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Abstract. We propose a way to combine two distinct general patterns
for designing semantic crossover operators for genetic programming: ge-
ometric semantic approach and semantically-effective approach. In the
experimental part we show the synergistic effects of combining these
two approaches, which we explain by a major fraction of crossover acts
performed by geometric semantic crossover operators being semantically
ineffective. The results of the combined approach show significant im-
provement of performance and high resistance to a premature conver-
gence.

Keywords: Semantics, taxonomy, neutrality, brood selection, experi-
ment.

1 Introduction

Genetic Programming (GP), as a method of automatic induction of discrete
structures from an arbitrary given set of building blocks, guided by a fitness
function has been known for over 25 years [13,29]. Among other applications,
like synthesis of electronic circuits [14,15] or design of 3D structures [21,1], GP
is mostly used for induction of programs from a set of instructions. To accurately
assess the program’s fitness, it must be run multiple times on a set of program
inputs to compare the produced outputs with the desired target outputs. Typi-
cally the divergence between the target output and the actual program output
is measured by a minimized fitness function and the pair of program input and
the target program output is refered to as fitness case [30,19,25,16,8].

The tuple that consists of a program output for each fitness case is known
as semantics1. Consequently, the target program output extracted from a set of
fitness cases is also a semantics, however to distinguish this one, we refer to it
as target semantics. The main role of program semantics is to describe program
behavior in a concise way.

In recent years we observe a growing interest in semantics in genetic program-
ming. Most applications of semantics are related to designing novel genetic op-
erators, such as crossover [30,19,25,16,27,2] and mutation [25,27,26,4], however
1 The common definition involves a vector instead of tuple [30,19,25,16,8], however

vector is by definition a tuple of numbers and we consider programs that operate on
an arbitrary data, thus we keep the tuple in the definition as more general.
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some researchers also analyze the impact of semantic initialization of the initial
population [3,10] and selection [8].

In this paper we focus on semantic crossover operators. We distinguish two gen-
eral patterns of designing semantic crossover operators, which are semantically-
effective and geometric patterns. In the first one semantics is used to reject the
offspring having the same or similar semantics to any of its parents, while in the
second one the crossover is guided on producing offspring having semantics that
is a certain combination of semantics of parents. We present the way to combine
these two approaches and experimentally confirm advantages of this combina-
tion.

2 Taxonomy of Semantic Crossover Operators

We divide the collection of semantic crossover operators for tree-based GP, de-
pending on they use program semantics for either providing effective changes,
or exploiting geometric properties of search space. This taxonomy shall not be
confused with the one proposed in [32], since the latter one divides semantic op-
erators into operators making syntactic changes with indirect impact on the se-
mantics, and manipulating syntax to directly influence semantics.

Naturally we do not include in this taxonomy non-semantic crossover opera-
tors, such as tree-swapping crossover [13], context-preserving crossover [6], one-
point crossover [28], size-fair crossover [20] and depth-based crossover [9].

Semantically-Effective Crossover Operators

The first class of crossover operators consists of operators that use semantics
mainly for the purpose of rejecting offspring that are semantically equal to any
of their parents. In this sense these operators produce semantically-effective off-
spring w.r.t. its parents by rejecting the ineffective ones. They are commonly
referred in the literature to as ‘semantically-driven’ [2] or ‘semantic-aware’ [30],
since to the best of our knowledge they were historically the first semantics-based
crossover operators. However the historical names are too general, thus we de-
cided to refer to these operators to as semantically-effective.

The term ‘semantically-effective’ shall not be considered as an opposition to
neutrality in GP, which refers to two notions: (i) neutral genes, e.g., introns
[12,7], and (ii) mutation performing genotypic changes that are not reflected in
phenotype [12] or fitness change [7]. In contrast semantically effective crossover
(i) does not negate that an offspring may contain introns, and (ii) does not
perform a (mutational) change in the genotype, instead it combines genotypes of
two parents. Moreover the ‘effectiveness’ of crossover is defined on the semantic
level, which is fundamentally different from what is meant by ‘phenotype’ in
these early studies [12,7], i.e., a syntax tree.

One of the first of semantically-effective crossovers is semantically driven
crossover (SDC) by Beadle et al. [2], which involves reduced ordered binary deci-
sion diagrams (ROBDD) as a representation for semantics of Boolean programs.



456 T.P. Pawlak

Thanks to the uniqueness property of ROBDD, their operator is able to prevent
of crossing over parents having semantically equal subtrees rooted at crossover
points. Later Quang et al. [30] extended this idea to the domain of real func-
tion synthesis by proposing semantics aware crossover (SAC). Their operator
discards all crossover acts of parents, whose subtrees rooted at crossover points
are semantically less distant than a given threshold, called semantic sensitivity.
Thus SDC and SAC are conceptually equivalent, however adapted for different
domains.

To some extent another operator by Quang et al. [30], namely semantic sim-
ilarity based crossover (SSC) can be also included in this class of operators.
SSC operates similarly to SAC, however it adds second threshold to the se-
mantic distance between parents’ subtrees to prevent breeding offspring unre-
lated to its parents. In this sense SSC reduces the chaotic characteristics of
crossover. The same authors [31], arguing that not only the effectiveness but
also the magnitude of change is important, proposed the most semantic similar-
ity based crossover (MSSC), which operate similarly to SSC, however instead of
using the second threshold, it promotes the exchange of subtrees that are the
most similar but different.

Semantic Geometric Crossover Operators

We distinguish a separate class of crossover operators that guide the crossover act
to produce offspring having semantics that is a kind of geometric combination of
semantics of its parents. Such a combination is usually a point on the segment
spanned over semantics of parents. If crossover operator guarantees that the
semantics of offspring lies on this segment, we refer to it as geometric crossover.
This definition is consistent with [24,18,27]. Although most of the operators
presented in this section only approximate geometric crossover, we would not
distinguish another class for them.

Note that the geometric crossover requires a way to appoint a segment between
parent semantics. This imposes important restrictions to the representation of
semantics, as it must be an object in a normed vector space. However if this
condition is met, an (exact) geometric crossover is guaranteed to breed offspring
that is not worse, than the worst of its parents [18].

In this group, special attention should be paid to semantic geometric crossover
(SGX) by Moraglio et al. [25], which guarantees that the semantics of an offspring
lies on the segment spanned over semantics of its parents, i.e., SGX is exact ge-
ometric crossover. Unfortunately SGX causes exponential in time bloat, which
puts its practical applications into question, even when using implementation
techniques that allow to handle exponentially increasing in time program struc-
tures in linearly-increasing data structures [5].

The next operator that is worth to mention is approximately geometric se-
mantic crossover by Krawiec and Lichocki (KLX) [16]. KLX is indeed a meta-
operator that runs in a loop some other (secondary) crossover operator, and
from all the offspring produced by the secondary operator, chooses the most ge-
ometric according to an arbitrary geometry measure.
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Algorithm 1. Krawiec Lichocki Crossover (KLX). p1, p2 are parents, k is a num-
ber of crossover attempts, SX is a secondary crossover, MostGeometric is Eq. 1.
1: function KLX(p1, p2, k)
2: O ← ∅ � Offspring candidates
3: for all i ∈ 1..k do
4: O ← O ∪ SX(s(p1), s(p2))
5: o1 ← MostGeometric(O, p1, p2)
6: o2 ← MostGeometric(O\{o1}, p1, p2)
7: return {o1, o2}
8: end function

Other operators in this group are: locally geometric semantic crossover [19,17],
that approximates geometric recombination of parents at the level of the homol-
ogous crossover point, and approximately geometric semantic crossover [27,18],
that propagates the desired geometric semantics of offspring back trough the
tree of parent program, in order to place an adequate subtree at the level of
crossover point.

3 Semantically-Effective Geometric Crossover Operator

One may ask, whether is it possible to combine features of semantically-effective
and geometric crossover operators to benefit from advantages of both of them?

To achieve that we can equip almost any geometric crossover operator, with
a procedure that prevents the operator from producing semantically ineffective
offspring w.r.t. its parents.

To be more specific, we propose such a procedure for SX+ variant of KLX
operator described in [16]. The original KLX algorithm is shown in Algorithm 1.
It operates by running k times a secondary crossover operator, e.g., tree-swapping
crossover [13], and finally choosing the most geometric offspring that it produced,
according to the formula:

MostGeometric(O, p1, p2) =
arg min

o∈O
d(s(p1), s(o)) + d(s(o), s(p2))
︸ ︷︷ ︸

+ |d(s(p1), s(o)) − d(s(o), s(p2))|
︸ ︷︷ ︸

distance sum penalty

(1)

where O is a set of candidate offspring, p1, p2 are parent programs, s(p) is se-
mantics of program p, d(·, ·) is a distance metric. The formula consists of two
major parts: the first one is sum of distances between the semantics of candidate
offspring o and both parents; the second one is a penalty for choosing offspring
that is not equidistant from parents.

To combine KLX with principles of semantically effective crossover, we pro-
pose to replace MostGeometric calls in Algorithm 1 with the formula:

MostGeometric+(O, p1, p2) =

{

MostGeometric(O′, p1, p2) O′ �= ∅
MostGeometric(O, p1, p2) O′ = ∅

where O′ = {o : o ∈ O, s(o) �= s(p1), s(o) �= s(p2)}
(2)
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Table 1. Parameters of evolution

Parameter Value
Population size 1024
Fitness function Symbolic regression: Mean absolute error

Boolean domain: Hamming distance
Termination condition At most 100 generations or find of individual having fitness 0
Initialization method Ramped Half-and-Half, height range 2 − 6, up to 100 retries
Selection method Tournament selection, size 7
Max program height 17
Crossover probability 1.0
Number of attempts KLX+, KLX, SAC, GPX+: 10, GPX: n/a
Semantic sensitivity 10−6

Instructions Symbolic regression: x, +, −, ×, /, sin, cos, exp, log, ERCa

Boolean domain: D1...D11b, and, or, nand, nor, ERC
Number of runs 30

a log and / are protected. log is defined as log |x|; / returns 0 if divisor is 0.
b Number of inputs depends on a problem instance.

Table 2. Benchmarks; in symbolic regression there are 20 equidistant fitness cases in
the given range

Symbolic regression Boolean domain

Problem Definition (formula) Range Problem Instance
(bits)

Fitness
cases

Septic x7 − 2x6 + x5 − x4 + x3 − 2x2 + x [−1, 1]
Even parity

PAR5 32
Nonic

∑9
i=1 xi [−1, 1] PAR6 64

R1 (x + 1)3/(x2 − x + 1) [−1, 1] PAR7 128
R2 (x5 − 3x3 + 1)/(x2 + 1) [−1, 1] Multiplexer MUX6 64
R3 (x6 + x5)/(x4 + x3 + x2 + x + 1) [−1, 1] MUX11 2048
Nguyen6 sin(x) + sin(x + x2) [−1, 1] Majority MAJ6 64
Nguyen7 log(x + 1) + log(x2 + 1) [0, 2] MAJ7 128
Keijzer1 0.3x sin(2πx) [−1, 1] Comparator CMP6 64
Keijzer4 x3e−x cos(x) sin(x)(sin2(x) cos(x) − 1) [0, 10] CMP8 256

This change restricts the set of candidate offspring by removing offspring that
is semantically equal to any of the parents. Only if all candidates are semantically
equal, the algorithm uses the whole candidate set. For semantics represented
by floating point numbers, it is natural to compare semantics in Eq. 2 with
a threshold. To be consistent with [30], we call it semantic sensitivity. We denote
the augmented variant of KLX as KLX+.

4 The Experiment

We attempt to experimentally verify whether combining features of geometric
and semantically-effective crossover operators pays off. In order to do that we pre-
pare a run of GP employed with KLX+ and we compare it to GP running ‘bare’
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Table 3. Average fitness and 95% confidence interval achieved by best-of-run individual
as of 100 generation. Best values are marked in bold.

Problem KLX+ KLX SAC GPX+ GPX
Keijzer1 0.005 ±0.002 0.015 ±0.003 0.008 ±0.003 0.009 ±0.003 0.013 ±0.004

Keijzer4 0.030 ±0.011 0.139 ±0.014 0.049 ±0.013 0.045 ±0.014 0.041 ±0.010

Nguyen6 0.001 ±0.000 0.005 ±0.002 0.002 ±0.001 0.002 ±0.001 0.004 ±0.002

Nguyen7 0.001 ±0.000 0.005 ±0.002 0.002 ±0.001 0.003 ±0.001 0.005 ±0.002

Nonic 0.006 ±0.002 0.024 ±0.003 0.012 ±0.003 0.014 ±0.004 0.018 ±0.004

Septic 0.013 ±0.005 0.063 ±0.026 0.020 ±0.004 0.027 ±0.009 0.032 ±0.008

R1 0.006 ±0.002 0.028 ±0.006 0.012 ±0.003 0.022 ±0.006 0.022 ±0.005

R2 0.015 ±0.004 0.028 ±0.005 0.017 ±0.004 0.021 ±0.005 0.028 ±0.007

R3 0.001 ±0.000 0.006 ±0.001 0.002 ±0.000 0.003 ±0.001 0.003 ±0.001

CMP6 0.000 ±0.000 0.533 ±0.221 0.267 ±0.158 0.100 ±0.107 0.867 ±0.303

CMP8 0.067 ±0.128 7.300 ±0.956 7.000 ±1.070 6.167 ±0.570 9.433 ±1.182

MAJ6 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000

MAJ7 0.000 ±0.000 0.133 ±0.153 0.100 ±0.142 0.367 ±0.269 0.567 ±0.272

MUX6 1.700 ±0.717 5.667 ±0.642 3.133 ±0.732 3.200 ±0.770 3.567 ±0.683

MUX11 102.567 ±12.470 160.067 ±14.555 114.000 ±8.641 118.467 ±7.202 118.467 ±7.048

PAR5 0.000 ±0.000 2.033 ±0.510 3.500 ±0.604 2.433 ±0.440 3.400 ±0.567

PAR6 5.000 ±0.947 13.367 ±0.792 11.567 ±1.204 13.167 ±0.795 14.200 ±0.893

PAR7 23.467 ±1.044 40.967 ±1.047 35.967 ±1.752 40.533 ±0.799 41.033 ±1.899

KLX. In addition we add two control setups: tree-swapping crossover (GPX) [13],
which acts as a reference point, and GPX+ – GPX that rejects semantically in-
effective offspring and retries crossover act until it is effective or a given number
of attempts is exceeded. We added GPX+ to check whether the achievements of
KLX+ are due to the combination of properties of geometric and semantically-
effective crossovers, or solely due to restrictions for ineffective offspring. Note
that GPX+ is not equivalent to SAC [30], as the latter one performs equivalence
check in the crossover points instead of whole program trees, i.e., SAC allows
an exchange of semantically different subtrees, however it does not take into ac-
count, how this exchange influences the semantics of entire trees, which could not
change at all. However, as an previously published operator, SAC is good refer-
ence point, therefore we add it as the last setup. Details of evolutionary param-
eters can be found in Table 1, parameters not included there, are set to ECJ’s
defaults [22]. Note that the experiment does not include any mutation operator,
since it is focused on the examination of properties of crossover operators.

We run evolution of 18 commonly used benchmark problems shown in Table 2:
9 symbolic regression [13,23] and 9 Boolean function synthesis [13,33] bench-
marks.

Performance

Figure 1 presents the plots of average and 95% confidence interval of the best-
of-generation fitness achieved by each operator and Table 3 shows average and
95% confidence interval of the best-of-run fitness.
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Fig. 1. Fitness achieved by best-of-generation individual averaged over 30 runs. Shad-
ings are 95% confidence intervals.
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Table 4. Post-hoc analysis of Friedman’s test using symmetry test: p-values of incor-
rectly judging operator in row as outranking operator in column. Significant p-values
are marked in bold (α = 0.05) and visualized as arcs in outranking graph.

GPX GPX+ KLX KLX+ SAC
GPX 0.976
GPX+ 0.151 0.033
KLX
KLX+ 0.000 0.004 0.000 0.052
SAC 0.017 0.926 0.002
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Table 5. Fraction and 95% conf. interval of ineffective crossover acts (the lowest in
bold)

Domain KLX+ KLX SAC GPX+ GPX
Symbolic regression 0.001 ±0.0000 0.883 ±0.0001 0.067 ±0.0001 0.002 ±0.0000 0.113 ±0.0001

Boolean domain 0.000 ±0.0000 0.902 ±0.0001 0.649 ±0.0002 0.001 ±0.0000 0.525 ±0.0002

It is clear that KLX+ converges the quickest and in all benchmark problems
achieves the best fitness at the end of evolution. Moreover, thanks to quick con-
vergence, KLX+’s fitness achieved after 30 generations, in 15 out of 18 bench-
marks remains unbeatable by any other operator at the end of evolution.

To verify statistical significance of obtained results, we performed Friedman’s
test for multiple achievements of multiple subjects [11] on data shown in Table 3.
The calculated p-value is 6.52 × 10−9, thus assuming critical value α = 0.05, the
test is conclusive, that there is at least one statistical difference in the results.
Therefore we present in Table 4 a post-hoc analysis of Friedman’s test, using the
symmetry test, and an outranking graph for the operators.

The analysis shows that KLX+ outranks all other operators except SAC, how-
ever the p-value for outranking SAC, i.e., 0.052, is very close to the critical value
of α = 0.05. From the graph we can see that semantically-effective SAC out-
ranks GPX and KLX, and semantically-effective GPX+ outranks KLX only. Per-
haps the low efficiency of KLX can be surprising, however we believe that KLX
is likely to stick in local optima due to lack of routine that prevents from pro-
ducing ineffective offspring, that exists in superior KLX+. This leads us to con-
clusion that rejection of semantically-ineffective offspring is an important factor
that influences GP performance.

Semantic Effectiveness

An observant reader may ask why semantic-effectiveness has such a significant
influence on operator’s performance. To answer this question, we presented in
Table 5 fraction of ineffective crossover acts done by each operator separately
during all evolutionary runs of previous experiment.

Values obtained by KLX are clearly the highest and show that nearly 90%
of crossover acts done by KLX are actually ineffective. We believe that this is
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mainly caused by bias of Eq. 1, which prefers offspring having the same semantics
as a parent over the offspring that is nearly-distant from one of the parents, but
non-geometric2. The high fraction of ineffective offspring clearly explains the
observed premature convergence of KLX.

On the other hand SAC maintains low percentage of ineffective offspring,
however only for symbolic regression. We hypothesize that high value for Boolean
domain is due to our previous observation, that SAC performs equivalence check
only at the level of crossover point, and since Boolean instructions are likely to
return unchanged output if only one input changes, it likely makes the crossover
operation ineffective at higher parts of program tree. This seems to be consistent
with results of GPX+, which are very low for both domains, and significantly
lower than its unbiased counterpart – GPX.

5 Conclusions

We divided semantic crossover operators for tree-based GP into two classes de-
pending on the purpose of using program semantics: to reject semantically in-
effective offspring, or to geometrically combine parent programs. Moreover we
proposed a way to combine features of these two classes in a single operator and
experimentally demonstrated that this combination performs better and is less
likely to suffer from premature convergence than each approach solely. We be-
lieve that the proposed method can be successfully applied to other geometric
semantic crossover operators as well.
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