
Improving Genetic Programming
with Behavioral Consistency Measure

Krzysztof Krawiec1 and Armando Solar-Lezama2

1 Institute of Computing Science, Poznan University of Technology, Poznań, Poland
krawiec@cs.put.poznan.pl

2 Computer Science and Artificial Intelligence Laboratory,
Massachusetts Institute of Technology, Cambridge, MA, USA

asolar@csail.mit.edu

Abstract. Program synthesis tasks usually specify only the desired out-
put of a program and do not state any expectations about its internal
behavior. The intermediate execution states reached by a running pro-
gram can be nonetheless deemed as more or less preferred according
to their information content with respect to the desired output. In this
paper, a consistency measure is proposed that implements this observa-
tion. When used as an additional search objective in a typical genetic
programming setting, this measure improves the success rate on a suite
of 35 benchmarks in a statistically significant way.

Keywords: Program synthesis, genetic programming, entropy, multi-
objective search.

1 Introduction

One of the main challenges for genetic programming (GP)—or for that matter,
for any approach to program synthesis based on explicit search over a space of
programs—is to decide on a fitness function that captures the relative quality of
different proposed solutions. A common approach is to consider the quality of the
output of a given program on a set of candidate inputs, possibly augmented with
some structural constraints to prevent the search algorithm from overfitting to
the training inputs (examples). The problem with this approach is that there is a
fundamental mismatch between the search approach, which operates on the struc-
ture of the program, and the fitness function which is based on its input/output
behavior. An ideal fitness function would instead be one that rewards programs
that are structurally close to a correct solution: a program that is only a few small
modifications away from being correct is better than one that has to be completely
transformed in order to work, even if the former produces incorrect output on ev-
ery input. The problem, of course, is that we do not know how the correct pro-
gram looks like—if we did, we would not be searching for it—so we are left with
behavior-based measures of correctness.

In this paper, we propose a new fitness measure that tries to better capture
how close a proposed solution is from being correct by assessing the quality
of intermediate values of the program in addition to the quality of the output.

T. Bartz-Beielstein et al. (Eds.): PPSN XIII 2014, LNCS 8672, pp. 434–443, 2014.
c© Springer International Publishing Switzerland 2014

Improving Genetic Programming with Behavioral Consistency Measure 435

At first glance, it may seem that such a measure would run into the same problem
as any other structural quality measure: since we do not know what the correct
solution looks like, we also do not know what the intermediate values produced
in the process of that computation should be. However, we do know that these
intermediate values must preserve certain information about the input that is
necessary to produce the desired output. Our main contribution is to show that
information theoretic measures of the quality of intermediate values can improve
upon traditional output-based measures in a statistically significant way.

The intuition for the approach is as follows: if two inputs are supposed to
produce different outputs, then any program prefix that loses the information
necessary to distinguish between these two inputs is doomed to failure since
once lost, the information cannot be recovered. By contrast, if two inputs are
supposed to produce the same output, then a program prefix that produces
the same value for these two inputs will eliminate the risk that the rest of the
program incorrectly assigns different values to these two inputs. The rest of the
paper formalizes this intuition and exploits it in a new fitness measure based on
information consistency. We implement the approach in a single-objective and
a multi-objective variant, and evaluate it on 35 benchmarks representing three
different domains. The experimental results clearly suggest that the involvement
of information consistency almost always increases the likelihood of synthesizing
the correct program.

2 Information Consistency

Conceptual Background. The proposed approach works by analyzing the
internal behavior of programs, by which we mean the effects of computation
conducted at intermediate stages of program execution. Conceptually, we exam-
ine such effects by placing traps (breakpoints) at selected locations in program
code and inspecting the program state when execution reaches these traps. We
assume that traps are not embraced by loops or conditional statements, thus
ensuring that a deterministic program always visits all traps in the same order
independently of program input.

When stopped at a trap, an executing program produces a certain state of
the execution environment, which we assume to depend only on the part of the
program that is syntactically associated with the trap (or, informally speaking,
‘scoped’ by the trap). Depending on the adopted programming paradigm, the
particular interpretation of these notions will vary. For register-based sequential
programs, a state would be the contents of all registers, and it would depend
on the entire code executed so far (i.e., program prefix ending at the trap). For
purely functional programming, by state we would mean the value calculated
in the corresponding function call, caught in the process of being passed to the
caller. In this study we consider functional tree-based GP and will place traps at
tree nodes, so a state will be the value returned by the corresponding subtree.

Let ski denote the state of the program at the kth trap when executed on the
ith training example (input data). The sequence of the states s1i , s2i , . . . traversed

436 K. Krawiec and A. Solar-Lezama

by a program for a given ith example will be called the trace for that example.
Our method is intended to promote programs that reach states that exhibit

a certain form of consistency with the desired output. Given two examples for
which the desired program outputs are yi and yj, two situations are possible:

Case #1: yi �= yj . In this case, the program should maintain distinct behaviors
for examples i and j. If that is not the case, i.e., the program leads to ski = skj at
some kth trap, this should be considered undesired and penalized. It is so because
once program traces for two examples merge, they cannot diverge anymore (while
they should if distinct yi and yj are to be produced at the end of program
execution).

Case #2: yi = yj. In this case, the program should reach the same state for
the ith and jth example at some stage of its execution, i.e., it is desirable to
observe ski = skj . Conversely, a program for which no trap with this property
exists is unlikely to end up with correct output, and thus should be penalized.

In other words, the observed execution states should form equivalence classes
that are consistent with the equivalence classes induced by the desired program
output. Ideally, a program would feature a trap for which this consistency is
full, i.e., ski = skj ⇐⇒ yi = yj . Once such a state emerges in an evolving pro-
gram, producing the correct output is only a matter of one-to-one mapping from
intermediate execution states to the final execution states. Although realizing
such a mapping can be still difficult in some programming languages, we hy-
pothesize that promoting programs that feature locations with such properties
is desirable1.
Consistency Measure. To promote and demote programs in an evolving pop-
ulation according to how their internal behaviors meet the characteristics dis-
cussed above, we design a measure based on information theory to quantitatively
assess the consistency of program behavior with the desired output. Let us start
from an observation that the process of program execution is usually accompa-
nied by gradual loss of information in the execution environment. More precisely,
a deterministic program can at most maintain the amount of information present
in the data it has been applied to, but is unable to increase it. In an extreme case,
a program that ignores its input and always returns the same output, reduces
the amount of information to zero.

In terms of the notions introduced above, information is lost every time the
traces associated with particular examples merge, i.e., every time the program,
when applied to distinct training examples, reaches the same execution state
(more specifically, if ski �= skj for a certain kth trap, but sli = slj for some sub-
sequent lth (l > k) trap). Depending on the particular pair of examples (i, j),
that loss may be detrimental (when it increases the likelihood of producing the
same output; case #1 in Section 2), or desirable (case #2).
1 Whether the errors presented in Case #1 and #2 are critical depends on the adopted

programming paradigm. For sequential programs, a state captures the entirety of
computation conducted so far, so the erroneous merging or non-merging of traces
cannot be fixed by subsequent execution of program suffix. For functional program-
ming, however, other parts of the program can substitute for such a deficiency.

Improving Genetic Programming with Behavioral Consistency Measure 437

To assess the amount of lost information, we associate a random variable
Sk with the kth trap, where the values of Sk are the states associated with
particular examples. Analogously, we define a random variable Y representing
the desired output. Based on the concept of conditional entropy (H(X |Y) =
−∑

Pr(X |Y) log2 Pr(X |Y)), we consider:
– H(Y |Sk), i.e., the amount of information that Y adds to Sk. In particular,

if H(Y |Sk) > 0, then Sk alone is not sufficient to predict the value of Y .
– H(Sk|Y), the amount of information that Sk adds to Y . Large values of

H(Sk|Y) indicate that Sk partitions the set of examples into many equiva-
lence classes.

In connection to our previous considerations, every time the traces for two or
more examples merge between the kth and (k + 1)th trap, either the former
term increases (H(Y |Sk) > H(Y |Sk+1)) or the latter term drops (H(Sk|Y) >
H(Sk+1|Y)). Both H(Y |Sk) and H(Sk|Y) attain zero if and only if Sk perfectly
‘correlates’ (is consistent) with Y , i.e., ski = skj ⇐⇒ yi = yj .

Following this observation, we base our measure on the sum of the above
terms. We define the (minimized) information consistency I of a program p
according to the trap at which the total two-way conditional entropy attains its
minimum, i.e.,

I(p) = min
k

H(Y |Sk(p)) +H(Sk(p)|Y) (1)

where Sk(p) is the random variable associated with the kth trap set on program
p. The lower values of I are more desired as they indicate program behavior that
is more consistent with Y . By using the minimum operator for aggregation over
program traps, I(p) rewards p for the part of its behavior that is most consistent
with the desired output Y , even if otherwise (i.e., at other locations/traps) it
behaves in a way that is unrelated to Y . This is intended to promote programs
that are partially correct and thus feature code pieces that can prove useful in
new programs2.
Example. For simplicity, we illustrate these concepts on a linear program, by
which we mean a program that reads in the input data only once, at the begin-
ning of its execution and involves no loops or branches.

Consider a programming task defined by five examples, and a linear program
with three traps. Table 1 presents the states traversed by the program for partic-
ular examples, where for brevity we encode program states in lowercase letters.
We use different symbols for particular traps to emphasize that the random vari-
ables may assume values from different domains (though in practice, e.g., a, f ,
and j could represent the same value). The last column of the table presents the
desired output of the program.

The table presents also the conditional entropy for consecutive traps. H(Y |Sk)
remains at zero for at the first and second trap (S1 and S2), and then increases
2 Note that the term minimized in (1) can be alternatively expressed as H(Y, Sk(p))−
I(Y ;Sk(p)), where H(Y,Sk(p)) stands for joint entropy and I is the mutual infor-
mation. However, minimization of (1) is not equivalent to maximization of mutual
information only, as H(Y,Sk(p)) may also vary from trap to trap.

438 K. Krawiec and A. Solar-Lezama

Table 1. Exemplary calculation of consistency measure for a program with three traps,
executed on five examples. The minimum of H(Y |Sk)+H(Sk|Y) over the traps, marked
in bold, is the information consistency I of this program.

Example S1 S2 S3 Y
1 a f j 1
2 b g k 2
3 c g k 2
4 d h j 2
5 e i j 3
H(Y |Sk) 0 0 0.95
H(Sk|Y) 0.95 0.55 0.55
H(Y |Sk) +H(Sk|Y) 0.95 0.55 1.50

for S3. As the states in consecutive traps merge (e.g., b and c in S1 merge into
g in S2), the corresponding random variables Sk carry less and less information,
and the entropy of Y conditioned on Sk grows.

Conversely, H(Sk|Y) cannot grow with consecutive traps, because the col-
lapsing states reduce the amount of information. In an ideal case, H(Y |Sk) =
H(Sk|Y) = 0, i.e., neither the state adds any information to the desired output,
nor the reverse. This would happen if g and h collapsed into a single state in S2,
which would then be perfectly correlated with Y . �

The motivations for our initial assumption that no trap is inside a loop or
conditional statement should become clear now. Otherwise, a program could,
depending on the input data, visit some traps more than once, not visit some
traps, or visit them in a different order. In other words, the execution traces could
not be ‘aligned’ in a reasonable way. This in turn would make it impossible to
compare the corresponding execution states in a meaningful manner.
Related Work. In inspecting the internal behavior of programs, consistency
measure relates to our former work on behavioral search drivers for GP [5].
However, the methods presented there were after a more general class of behav-
iors, and used machine learning inducers to identify them. Compared to them,
here we focus exclusively on information contents, which allows us to assess the
impact of this specific aspect of program behavior on search efficiency.

In a broader context, studying the internal behavior of programs can be seen as
an extension of semantic GP, a new branch in GP research initiated by McPhee
et al. [8]. However, most of work conducted in this area, including recent work
(see, e.g., [9]), takes into account only the final output of programs.

The requirement that a program prefix should not loose information necessary
to distinguish inputs that must lead to distinct outputs has been used in both
constraint-based software synthesis [10] and interpolant-based hardware synthe-
sis [3]. In different contexts, both of those works use the constraint to ensure
that a given prefix can be completed to be equivalent to a given program.

Finally, the consistency measure proposed above will be integrated into evo-
lutionary workflow, which can be done, among others, by treating it as an addi-
tional search objective. This can be considered as a form of multiobjectivization
by Knowles et al. [4], meant as extending the original problem formulation by
helper objectives intended to make problem solving more efficient.

Improving Genetic Programming with Behavioral Consistency Measure 439

3 Experiment

In the following, we examine the usefulness of our consistency measure in the
framework of tree-based GP, with the programs being expression trees that fea-
ture no loops nor conditional statements, and have no side effects. A trap placed
at a tree node will allow us to examine the value calculated by the program
subtree (subprogram) rooted at that node. The state will be simply the value
calculated by that subtree.

An important consequence of associating execution states with program sub-
trees is that a state does not capture the entirety of the computation conducted
so far by a program, but only a local execution state (depending on the corre-
sponding subtree; cf. Footnote 1). This however does not undermine the rationale
presented in Section 2: a subtree that behaves consistently with the desired pro-
gram outcome is a potentially useful piece of code, and a program that hosts
it should be promoted. However, contrary to strictly linear programs, even if
a subtree merges two or more states that should not be merged (and leads to
H(Y |Sk) > 0), a program is not necessarily destined to perform bad, as other,
independent program subtrees can still be able to distinguish those states.
Configurations. The goal of the experiment is to assess the impact on the in-
formation elicited by the consistency measure from the evolving programs. We
consider two ways of integrating I(p) (Formula (1)) into the conventional GP
workflow: by redefining the scalar fitness in the conventional single-objective
evolutionary workflow, and by using I(p) as an additional objective in a multi-
objective setting. In the former setup, called FxI in the following, the (mini-
mized) program fitness is defined as

(1 + F (p))(1 + I(p)) (2)

where F (p) is the conventional program error (Hamming or city-block distance,
depending on the domain). For the sake of simplicity, we deliberately abstain
from exploiting the trade-off between F and I via weighing.

For the multiobjective setup (FI in the following) we assign a two-dimensional
fitness (F (p), I(p)) to a program and employ the Non-Dominated Sorting Genetic
Algorithm II (NSGA-II, [1]) at the selection stage, the arguably most popular
method of multiobjective evolutionary optimization.

The baseline for the above methods is the conventional Koza-style GP (F in
the following), which uses F (p) as the only search objective.

To avoid making the (potentially biased) decisions where to set traps in pro-
grams, we stop program execution and calculate the two-way entropy (Eq. 1)
after every single instruction. This imposes substantial computational burden
on the evaluation process, which we take into account in one of the experiments.

A run is terminated when an ideal solution is found (F = 0) or the maximum
number of 250 generations has elapsed. The percentage of runs that ended with
the former result (out of the total of 30 independent evolutionary runs) forms
the success rate, the performance metric we use in the following. A total of 30
× 35 benchmarks × 6 configurations = 6300 runs has been conducted.

440 K. Krawiec and A. Solar-Lezama

Table 2. The benchmarks. v – number of input variables, m – number of tests, k –
number of semantically unique programs.

Domain Instruction set Problem v m k

Boolean and, nand, or,
nor

Cmp6, Maj6, Mux6, Par6 6 64 264

Cmp8, Maj8, Par8 8 256 2256

Mux11 11 2048 22048

Categorical al(x, y) D-a1, D-a2, D-a3, D-a4, D-a5 3 27 327

al(x, y) M-a1, M-a2, M-a3, M-a4, M-a5 3 15 315

Regression +, −, ∗, %, sin,
cos, log, exp, −x

Keij1, Keij4, Nguy3..7, Sext 1
20 –Keij5, Keij11..14, Nguy9..10, Nguy12 2

Keij15 3

For single-objective configurations, tournament of size 5 is used for selection.
Except for the elements of the setup that have to differ across domains because
of their different natures, all benchmarks in all considered domains use the same
parameter settings. The remaining parameters use ECJ’s defaults [6].
Program Synthesis Problems. Table 2 presents the 35 benchmark problems
used in our experiment, which come from three domains: Boolean (8 bench-
marks), categorical (10 benchmarks), and regression (17 benchmarks). Table 2
summarizes the problems, listing the instruction set, the number of variables,
tests, and the cardinality of the search space (where countable). Note that none
of the instruction sets contains constants.

The particular Boolean problems are defined as follows. For an v-bit com-
parator Cmp v, a program is required to return true if the v

2 least significant
input bits encode a number that is smaller than the number represented by the
v
2 most significant bits. In case of the majority Maj v problems, true should be
returned if more that half of the input variables are true. For the multiplexer
Mul v, the state of the addressed input should be returned (6-bit multiplexer uses
two inputs to address the remaining four inputs, 11-bit multiplexer uses three
inputs to address the remaining eight inputs). In the parity Par v problems, true
should be returned if an only if an odd number of trues appears on the inputs.

The categorical problems come from Spector et al.’s work on evolving
algebraic terms [11] and dwell in the ternary domain: the admissible values
of program inputs and outputs are {0, 1, 2}. The peculiarity of these problems
consists in using only one binary instruction in the programming language; for
the a1 algebra, the semantics of that instruction is defined in Table 3c. We refer
the reader to [11] for the definitions of the remaining algebra problems.

For each of the five algebras considered here, we consider two tasks. In dis-
criminator term tasks (D-* in Table 2), the goal is to synthesize an expression
(using only the one given instruction) that accepts three inputs x, y, z and real-
izes the function given in Table 3a. Given three inputs and ternary domain, this
gives rise to 33 = 27 fitness cases for these benchmarks.

The second task defined for each of the algebras (M-* in Table 2), consists in
evolving a so-called Mal’cev term, i.e., a ternary term that is equivalent to the
one given in Table 3b. This condition specifies the desired program behavior only

Improving Genetic Programming with Behavioral Consistency Measure 441

Table 3. The algebra problems: (a) discriminator problem, (b) Mal’cev problem, (c)
exemplary algebra (named a1 in [11])

(a) t(x, y, z) =

{
x if x �= y

z if x = y
(b) m(x, x, y) = m(y, x, x) = y (c)

a1 0 1 2
0 2 1 2
1 1 0 0
2 0 0 1

for the indicated combinations of inputs, and the desired value for all distinct
inputs is not determined. As a result, there are only 15 fitness cases in our
Mal’cev tasks, the lowest number of all considered benchmarks.

The regression problems considered here come from [7] and include both
univariate and multivariate target functions. The univariate ones (Keij1, Keij4,
Nguy3..7 and Sext) use 20 tests uniformly distributed in the [−1, 1] interval,
except for the Keij4 benchmark which uses the [0, 10] interval. The remaining
problems are predominantly bivariate, and involve 5× 5 = 25 fitness cases uni-
formly distributed on the two-dimensional grid. The only exception is Keij5,
which hosts three input variables, with 4 × 4 × 4 = 64 fitness cases distributed
equidistantly in the cube. For other details on these benchmarks, see [7].
Results for Limited Number of Evaluations. In this experiment, the com-
putational budget allocated to every run is 250, 000 evaluations, i.e., a population
of 1, 000 programs evolves for 250 generations. Because of the large number of
benchmarks and limited space, we discuss only the aggregated outcomes. To this
aim, we rank the three considered configurations according to the success rate on
every benchmark independently. Next, we average the ranks across benchmarks.

When averaged over all benchmarks, the resulting ranks are FI: 1.6, F: 2.19,
and FxI: 2.21 (the lower rank, the better). To assess the statistical significance
of this outcome, we used the Friedman’s test for multiple achievements of mul-
tiple subjects which, compared to ANOVA, does not require the distributions
of variables in question to be normal. The p-value of 0.00124 strongly indicated
that at least one method performed significantly different from the remaining
ones. A post-hoc analysis using symmetry test [2] determined that the difference
between F and FxI is statistically insignificant, but FI significantly outranks
them both (p = 0.03).

We can conclude thus that augmenting the conventional training signal (pro-
gram error) with our information-based behavioral measure that depends on in-
ternals of program execution (information consistency) brings substantial benefits
to a GP search algorithm. However, this seems to hold only when the behavioral
information is provided as a separate search objective (FI setup). Aggregation of
conventional fitness with information consistency (FxI setup), at least in the spe-
cific multiplicative manner used here (Eq. 2) does not make the search more effi-
cient. Possible explanation is that F , defined as city-block distance for regression,
and normalized Hamming distance for the remaining two domains, may assume
radically different ranges on different problems. As a result, the trade-off between
F and I varies across domains and can be difficult to control.

442 K. Krawiec and A. Solar-Lezama

FI fared the best on the categorical problems, where it came on top on
nine out of ten benchmarks, so that its average rank was 1.2 there. Remarkably,
this is also the only domain in which FxI ranked on average better than F
(2.05 vs. 2.75). This may suggest that the trade-off between F and I was just
right for these problems. For regression problems, the differences between all
three methods were the least prominent (FI: 1.82, F: 2.0, FxI: 2.18), which was
expected, as discrete entropy cannot capture similarities between values for these
continuous problems.

On the Boolean domain, the behavioral methods performed relatively bad
(FI: 1.62, F: 1.88, FxI: 2.5), which seems surprising given the discrete nature
of these problems. We come up with three mutually nonexclusive hypotheses to
account for this. Firstly, note that the Boolean instruction set does not feature
negation (Table 2). Let us consider a program p that evolves a subexpression p′

which produces exactly the negated value of desired output Y . In terms of I,
p′ is perfectly consistent with Y , so I(p) = 0. However, without negation in the
instruction set, it may be difficult to extend p′ with a suffix that would turn it
into Y . A way to achieve this is p′ nor false or p′ nand true, but those Boolean
constants require a separate subprogram to synthesize them.

The other hypothesis starts with the observation that Boolean problems fea-
ture the largest number of input variables in our benchmark suite (v ≥ 6, while
v ≤ 3 for the other domains, Table 2). As no input variable is redundant in
these problems, evolution has to produce a subprogram comprising at least v
tree leaves (terminals), and thus 2v − 1 nodes, to possibly bring I to zero. In
general, to obtain competitive values of I, relatively large subtrees featuring
most input variables have to be synthesized.

Last but not least, the random variables that I is based on, by being binary
for the Boolean problems, are least discriminating in terms of entropy. As an
example, a binary random variable observed for five training examples can have
only one of three possible values of entropy, while an analogous number for a
ternary variable (like those used in our categorical problems) is five. As a result,
I can be more fine-grained for domains that feature multi-valued variables, even
if the actual number of examples is low (like in our categorical problems).
Results for Limited Time Budget. To take into account the overhead of
calculating consistency measure, in this experiment the computational budget
allocated to every run was 600 seconds. For this setup, the average ranks w.r.t.
success rate are: FI: 1.77, F: 2.06, FxI: 2.17. Though FI leads again, this time
Friedman test is inconclusive at 0.05 level. However, its relatively low p-value
(0.08) suggests that significance could be attained given a larger suite of bench-
marks.

4 Summary

We proposed a measure for characterizing the internal program behavior in terms
of its consistency with the desired output, which can conveniently be used to
promote certain program behaviors without specifying them explicitly. The algo-
rithms that involve this measure can be thus said to implicitly perform problem

Improving Genetic Programming with Behavioral Consistency Measure 443

decomposition, which normally requires an expert who explicitly splits a task into
subtasks. Together with methods reported elsewhere [5], we consider information
consistency as promising way towards scalable program synthesis.

Acknowledgment. K. Krawiec acknowledges support from the NCN grant
no. DEC-2011/01/B/ST6/07318, and A. Solar-Lezama from grant no. NSF-
CCF-1161775.

References

1. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjec-
tive genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computa-
tion 6(2), 182–197 (2002)

2. Hollander, M., Wolfe, D.: Nonparametric Statistical Methods. A Wiley-Interscience
Publication. Wiley (1999)

3. Jiang, J.-H.R., Lee, C.-C., Mishchenko, A., Huang, C.-Y.R.: To sat or not to sat:
Scalable exploration of functional dependency. IEEE Transactions on Comput-
ers 59(4), 457–467 (2010)

4. Knowles, J.D., Watson, R.A., Corne, D.W.: Reducing local optima in single-
objective problems by multi-objectivization. In: Zitzler, E., Deb, K., Thiele, L.,
Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 269–283.
Springer, Heidelberg (2001)

5. Krawiec, K., Swan, J.: Pattern-guided genetic programming. In: Blum, C., et al.
(eds.) GECCO 2013: Proceeding of the Fifteenth Annual Conference on Genetic
and Evolutionary Computation Conference, Amsterdam, The Netherlands, July
6-10, pp. 949–956. ACM (2013)

6. Luke, S.: ECJ evolutionary computation system (2002),
http://cs.gmu.edu/eclab/projects/ecj/

7. McDermott, J., White, D.R., Luke, S., Manzoni, L., Castelli, M., Vanneschi, L.,
Jaskowski, W., Krawiec, K., Harper, R., De Jong, K., O’Reilly, U.-M.: Genetic
programming needs better benchmarks. In: Soule, T., et al. (eds.) GECCO 2012:
Proceedings of the Fourteenth International Conference on Genetic and Evolution-
ary Computation Conference, Pennsylvania, USA, July 7-11, pp. 791–798. ACM
(2012)

8. McPhee, N.F., Ohs, B., Hutchison, T.: Semantic building blocks in genetic pro-
gramming. In: O’Neill, M., Vanneschi, L., Gustafson, S., Esparcia Alcázar, A.I., De
Falco, I., Della Cioppa, A., Tarantino, E. (eds.) EuroGP 2008. LNCS, vol. 4971,
pp. 134–145. Springer, Heidelberg (2008)

9. Moraglio, A., Krawiec, K., Johnson, C.G.: Geometric semantic genetic program-
ming. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M.
(eds.) PPSN 2012, Part I. LNCS, vol. 7491, pp. 21–31. Springer, Heidelberg (2012)

10. Singh, R., Singh, R., Xu, Z., Krosnick, R., Solar-Lezama, A.: Modular synthesis of
sketches using models. In: McMillan, K.L., Rival, X. (eds.) VMCAI 2014. LNCS,
vol. 8318, pp. 395–414. Springer, Heidelberg (2014)

11. Spector, L., Clark, D.M., Lindsay, I., Barr, B., Klein, J.: Genetic programming
for finite algebras. In: Keijzer, M., et al. (eds.) GECCO 2008: Proceedings of the
10th Annual Conference on Genetic and Evolutionary Computation, Atlanta, GA,
USA, July 12-16, pp. 1291–1298. ACM (2008)

http://cs.gmu.edu/eclab/projects/ecj/

	Improving Genetic Programming with Behavioral Consistency Measure
	1Introduction
	2Information Consistency
	3Experiment
	4Summary
	References

