = |S−| =
k|Rs|.

We generate each positive string s from a r ∈ Rs as follows. We traverse the
tree representation of r (see previous section) in depth-first: each function node
generates a string which depends on the node and its children; each terminal
node generates a string which depends on the node only. For example, the termi-
nal node \d generates a digit with uniform probability; the disjuction node ·|·
generates the first child or the second child string, with equal probability.

We generate each negative string s ∈ S− at random. If Rs ←↩ s, we drop s
and randomly generate a new one. Negative strings have a maximum length of
120 characters.

2.4 Evolution Phase

In this phase, we evolve the starting set of regular expressions Rs with a pro-
cedure based on GP and produce a set of regular expressions Ri

e which will be
used in the next phase: the whole procedure described in this section is repeated
for i = 1, . . . , n and different random seeds. We use an approach which follows
closely a proposal for generating automatically regular expressions for text ex-
traction based on labelled examples [15]. We summarize the approach in order to
provide sufficient background for this work and outline at the end of this section
the changes which we applied to the original approach.

The evolutionary search, described below, is based on the NSGA-II [16] multi-
objective optimization algorithm. Each candidate solution r has two fitness in-
dexes to be minimized: the length �(r) of the regular expression and an index
e(r) quantifying the classification errors of r on S+

evolution, S
−
evolution. In detail,

the index e(r) is defined as:

e(r) =
∑

s∈S+
evolution

d (s, r (s)) +
∑

s∈S−
evolution

d (∅, r (s)) (1)

where d(s1, s2) is the Levenshtein distance (edit distance) [17] between strings
s1 and s2—note that d(∅, s) = �(s). In other words, e(r) is the sum of two
components: sum of distances between positive strings and what was actually
extracted from the positive string; and, sum of distances between the empty
string and what was actually extracted from the negative strings. The rationale is
that a perfect r should extract exactly s from each s ∈ S+

evolution—since positives
s have been generated such that r(s) = s, with r ∈ Rs—and should not extract
any string from each s ∈ S−

evolution. We remark that e(r) quantifies extraction
errors rather classification errors, that is, the desired behavior is described in
terms of (possibly empty) substrings to be extracted from sample strings, rather
than in terms of two categories of strings. We chose to not deviate from such



Compressing Regular Expression Sets for Deep Packet Inspection 399

formulation because the cited paper argues that fitness definitions based on mere
classification could not be adequate to drive the evolutionary search toward the
generation of regular expressions with the desired behavior—different fitness
indexes could be explored in future work, though.

Each evolutionary search is made on a population of 500 candidate solutions.
The initial population consists of all the regular expressions in the starting set
Rs and 500 − |Rs| regular expressions generated at random. The population
evolves for 500 generations, as follows (recall that we execute n independent
searches, each producing a set of 500 candidate solutions). Let P be the cur-
rent population. We generate an evolved population P ′ as follows: 20% of the
regular expressions are generated at random, 20% of the regular expressions are
generated by applying the genetic operator “mutation” to regular expressions
of P , and 60% of the regular expressions are generated by applying the genetic
operator “crossover” to a pair of individuals of P . We select regular expressions
for mutation and crossover with a tournament of size 7, i.e., we pick 7 regular
expressions at random from P and then select the best regular expressions in this
set, according to NSGA-II. Finally, we generate the next population by choosing
the regular expressions with highest fitness among those in P and P ′. The size
of the population is kept constant during the evolution. Upon generation of a
new regular expression, we check its syntactic correctness: if the check fails, we
discard the regular expression and generate a new one. The outcome set Ri

e is
set to the final population.

The approach described in this paper differs from the original proposal in [15]
in the following points.

1. The initial population is not generated completely at random: it includes all
the expressions in the starting set.

2. The terminal set includes more constants: enlarging the cardinality of the
terminal set, as well as of the function set, greatly enlarges the size of the
solution space.

3. The function set includes the disjunction operator: it is disadvantageous
to use in text extraction because it tends to promote overfitting of the la-
belled examples. Furthermore, the function set includes the greedy quanti-
fiers (·*, ·+, ·?, ·{·,·}) and does not include possessive quantifiers (·*+, ·++,
·?+, ·{·,·}+). The former are included because largely used in the starting
set Rs, the latter are not included because they are often not supported in
deep packet inspection tools.

Inclusion of greedy quantifiers with the standard Java engine for processing
regular expressions often results in unacceptably long execution times for this
form of evolutionary search [15]. For this reason, we used a different engine,
internally built with NFA2, where the processing cost depends only on the length
of the inputs rather than also on the structure of the expression.

2 RE2: https://code.google.com/p/re2

https://code.google.com/p/re2


400 A. Bartoli et al.

2.5 Selection Phase

In this phase we construct a candidate target set Ri
f based on the set Ri

e of
regular expressions resulting from the ith evolution (i = 1, . . . , n) and then
select as target set Rf the set Ri

f with smallest cost.

To construct each Ri
f , we consider S+

selection as a set to be covered by regular

expressions in Ri
f (an element of S+

selection being covered if it is matched by a

regular expression in Ri
f ). We then execute a set coverage procedure aimed at

selecting a subset of Ri
e matching all examples in S+

selection and no example in
S−
selection, as follows.
We define the score S(r, S′, S′′) of a regular expression r on the sets S′, S′′

as the number of examples in S′, S′′ which r handles correctly:

S(r, S′, S′′) = |{s ∈ S′ : r ←↩ s}|+ |{s ∈ S′′ : r �←↩ s}| (2)

Similarly, we define the score S(R,S′, S′′) of a set R on the sets S′, S′′ of reg-
ular expressions the number of examples in S′, S′′ which R as a whole handles
correctly:

S(R,S′, S′′) = |{s ∈ S′ : R←↩ s}|+ |{s ∈ S′′ : R �←↩ s}| (3)

The greedy set coverage algorithm starts with Ri
f := ∅, S′ := S+

selection and
consists of the following steps:

1. select r ∈ Ri
e \Ri

f with highest score S(r, S′, S−
selection);

2. if S(Ri
f ∪ {r}, S+

selection, S
−
selection) ≤ S(Ri

f , S
+
selection, S

−
selection) then termi-

nate;
3. Ri

f := Ri
f ∪ {r};

4. S′ := S′ \ {s ∈ S+
selection : Ri

f ←↩ s}
5. if S′ = ∅ or Ri

f = Ri
e then terminate, otherwise go to step 1.

In other words, candidates for inclusion in Ri
f are taken from Ri

e and the choice

is driven by the score of candidates on S′, S−
selection. The strategy is greedy in

the sense that once a candidate is chosen it cannot be removed by a later choice.
These steps are followed by further completion steps, to be executed in case of

termination with S′ �= ∅. The completion steps consist in a further execution of
the above algorithm, this time starting from the Ri

f obtained at the end of the

former algorithm (rather than from Ri
f := ∅) and by selecting candidates from

the original expressions Rs—i.e., in step 1, r is chosen in Rs \Ri
f rather than in

Ri
e \ Ri

f . The rationale is that if elements from Ri
e fail to detect some positives,

then the missing positives can be detected by some of the original expressions
in Rs.

3 Experimental Evaluation

3.1 Datasets

We used several real sets of regular expressions used in the Snort intrusion de-
tection system, which have been collected by the Netbench project [18]. Table 1



Compressing Regular Expression Sets for Deep Packet Inspection 401

Table 1. Datasets

Rs |Rs| c(Rs) k |S+ ∪ S−|
chat.rules.pcre 14 307 105 2940
pop3.rules.pcre 16 265 105 3360
policy.rules.pcre 10 260 105 2100
web-php.rules.pcre 16 400 105 3360
ftp.rules.pcre 35 645 60 4200
spyware-put.rules.pcre 460 16 277 60 55 200
web-activex.rules.pcre 474 59 742 60 56 880

lists these sets, along with their cardinality and their cost (i.e., aggregate length
of all the regular expressions in the set). The table also shows the value k we
used in the procedure for generating S+, S− for each set Rs and the resulting
number |S+ ∪ S−| = 2k|Rs| of sample strings.

3.2 Results and Discussion

We applied our approach to each dataset Rs and assessed, in each case, the
quality of the resulting set Rf with the following indexes. We quantified the cost

reduction by computing the compression ratio defined as 1− c(Rf )
c(Rs)

. Concerning

the detection behavior, we computed False Positive Rate (FPR, i.e., percentage
of strings in S−

testing which are matched by Rf ) and False Negative Rate (FNR,

i.e., percentage of strings in S+
testing which are not matched by Rf ). We also

computed accuracy as 1− 1
2 (FPR+FNR). Of course, Rs exhibits FPR = FNR =

0 by construction of sets S+, S−. Thus, Rf should also exhibit FPR = FNR = 0
but coupled with a compression rate close to 100%.

Table 2 shows the results of our experimental evaluation. The table also shows
the performance indexes without the completion steps in the selection phase, in
order to highlight to which extent these steps improve results.

Table 2. Results

Without completion steps With completion steps

Rs FPR FNR Acc. 1− c(Rf )

c(Rs)
FPR FNR Acc. 1− c(Rf )

c(Rs)

chat.rules.pcre 0.0 50.0 75.0 96.10 0.0 0.0 100.0 70.66
pop3.rules.pcre 2.7 0.0 98.7 91.33 2.7 0.0 98.7 91.33
policy.rules.pcre 88.5 0.0 55.9 8.62 88.5 0.0 55.9 8.62
web-php.rules.pcre 24.5 6.3 84.6 67.00 24.5 0.0 87.8 66.50
ftp.rules.pcre 15.9 7.4 88.4 53.96 15.9 0.0 92.2 48.99
spyware-put.rules.pcre 3.3 9.5 93.6 99.01 1.6 0.0 98.3 91.26
web-activex.rules.pcre 0.0 0.0 100.0 99.97 0.0 0.0 100.0 99.97

It can be seen that the average compression ratio amongst the datasets is
74%, but the key result is that the two largest datasets (spyware-put.rules.pcre
and web-activex.rules.pcre) can be compressed to less than 1% of the original
size—without affecting accuracy significantly.



402 A. Bartoli et al.

We also remark that FNR is zero for all the datasets (thanks to the completion
steps) and that FPR is very low for 4 on 7 datasets, but can be reduced to zero
on all the datasets as discussed in Section 2.1 (it suffices to apply the original Rs

only on those strings which are matched by Rf , which still allows exploiting the
advantages of compressions because only Rf has to be applied at line speed).

We performed our experiments on an Intel i5-3470 3.20GHz machine with
8GB RAM: the time required to process a single dataset was of 4 h on the
average.

4 Concluding Remarks

Applying large sets of regular expressions to network traffic while operating
at line speed is a challenging problem which has been attacked from several
perspectives. In this work, we propose a novel approach complementing earlier
proposals and assessed its feasibility. We considered the possibility of transform-
ing the starting set of regular expressions to another set of expressions which
is much smaller yet classifies network traffic in the same categories as the start-
ing set. Key component of the transformation is an evolutionary search based
on GP: a large population of regular expressions represented as abstract syntax
trees evolves by means of mutation and crossover, evolution being driven by
fitness indexes tailored to the desired classification needs and which minimize
the length of each expression. The desired set of expressions is then built with
a greedy algorithm which selects from the available expressions a small set set
matching all positive samples and not matching any negative. We remark that
the evolutionary search optimizes each expression taken in isolation, while the
selection phase optimizes the performance of the target population.

We experimented with real datasets and the outcome has been very good,
resulting in compressions in the order of 74% across all datasets but well above
90% on the bigger datasets composed of hundreds of expressions. Such compres-
sions could be even improved further by applying other proposals to the final
result, e.g., by minimizing the number of states of the NFA representing the final
set of expressions [10]. While our proposal certainly needs further investigation,
in particular, concerning its performance on real network traffic (see Section 2.3),
we do believe that our results are highly encouraging and demonstrate the power
of evolutionary techniques in an important application domain.

References

1. Yu, F., Chen, Z., Diao, Y., Lakshman, T., Katz, R.H.: Fast and memory-efficient
regular expression matching for deep packet inspection. In: Proceedings of the
2006 ACM/IEEE Symposium on Architecture for Networking and Communications
Systems, pp. 93–102. ACM (2006)

2. Kumar, S., Dharmapurikar, S., Yu, F., Crowley, P., Turner, J.: Algorithms to
accelerate multiple regular expressions matching for deep packet inspection. ACM
SIGCOMM Computer Communication Review 36(4), 339–350 (2006)



Compressing Regular Expression Sets for Deep Packet Inspection 403

3. Becchi, M., Crowley, P.: An improved algorithm to accelerate regular expression
evaluation. In: Proceedings of the 3rd ACM/IEEE Symposium on Architecture for
Networking and Communications Systems, pp. 145–154. ACM (2007)

4. Brodie, B.C., Taylor, D.E., Cytron, R.K.: A scalable architecture for high-
throughput regular-expression pattern matching. In: ACM SIGARCH Computer
Architecture News, vol. 34, pp. 191–202. IEEE Computer Society (2006)

5. Kong, S., Smith, R., Estan, C.: Efficient signature matching with multiple alphabet
compression tables. In: Proceedings of the 4th International Conference on Security
and Privacy in Communication Netowrks, vol. 1. ACM (2008)

6. Becchi, M., Cadambi, S.: Memory-efficient regular expression search using state
merging. In: INFOCOM 2007, 26th IEEE International Conference on Computer
Communications, pp. 1064–1072. IEEE (2007)

7. Meiners, C., Patel, J., Norige, E., Liu, A., Torng, E.: Fast regular expression match-
ing using small TCAM. IEEE/ACM Transactions on Networking 22(1), 94–109
(2014)

8. Becchi, M., Crowley, P.: A hybrid finite automaton for practical deep packet inspec-
tion. In: Proceedings of the 2007 ACM CoNEXT Conference, p. 1. ACM (2007)

9. Becchi, M., Crowley, P.: Efficient regular expression evaluation: theory to practice.
In: Proceedings of the 4th ACM/IEEE Symposium on Architectures for Networking
and Communications Systems, pp. 50–59. ACM (2008)

10. Kosar, V., Korenek, J.: Reduction of fpga resources for regular expression matching
by relation similarity. In: 2011 IEEE 14th International Symposium on Design and
Diagnostics of Electronic Circuits & Systems (DDECS), pp. 401–402. IEEE (2011)

11. Bispo, J., Sourdis, I., Cardoso, J.M.P., Vassiliadis, S.: Synthesis of regular expres-
sions targeting fPGAs: Current status and open issues. In: Diniz, P.C., Marques, E.,
Bertels, K., Fernandes, M.M., Cardoso, J.M.P. (eds.) ARCS 2007. LNCS, vol. 4419,
pp. 179–190. Springer, Heidelberg (2007)

12. Becchi, M., Franklin, M., Crowley, P.: A workload for evaluating deep packet in-
spection architectures. In: IEEE International Symposium on Workload Charac-
terization, IISWC 2008, pp. 79–89. IEEE (2008)

13. Shiravi, A., Shiravi, H., Tavallaee, M., Ghorbani, A.A.: Toward developing a sys-
tematic approach to generate benchmark datasets for intrusion detection. Comput-
ers & Security 31(3), 357–374 (2012)

14. Black hat USA 2010: SprayPAL: how capturing and replaying attack traffic can
save your IDS 1/2 (September 2010)

15. Bartoli, A., Davanzo, G., De Lorenzo, A., Medvet, E., Sorio, E.: Automatic syn-
thesis of regular expressions from examples. IEEE Computer (2013) (Early Access
Online)

16. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation 6(2),
182–197 (2002)

17. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions and re-
versals. Soviet Physics Doklady 10, 707 (1966)

18. Pus, V., Tobola, J., Kosar, V., Kastil, J., Korenek, J.: Netbench: Framework for
evaluation of packet processing algorithms. In: Proceedings of the 2011 ACM/IEEE
Seventh Symposium on Architectures for Networking and Communications Sys-
tems, pp. 95–96. IEEE Computer Society (2011)


	Compressing Regular Expression Sets
for Deep Packet Inspection

	1 Introduction
	2 Our Approach
	2.1 Problem Statement
	2.2 Representation
	2.3 Set Equivalence by Sample Strings
	2.4 Evolution Phase
	2.5 Selection Phase

	3 Experimental Evaluation
	3.1 Datasets
	3.2 Results and Discussion

	4 Concluding Remarks
	References




