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Abstract. Offspring should be similar to their parents and inherit their
relevant properties. This general design principle of search operators in
evolutionary algorithms is either known as locality or geometry of search
operators, respectively. It takes a geometric perspective on search opera-
tors and suggests that the distance between an offspring and its parents
should be less than or equal to the distance between both parents. This
paper examines the locality of standard search operators used in gram-
matical evolution (GE) and genetic programming (GP) for binary tree
problems. Both standard GE and GP search operators suffer from low
locality since a substantial number of search steps result in an offspring
whose distance to one of its parents is greater than the distance between
both of its parents. Furthermore, the locality of standard GE search op-
erators is higher than that of standard GP search operators, which allows
more focused search in GE.

Keywords: Grammatical evolution, genetic programming, locality, ge-
ometric crossover, random walk.

1 Introduction

Recombination operators in evolutionary algorithms (EA) aim to construct off-
spring solutions in such a way that the offspring inherit the properties of their
parents. Thus, offspring are constructed using genetic material of their parents,
in order to ensure that they are “similar” to them. Analogously, the mutation op-
erators in EA modify the offspring solutions so that the new “mutated” solution
is only slightly different from the original solution. Recombination and mutation
operators thus both follow the principle of creating solutions that are similar
to the original solution. Violating this principle would result in random search
since, in this case, the offspring would be highly dissimilar to their parents, and
the evolutionary search process would not be able to focus on promising areas
of the search space [4].

This basic principle of genetic search operators was first formulated by Liepins
and Vose [13] and Radcliffe [17,22], who recognized that search operators cannot
be designed independently of the search space. On the contrary, their design
must be based on the metric defined in the search space. Indeed, mutation should
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create an offspring xo from a parent xp in such a way that the distance d(xp, xo)
between parent and offspring is low. Analogously, given two parental solutions
xp
1 and xp

2 and one offspring solution xo, recombination operators should be
designed in such a way that max(d(xp

1 , x
o), d(xp

2, x
o)) ≤ d(xp

1, x
p
2) [17][18, p. 62],

which means that the distances between offspring and parents should be less
than or equal to the distance between the parents. By viewing the distance
between two solutions as a measurement of dissimilarity, this design principle
ensures that the offspring solutions are similar to the original (parent) solution.

This general design principle of search operators introduced by Liepins and
Radcliffe [13,17] was later denoted by Rothlauf as the “locality of search
operators”[18,19] and by Moraglio as the “geometry of search operators” [15,14].
Mutation operators have high locality, i.e., are geometric if offspring solutions
are similar to their parents; analogously, recombination operators have high lo-
cality, i.e., are geometric if the distances between offspring and parents are less
than or equal to the distance between the parents. Crossover and mutation are
defined representation-independent using the notion of distance associated with
the search space. The geometric terms use the notions of line segment and ball,
which are well defined once a notion of distance in the search space is defined
[15].

This paper studies the locality of standard search operators used in GE
(crossover, mutation, and duplication) and GP (crossover and reproduction).
We examined whether the GE and GP search operators have high locality, i.e.,
are geometric. In the experiments, we focused on binary trees and performed
random walks through the binary tree search space by measuring distances be-
tween both parents xp

1 and xp
2 as well as between an offspring xo and its parents.

The locality of search operators is high if max(d(xp
1 , x

o), d(xp
2 , x

o)) ≤ d(xp
1, x

p
2).

In Sect. 2, we define the locality of search operators and provide a brief
overview of the literature on locality. In Sect. 3, we present the experiments
and results. The paper ends with some concluding remarks.

2 Locality of Search Operators

Each search space can be defined as a topological space, which describes similar-
ities between solutions by defining the relationships between sets of solutions.
Formally, a topological space is an ordered pair (X,T ), where X is a set of solu-
tions and T is a collection of subsets ofX called open sets. We can define different
topologies (search spaces) by combining X with different T . For example, met-
ric search spaces are a specialized form of topological spaces where similarities
between solutions are measured by a distance. In metric search spaces, we have
a set X of solutions and a real-valued distance function (also called a metric)
d : X × X → R that assigns a real-valued distance to any combination of two
elements x, y ∈ X .

The locality of search operators [18] is equivalent to the concept of geometry
of search operators [15]. Both define search operators based on the metric of the
search space. Given a metric, we are able to define distances between solutions.
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In particular, a mutation operator has high locality if the distance between the
resulting offspring and its parent is small. From a geometric perspective, the
offspring are in the space-specific ball of a small radius centered in the par-
ent. Analogously, a crossover operator has high locality if the distance between
offspring xo and its parents is less than or equal to the distance between both
parents xp

1 and xp
2 (max(d(xp

1, x
o), d(xp

2, x
o)) ≤ d(xp

1, x
p
2)); using the notion of ge-

ometry, a crossover is geometric if all offspring are in the space-specific segment
between their parents [15].

We want to emphasize that the locality of search operators is different from the
locality of representations [18]. Representations are genotype-phenotype map-
pings that assign genotypes to phenotypes. In both search spaces (genotype and
phenotype space), a metric defines distances between solutions. However, the
metric used in the genotype space and the phenotype space can be different. The
locality of a representation describes how well the distances between genotypes
fit the distances between the corresponding phenotypes. Thus, a representation
has high locality if distances between genotypes are similar to the corresponding
phenotype distances, for example if neighboring genotypes correspond to neigh-
boring phenotypes. Analogously, a representation has low locality if genotype
and phenotype distances do not fit together, for example if neighboring geno-
types are not neighbors in the phenotype search space. Although both concepts,
the locality of search operators and the locality of a representation, are based
on the notion of distance between solutions, they are quite different and should
not be confused with one another. The locality of a representation is relevant
for the design of representations, whereas the locality of search operators for the
design of meaningful search operators.

2.1 Locality in Genetic Programming

There are a number of studies on the locality of GP [5,6,7], however they do
not examine the locality of search operators nor the locality of representations;
rather, they focus on the locality of the genotype-fitness mapping. They are
mainly interested in how the choice of mutation operators affects the changes
in the corresponding fitness values. For example, Galván-López et al. [7] study
genotype-fitness mappings and find “that the mutation operators examined are
inconsistent with respect to the quality of locality as measured by fitness and
structural changes”. In a similar paper, Galván-López et al. [5] find that “when
the original fitness is low, large genotype jumps can lead to fitness improvements”
[5]. In contrast, “when the original fitness is high, large [genotype mutations]
tend to be quite detrimental” [5]. Galván-López et al. [6] study whether small
genotype changes correspond to small fitness changes. The authors introduce
different neighborhood functions on the fitness space and observe that their
ability to serve as good predictor of GP performance is limited.

Another study by Uy and his co-workers distinguishes between syntactic and
semantic locality of crossover in GP [23,24,25]. They notice that “most GP ge-
netic operators have been designed based on syntax alone; but small changes in
syntax can lead to large changes in semantics.” [24]. The authors introduce a
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new semantic similarity based crossover (SSC), which ensures that exchanged
subtrees between individuals are semantically similar concerning fitness values.
SSC leads to higher GP performance since the resulting genotype step size is
smaller than in standard GP operators. Uy et al. [23] compare the syntactic
crossover in GP with the semantic crossover in GP. With locality measuring the
differences between two subtrees, they find that syntactic locality (measured us-
ing Levenshtein tree distance) is less important than semantic locality (measured
using fitness differences).

In summary, it is still unclear whether standard GP search operators have
high locality, i.e., are geometric. There is evidence that small genotype changes
can also lead to large fitness changes, which is detrimental for guided search in
GP.

2.2 Locality in Grammatical Evolution

GE [16] is a variant of GP that can evolve complete programs in an arbitrary
language using a variable-length binary string. In GE, phenotype expressions are
created from binary genotypes by using a complex genotype-phenotype mapping.
A genotype consists of groups of eight bits (denoted as codons) which encode an
integer value that selects production rules from a grammar in BNF. These rules
are used in the mapping process to create a phenotype. The mapping process is
deterministic since the same genotype always results in the same phenotype.

The standard GE recombination operator [16] is similar to the cut and splice
operator introduced in [8]. After selecting two parents, a crossover point is ran-
domly selected for each parent. Then, the genetic material beyond these points
is exchanged between the parents. As a result, rather than remain constant, the
length of the genotype changes during the search. The standard GE mutation
operator [16] randomly changes the integer value of a codon. The third standard
GE operator, duplication, increases the number of available genetic material. It
copies a random number of codons starting at a randomly selected start codon
and inserts them between the second last and last codon in the genotype.

There are no studies on the locality of GE search operators. Instead, exist-
ing work focuses on the locality of the genotype-phenotype mapping or on how
search performance depends on the type of search operator. Rothlauf and Oet-
zel [20] study the locality of the genotype-phenotype mapping and find that
“the representation used in GE has problems with locality as many neighbor-
ing genotypes do not correspond to neighboring phenotypes.” Byrne et al. [2,1]
distinguish between two types of mutation operators in GE: the structural mu-
tation (that changes the shape of the derivation tree) and the high-locality nodal
mutation (that changes the value of a node). They examine the impact of these
operators on search performance and find out that both have different goals in
a GE search process: exploration and exploitation. Castle and Johnson [3] study
the mutation and crossover points in GE and find “that events occurring at the
first positions of a genotype are indeed more destructive, but also indicate that
they may be the most constructive crossover and mutation points”[3]. Finally,
Hugosson et al. [9] examine different binary-integer representations (Gray versus
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binary code) in GE. They find that the choice of the binary-integer mapping has
no influence on GE search performance.

3 Experiments and Results

We studied the locality of standard search operators used in GE and GP. Stan-
dard GE search operators are (one-point) crossover, (integer) mutation, and
duplication [21]. Standard GP search operators are crossover and reproduction
[11]. The locality of recombination operators is high if the distances between
offspring and parents are less than or equal to the distance between both par-
ents. For mutation and duplication, high locality implies a low distance between
offspring and parent.

3.1 Experimental Design

To study the locality of search operators, we performed random walks using dif-
ferent types of GE and GP search operators. We did not use a selection operator.
The search operators created two offspring xo

1 and xo
2 from two parents xp

1 and
xp
2, which replaced their parents. If the variation operators included recombina-

tion, we measured the distance d(xp
1, x

p
2) between both parents as well as the

distances d(xo
i , x

p
j ) (i, j ∈ {1, 2}) between each of the two offspring and their

two parents. If we applied only mutation or duplication (and no crossover), we
created one offspring xo from each of the two parents. Each offspring replaced
the corresponding parent. To evaluate the locality of mutation and duplication,
we measured the distance d(xo, xp) between each offspring and its corresponding
parent.

For both GE and GP, the definition of the terminal and function set is relevant
for the distances between solutions. In the current study, we focused on problems
where solutions are binary trees. Thus, the number of terminals |T | = 1 equals
the number of functions |F | = 1. For GE, we used two production rules: the first
one chose between a binary function and a terminal (e.g. < expr >::=< expr >
+ < expr > | < var >) and the second one defined a terminal (e.g. < var >::=
X). The fitness of binary trees using associative binary functions (like +,-,*,/)
is determined only by its size l (number of terminals plus number of functions)
since the order of traversing such a tree is irrelevant (due to the associativity
of the function). For example, for T = {x} and F = {+}, all feasible trees of
size l encode the expression (l+1) ∗ x

2 . Consequently, we measured the distance
between two solutions by using the Levenshtein distance as metric, that is, the
minimal number of operations that are needed to transform one expression into
another [12] between the two encoded expressions. For the example (T = {x}
and F = {+}), the Levenshtein distance between two valid binary trees xi and
xj of length li and lj is equal to |li − lj |. We should be aware that the size l of
a valid tree is always odd. Furthermore, for two valid binary trees, all possible
distances are even. In contrast to GP, GE search operators can also create invalid
solutions, where the genotype-phenotype mapping process cannot be finished.
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In this case, the Levenshtein distance between the two corresponding expressions
can be odd since the size of invalid expressions can be even.

In the GP experiments, we applied no constraint on the maximum allowable
tree depth. For GE, we did not use a wrapping operator since for all the solutions
(binary trees) where wrapping would be necessary the mapping process would
never terminate and thus the corresponding individuals would be invalid anyway.
Each random walk started with two random, yet identical, solutions. For GP,
the initial solutions were created using the grow method with a maximum depth
dmax = 6. For GE, the initial solutions were randomly created with a maximum
length of 10 codons (80 binary alleles).

Throughout the random walk, the variation operators were applied with stan-
dard probabilities. For GP, the crossover probability was pc = 0.9 (biased to-
wards selecting internal nodes with a probability of 0.9) and the reproduction
probability was pr = 0.1 [10]. For GE, the crossover probability was pc = 0.9,
the mutation probability was pm = 0.01, and the duplication probability was
pd = 0.01 [21]. In each search step, two new offspring that replaced their parents
were generated. Each random walk terminated after 50 search steps, generat-
ing overall 100 offspring. For each experimental setting, we performed 100,000
random walks resulting in a total of 10 million offspring.

3.2 Results

For GE and GP, we studied the locality of the combined standard search oper-
ators as well as the locality of recombination alone. Furthermore, we examined
the locality of the mutation and duplication operator used in GE only.

Locality of Standard Search Operators. We studied whether the stan-
dard search operators used in GE (crossover, mutation, duplication) and GP
(crossover, reproduction) have high locality. In each step of the random walk,
the GE operators were applied with probabilities pc = 0.9, pm = 0.01, and
pd = 0.01 and the GP operators were applied with pc = 0.9 and pr = 0.1.

For GE, in 75.4% of all cases, the minimal distance min(d(xp
1, x

o), d(xp
2 , x

o))
between an offspring and its parents is equal to 0. For GP, 54.5% of all offspring
are identical to at least one of its parents (min(d(xp

1, x
o), d(xp

2, x
o)) = 0). In the

following plots, we will ignore all such applications of search operators.
Figure 1 plots the distribution of d(xo, xp

j ) (j ∈ {1, 2}) over d(xp
1, x

p
2). For

increased clarity, we only show the results for d(xp
1, x

p
2), d(x

o, xp) ≤ 20. For
a given distance d(xp

1 , x
p
2), the gray-coded squares indicate the percentage of

offspring whose distance to one of their parents is equal to d(xo, xp) (darker
squares indicate a higher percentage of offspring). For example, for GE and
parental distance d(xp

1, x
p
2) = 4, about 22.8% of all offspring have d(xo, xp

j ) = 1,
31.8% have d(xo, xp

j ) = 2, 25% have d(xo, xp
j ) = 3, 0% have d(xo, xp

j ) = 4
(they are duplicates of one parent and thus excluded from analysis), 9.8% have
d(xo, xp

j ) = 5, and so on. Search operators have high locality if they produce

only offspring with d(xo, xp
i ) ≤ d(xp1, xp2) (i ∈ {1, 2}), which are located in

the lower right triangle of the plot below the line through origin. All offspring
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located in the upper left triangle are the result of a low-locality operator. The
plots indicate that standard search operators of GE as well as GP suffer from low
locality since a substantial number of random walk steps resulted in offspring
whose distance to one of their parents is greater than the distance between
both parents. We should be aware that there are only even-numbered distances
between GP solutions (leading to “holes” in the GP plot), whereas for GE odd-
numbered distances also exist (either the parent or the offspring is invalid).

(a) GE (b) GP

Fig. 1. Distribution of d(xo, xp
j ) (j ∈ {1, 2}) over d(xp

1, x
p
2)

To get deeper insights into the locality of standard search operators, we will
now focus on all offspring that are generated from parents with a given dis-
tance d(xp1, xp2). Figure 2 plots the number of offspring xo (cumulative rel-
ative frequency) over d(xo, xp

j ) (j ∈ {1, 2}) for fixed distances d(xp1, xp2) ∈
{0, 4, 8, 12, 16, 20}. Each line represents a vertical cut through Fig. 1, summing
up all offspring whose distance to its parents is less than or equal to d(xo, xp).
For example, for GE and parental distance d(xp

1, x
p
2) = 4, 79.6% of all offspring

have a distance to their parents that is less than or equal to 4 (d(xo, xp
j ) ≤ 4).

Thus, in 79.6% cases the standard GE search operators have high locality.
Search operators would have perfect locality if the cumulative frequency was
1 for d(xo, xp) ≤ d(xp

1, x
p
2). Table 1 summarizes the percentage of applica-

tions of standard GE and GP search operators resulting in an offspring where
d(xo, xp) > d(xp

1 , x
p
2).

Table 1. Percentage of offspring,
where d(xo, xp) > d(xp

1, x
p
2)

d(xp
1, x

p
2) 4 8 12 16 20

GE 20.4 11.2 7.1 7.1 6.5
GP 28.2 25.3 23.2 21.6 20.3

We see that standard GE and GP opera-
tors suffer from low locality since a substan-
tial number of offspring display a distance to
one of their parents that is greater than the
distance between their parents. In general,
the locality of standard GE search operators
is higher than that of standard GP operators.
For example, for d(xp

1, x
p
2)=8, about 90% of

all GE offspring but only about 75% of all
GP offspring have less or equal distances to
their parents than their parents do to each other.
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(a) GE (b) GP

Fig. 2. Number of offspring xo (cumulative frequency) over d(xo, xp) for fixed distances
d(xp

1, x
p
2) ∈ {0, 4, 8, 12, 16, 20}

Fig. 3. GE with only crossover:
number of offspring xo (cumulative
frequency) over d(xo, xp) for fixed
distances d(xp

1, x
p
2)

Locality of GE Crossover. We stud-
ied the locality of the GE and GP
crossover operator. When using the same
experimental design as above, we were
faced with the problem that performing
a GE random walk with only crossover
would lead to a non-representative sam-
ple of offspring. Since crossover alone
cannot increase the genetic material of
the genotypes (this is the aim of dupli-
cation), it would only reshuffle genetic
material between the two random walk
solutions and not create representative
GE solutions obtained in a standard GE
run. Thus, to ensure representative GE
solutions and to also be able to gener-
ate also longer GE genotypes, we slightly
modified our experimental setting. We
considered all 10 million offspring created in the random walks using the com-
bined standard search operators as described above, but only applied crossover
with pc = 1 to each pair of offspring. By only applying crossover to the solu-
tions generated by standard search operators, we were able study the locality of
crossover in detail.

We will only present results for GE, since the results for GP are identical to
Figs. 1(b) and 2(b). Since the GP reproduction operator just copies a parent to its
offspring, the locality of crossover plus reproduction is equal to crossover alone.
Figure 3 shows the results for GE using only crossover (pc = 1, no mutation
or duplication). The comparison of these results to the previous results of the
combined standard search operators (Fig. 2(a)) reveals no larger differences.
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Thus, the locality of GE standard search operators is mainly determined by the
locality of the crossover operator.

Locality of GE Mutation and Duplication. We will now focus on the GE
mutation and duplication operator. Both operators have high locality if d(xo, xp)
is low. We chose the same experimental setting as in our GE crossover study and
applied either mutation (pm=0.01) or duplication (pd = 1) to all offspring that
were generated during the random walks using all GE search operators. Just
as crossover alone cannot increase the length of GE individuals, mutation alone
cannot either; only duplication can increase the amount of genetic material (but
not the diversity of the material).

Fig. 4. GE with only mutation or dupli-
cation: number of offspring xo (cumula-
tive frequency) over d(xo, xp)

Figure 4 plots the number of offspring
xo (cumulative relative frequency) over
the distance d(xo, xp) between offspring
and corresponding parent. We omitted
all cases where d(xo, xp) = 0 and plot-
ted the results for d(xo, xp) ≤ 10. Since
pm is low and many mutations and du-
plications have no effect on the encoded
expression, many offspring are identical
to their parents. For mutation, 98.8% of
the 10 million offspring expressions are
identical to their parents (d(xo, xp)=0).
Only about 30% of the remaining off-
spring have a distance of 1 to their par-
ents (d(xo, xp) = 1). For duplication,
53.3% of all offspring are identical to their
parents. About 50% of the remaining off-
spring have d(x0, xp) = 1. Both local
search operators suffer from low locality
since they create offspring whose distances to their parents are large.

4 Conclusions

This work studies the locality of standard search operators for GE (crossover,
mutation, and duplication) and GP (crossover and reproduction) by performing
random walks through the search space of binary trees and measuring the dis-
tances between offspring and parents. The locality of standard search operators
is high if the distances between the offspring and their parents is less than or
equal to the distance between both parents. This concept is also known as the
geometry of search operators. For binary trees we found out, that both GE and
GP standard search operators have problems with low locality since a substan-
tial number of offspring are not similar to their parents. Comparing GE and GP
reveals that standard GE operators have higher locality than standard GP oper-
ators. The locality of the standard search operators in GE is mainly determined
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by the crossover operator; mutation and duplication are less important. They
are necessary to obtain a high diversity within the genetic material, but have
low impact on the overall locality of the GE variation operators.

In the future we will extend this analysis to non-binary trees with more com-
plex terminal and function sets. Although the results of the current study only
hold for binary trees, we expect to see similar results for other tree structures.
Moreover, we are going to use other distance metrics to measure similarities
between individuals.
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A.Ş. (eds.) EuroGP 2010. LNCS, vol. 6021, pp. 26–37. Springer, Heidelberg (2010)

4. Doran, J., Michie, D.: Experiments with the graph traverser program. Proceedings
of the Royal Society of London (A) 294, 235–259 (1966)
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