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Abstract. Increasing demand in therapeutic drugs has resulted in the need to
design cost-effective, flexible and robust manufacturing processes capable of
meeting regulatory product purity requirements. To facilitate this design pro-
cedure, a framework linking an evolutionary multiobjective algorithm (EMOA)
with a biomanufacturing process economics model is presented. The EMOA is
tuned to discover sequences of chromatographic purification steps, and equip-
ment sizing strategies adopted at each step, that provide the best trade-off with
respect to multiple objectives including cost of goods per gram (COG/g), robust-
ness in COG/g, and impurity removal capabilities. The framework also simulates
and optimizes subject to various process uncertainties and design constraints. Ex-
periments on an industrially-relevant case study showed that the EMOA is able
to discover purification processes that outperform the industrial standard, and re-
vealed several interesting trade-offs between the objectives.

1 Introduction

The biotech sector is facing increasing pressures to design more cost-efficient, robust
and flexible manufacturing processes [1]. Among biotech therapies, monoclonal anti-
bodies (mAbs) represent one of the fastest growing category due to their unique binding
specificity to targets. A typical antibody purification process is depicted in Figure 1: in
upstream processing (USP) mammalian cells expressing the mAb of interest are cul-
tured in bioreactors, whilst in downstream processing (DSP) the mAb is recovered,
purified and cleared from viruses using a variety of operations. Of these steps, chro-
matography operations are identified as critical steps and can represent a significant
proportion of the purification material costs. The design of cost-effective purification
processes can help addressing this challenge.

The design stage is further complicated by the fact that regulatory bodies expect
biopharmaceutical companies to fully understand their manufacturing process, thus
account for uncertainty in the manufacturing process, and be able to establish a pu-
rification process that conforms to strict purity requirements. To assist the process of
tackling these challenges, presented here is an optimization-based framework linking
an evolutionary multiobjective optimization algorithm (EMOA) with a biomanufac-
turing process economics model. The goal of the EMOA is to discover sequences of
chromatographic purification steps, and sizing strategies adopted at each step, that pro-
vide the best trade-off with respect to multiple objectives including cost of goods per
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Fig. 1. Typical flowsheet for an antibody manufacturing process

gram (COG/g), robustness in COG/g, and impurity removal capabilities. The objectives
are then computed by the process economics model serving as the fitness evaluation
tool. Additional complexities accounted for by the framework include simulating and
optimizing subject to uncertainty and constraints.

This paper extends our previous work on chromatography design/optimization [2,3],
which assumed a fixed sequence of chromatography steps, and focused on tuning (using
a single-objective EA) the chromatography column sizing adopted at each step such
that the COG/g are minimized only. This extension posed two challenges including
(i) the development of a customized EMOA accounting for constraints and variables of
different type, and (ii) the extension of the process economics model so as to account
for additional design choices and their impact on manufacturing performance.

Chromatography design/optimization can be tackled from several other angles. For
example, the exploration of non-Protein A based purification processes was considered
by Chen et al. [4]. Tuning of chromatographic operating conditions is another promi-
nent research field [5], and so is resin screening [6]. Unlike our simulation-based work,
these studies are based on real physical experiments. A simulation-based approach was
also adopted by Liu et al. [7], where mathematical programming is proposed to address
chromatography column sizing and sequencing in the context of biopharmaceutical fa-
cility design. Stonier et al. [8] proposed a discrete-event simulation for the selection of
optimal chromatography column diameters over a range of titres.

The application of multiobjective optimization to chromatography design/ optimiza-
tion has become popular only recently. For example, Nfor et al. [9] used EMO to tune
operating parameters (e.g. column loading, flowrate and gradient length) of a single
chromatography step so as to improve recovery yield, purity, and productivity. The fo-
cus in this paper is on optimizing “high-level” criteria relating to all chromatography
steps (e.g. impurity removal capabilities) or the complete manufacturing process (e.g.
COG/g and its robustness). Moreover, uncertainty is associated with global operating
parameters (e.g. product titre and initial impurity levels) as well as with chromatogra-
phy specific parameters (e.g. step yields and step specific removal capabilities).

2 Constrained Multiobjective Purification Process Design

The framework proposed is based on the following closed-loop: an EMOA creates
solutions x (i.e. a sequence of chromatography steps and column sizing strategies),
which are then decoded, embedded into a feasible manufacturing process (see Figure 1),
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Fig. 2. Representation of a candidate solution for k = 3 chromatography steps. Each step i =
1, ..., k is defined by a resin ri and a column sizing strategy, which is composed of the bed height
hi and diameter di of columns, number of cycles nCYC,i each column is used, and the number of
columns nCOL,i operating in parallel.

and evaluated by a biomanufacturing process economics model; manufacturing uncer-
tainties are accounted for using Monte Carlo (MC) trials. Objective values pertaining to
x are recorded and fed back to the EMOA to be considered in the generation of future
solutions. The decision variables, constraints, objective functions, and uncertain factors
the problem is subject to are explained in more detail in the following.

Decision Variables: Figure 2 shows the string encoding developed to represent a pu-
rification process or solution x. Assuming a fixed number of chromatographic steps k,
the task is to define, for each step i = 1, ..., k, the resin ri ∈ {resin1, ..., resinq} and
column sizing strategy, which is composed of the bed height hi and diameter di of a
column, number of cycles each column is used for nCYC,i, and the number of columns
operating in parallel nCOL,i. Therefore, the problem is subject to l = k + 4 · k variables
in total. The choice of the resin ri used dictates several chromatographic operation and
cost parameters considered by the biomanufacturing process economics model, such as
the step yield, resin price, and impurity removal capabilities. On the other hand, the
sizing strategy adopted at each chromatographic step i defines the total volume of resin
Vi available, and the processing time Ti that the chromatography step take; Ti and Vi
are calculated as follows [10]:

Vi = π · d2
i /4 · hi · nCYC,i · nCOL,i (1)

Ti = nCYC,i · hi · (CVBUFF,i + CVLOAD,i/nCOL,i) · ui, (2)

where CVBUFF,i and CVLOAD,i are the number of column volumes of buffer and product
load per cycle, and ui is the linear velocity of resin ri.

Constraints: The problem is subject to three types of constraints:

1. Chromatography sequence constraints are defined on the variables ri, i = 1, ..., k
and ensure that a purification process consists of non-identical, feasible and orthog-
onal (i.e. different typed) chromatography steps, or more formally

g1 : ri �= rj, i, j = 1, ..., k, i �= j, (3)

g2 : ri
i = 1, i = 1, ..., k, (4)

g3 : rT
i �= rT

j , i, j = 1, ..., k, (5)

where rT
i denotes the resin type of ri, and ri

i is a boolean variable indicating whether
resin ri is permitted to be used at position i.
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2. The demand constraint ensures that the annual amount of product manufactured P
is sufficient to satisfy the annual demand D, or g4 : P ≥ D.

3. Resin requirement constraints act on the column sizing variables and ensure that,
at each step i = 1, ..., k, there is sufficient resin volume Vi available to process
the mass of product Mi coming in from the previous unit operation. Formally, this
constraint can be defined as

g5 : Vi ≥ Mi

ri,DBC · κ
i = 1, ..., k, (6)

where Vi is computed according to Equation (2), ri,DBC is the DBC of the resin
used at step i, and 0 < κ ≤ 1 the maximum capacity utilization factor.

Manufacturing Uncertainties: Several uncertain factors arising in the manufacturing
process are captured by the framework: (i) product titre, (ii) chromatography step yields,
(iii) DBC, (iv) eluate volumes, (v) HCP log reduction, and (vi) initial HCP level. While
uncertainties in (i) and (vi) are due to fluctuations arising in USP, the other factors are
associated with the resins ri available for selection and sensitivity of operating condi-
tions. Uncertainties are modeled by associating each factor with a probability distribu-
tion (reflecting real-world variability) from which values are drawn at random during
Monte Carlo (MC) trials; the way the data resulting from the MC trials is processed by
the EMOA will be detailed in the next section.

Performance Metrics: Three objectives are considered to drive the search for cost-
efficient and reliable purification process yielding highly pure products:

1. The cost of goods per gram COG/g = C/P, where C is the sum of annual di-
rect costs (e.g. consumables and labor) and indirect costs (e.g. capital charge and
facility-related costs) and P the annual product output, represent the costs for man-
ufacturing a single gram of product and are to be minimized.

2. The robustness in COG/g, η, is defined here as the ratio

η =
σCOG/g

μCOG/g
=

√
1
N ∑N

j=1(COG/gj − μCOG/g)2

μCOG/g
, (7)

where N is the number of MC trials performed for a specific process so far, COG/gj

the COG/g value at MC trial j, and μCOG/g = 1
N ∑N

j=1 COG/gj. The smaller the
value of η, the less variation there is in COG/g in the presence of uncertainty.
Hence, the objective is to minimize η.

3. The probability of meeting purity requirements p(meeting required purity) is the
probability that a purification process reduces the HCP impurity level in a product
below a certain limit HCP∗. This probability is to be maximized and computed here
by

p(meeting required purity) =
1
N

N

∑
i=1

δi, where δi =

{
1 if HCPFinali < HCP∗

0 otherwise,
(8)
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where N is the number of MC trials performed, and HCPFinali the final HCP level
at MC trial i. The final HCP level is calculated here by HCPFinali = HCPinitial/
10∑k

i=1 ri,HCP , where ri,HCP is the HCP log reduction of resin ri.

All objectives are obtained by running the process economics model, which is based on
mass balance and cost equations as defined in [10]. Note, whilst COG/g is a standard
metric, the metrics, p(meeting required purity) and η, have not been considered in the
literature so far.

3 Experimental Setup

This section describes the case study, EMOA and its parameter settings as used in the
subsequent experimental analysis.
Case Study Setup: The case study was adopted from [3] and focuses on a single-
product mAb manufacturing facility that employs a process flowsheet as shown in Fig-
ure 1 with k = 3 chromatography steps. Assumed is an annual demand of D = 400kg,
a product titre of 3g/L, and a desired final HCP level of HCP∗ = 100ng/mg (which is
typical of final product specification limits for recombinant proteins). Two initial HCP
levels are investigated, HCPinitial = {105, 106}ng/mg.

A total of q = 10 resins, comprising around 125 different sequences, are available for
tuning the sequence of chromatography steps. For the characteristics of these resins, and
technical details of the manufacturing process and resource cost assumptions please re-
fer to [2]. Table 1 lists the uncertain parameters and their common levels of uncertainty
in the context of triangular probability distributions; i.e. a variation of x% corresponds
to the distribution Tr(x · (100 − x)/100, x, x · (100 + x)/100). The value range of
column sizing parameters is 15cm ≤ hi ≤ 25cm (11 values), 50cm ≤ di ≤ 200cm (10
values), nCYC,i ∈ {1, ..., 10}cm, nCOL,i ∈ {1, ..., 4}, i = 1, 2, 3; i.e. in total the search
space comprises (11 · 10 · 10 · 4)3 · 125 ≈ 10.5 · 1012 different purification processes.
The industrial platform employs a fixed and commonly used chroamtography step se-
quence, PrA L→CEX L→AEX, in combination with the sizing strategy (which is set
based on empirical rules) nCOL,i = 1, hi = 20cm, nCYC,i = 5, i = 1, 2, 3, with di being
adjusted such that the resulting total resin volume Vi (Equation (2)) satisfies the resin
requirement constraint (Equation (6)).
Evolutionary Multiobjective Optimization: The focus in this work is to understand
how EMO can be tuned to tackle the purification process design problem rather than
comparing different EMOAs. Hence, to guide the search, the popular NSGA-II [11]
is extended with methods for coping with the model uncertainties and constraints,
which are explained below. The algorithm uses binary tournament selection, uniform
crossover, and a mutation operator that selects a random value from the range of possi-
ble values.
Constraint-Handling Strategies: The chromatography sequence constraints (Equa-
tions (3) to (5)) are addressed by programming the sequence-related variables ri, i =
1, ..., k as a single variable S representing all feasible sequences. For population ini-
tialization, a sequence is selected at random from S. Crossover and mutation are ap-
plied directly on the variables ri but resulting infeasible offspring are repaired by se-
lecting a sequence from S that differs in as few steps i = 1, ..., k as possible from the
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Table 1. Probability distributions associated
with uncertain factors

Uncertain factor Variation (%)

Product titre 13.3
Chrom. step yields 5

DBC 10
Eluate volume 10

HCP logs 20
Initial HCP level 20

Table 2. Default parameter settings of the
EMOA

Parameter Setting

Population size μ 50
Per-variable mutation probability 1/l

Crossover probability 0.6
Number of generations G 50

Monte Carlo trials N 100

original sequence. Ties between equally close sequences are broken at random. The
demand constraint is circumvented by setting up USP such that there is a slight prod-
uct surplus. To cope with the resin requirement constraint (Equation (6)), a ‘repairing’
strategy is employed that iteratively increases the values of the column-sizing related
variables (associated with a particular chromatography step i), one variable at the time,
until sufficient resin is available (i.e. until Equation (6) is satisfied) or until the maxi-
mum value of a variable is reached, in which case the value of another variable is in-
creased. The sequence in which variables are modified affects the performance of the
optimizer as indicated in [3] for the single-objective case. The default sequence adopted
is di → nCYC,i → hi → nCOL,i, which performed best in [3], but alternative sequences
will be considered in the experimental study.
Uncertainty-Handling Strategy: Model uncertainties are accounted for by exposing
a manufacturing process to N MC trials with values of uncertain factors being drawn
at each trial from the probability distribution associated with the factors. The objective
values of a solution were then the averages of the different performance metrics across
the N trials, and these averages were updated if the same solution is evaluated multiple
times during the search.

The experimental study presents a sensitivity analysis of the performance metrics, and
investigates the robustness of the EMOA using the proposed framework. The default
settings of the EMOA are given in Table 2. To allow for fair comparison of processes
discovered by the EMOA, all processes present in the final population are evaluated
using 1000 MC trials. Any results shown are average results across 30 independent
algorithm runs.

4 Experimental Study

Sensitivity Analysis to Identify Global Drivers of Cost and Purity: Figure 3 uses
the idea of tornado plots to show the impact of several uncertain factors on COG/g
and the final HCP level HCPFinal. The boxplots have been created based on 10000
randomly generated, feasible and unique purification processes. For each process, plot-
ted is the overall maximal effect on the two metrics of the best and worst case setting
of the uncertain factors. It can be observed from the plots that generally the impact of
model parameters depends on the objective being optimized, and increasing the number
of parameters affects performance more significantly. There seems to be a symmetric
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Fig. 3. Tornado diagrams illustrating the overall maximal effects of best (left of zero) and worst
(right of zero) case settings of uncertain factors — DBC, elution volume, titre, and yield (bottom
four boxplots in (a)) and HCP log reductions and initial HCP level (bottom two boxplots in (b)),
and all four, respectively, two parameters at once (top boxplot) — on (a) COG/g and (b) final
HCP levels HCPFinal

positive and negative impact of the uncertain factors on the objective COG/g (Fig-
ure 3(a)). The step yield and titre are most sensitive to uncertainty as they have a di-
rect impact on the mass of product manufactured (and thus the denominator of the
metric COG/g). Uncertainties in initial HCP levels and HCP log reductions are the
only factors that affect the final HCP level HCPFinal (Figure 3(b)). The negative ef-
fect on HCPFinal is significantly greater than the positive effect because many of the
(randomly generated) purification processes are able to reduce the HCP level down to
HCPFinal ≈ 0 (though this might be associated with high COG/g), leaving limited
scope for further improvements. Note, a reduction in HCPFinal translates into an in-
crease in p(meeting required purity).
Tuning an EMOA to Cope with Uncertainty and Constraints: This section gives
a taste of how the discovery process of optimal purification processes can be affected
by the choice of algorithm parameter settings. Figure 4 uses the concept of (median)
attainment surfaces [12] to visualize the typical convergence behavior of the EMOA
(top left plot) and the performance impact on the EMOA by two algorithm settings,
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Fig. 4. Median attainment surfaces (MASs) obtained by an EMOA optimizing COG/g and the
sum of HCP log reductions ∑HCP LRV = ∑k

i=1 ri,HCP. The plots show (a) the MASs at different
generations g with uncertainty, (b) MASs for different g obtained in a deterministic and stochastic
environment, and (c) the MASs for different g and repairing strategies with uncertainty. The
performance of the industrial platform is indicated by the dashed horizontal and vertical lines.

the number of MC trials N (top right plot) and the constraint-handling strategy (bottom
plot). In all three plots, the EMOA minimized the COG/g and the sum of HCP log
reductions ∑k

i=1 ri,HCP.
From Figure 4(a) it can be seen that the EMOA needs to be run for around g ≈ 25

generations to match and outperform the industrial platform. Comparing the conver-
gence speed and final solution quality obtained by the EMOA with and without un-
certainty (Figure 4(b)), it is apparent that uncertainty harms both aspects significantly.
Figure 4(c) shows that the constraint-handling strategy adopted is crucial too. In fact,
repairing according to the scheme di → nCYC,i → hi → nCOL,i yields best results as
increasing the column diameter di first is often sufficient to satisfy the resin requirement
constraint without sacrificing processing time significantly.
EMO Applied to all Three Objectives Subject to Uncertainty: Figure 5 uses
heatmaps to visualize the trade-off between all three objectives for two HCP levels
HCPinitial = 105ng/mg (Figure 5(a)) and 106ng/mg (Figure 5(b)). Several trade-offs
can be observed from the plots: (i) the range of the metric p(meeting required purity) in-
creases with the initial HCP level, (ii) the COG/gincreases as p(meetingrequired purity)
increases and/or η decreases, and (iii) an improvement in the robustness η is achieved by
adopting smaller column dimensions (supporting figure not shown here). The heatmaps
can also be exploited to make design decisions. For example, assume that the goal of a
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Fig. 5. (Pareto) optimal purification processes discovered by an EMOA optimizing three objec-
tives, COG/g, p(meeting required purity), and η, for two different HCP levels HCPinitial =
105ng/mg (a) and 106ng/mg (b). The performance of the industrial platform is indicated by the
big white square in each plot. The response surface was generated by interpolating the processes’
objective values using the Kriging function, Krig(), from the fields package of the statistical soft-
ware R.

manufacturer is to establish a process with p(meeting required purity) > 0.9%. Whilst
in this case there is no incentive to deviate from the industrial platfrom from the per-
spective of COG/g and p(meeting required purity) for a low initial HCP level, a dif-
ferent sequence is needed for a high initial HCP level. For instance, the sequence PrAg
H→MM→AEX, as indicated by the letter A in Figure 5(b), meets the purity requirements
without increasing the COG/g significantly.

5 Summary and Conclusion

Presented was a framework for designing cost-efficient and robust chromatographic
purification process that yield pure biopharmaceuticals. The framework comprised a
process economics model and an EMOA, which optimized the sequence of chromatog-
raphy steps and column sizing strategies with respect to multiple objectives and subject
to uncertainty. Validating the framework on an industrially-relevant case study revealed
that the performance impact of an uncertain factor depends on the objective being op-
timized. This knowledge can be used e.g. to diagnose which process parameters need a
tighter control. Furthermore, the framework was able to discover purification processes
that outperform the industrial platform, and revealed interesting trade-offs between ob-
jectives that can facilitate the design of purification process. Future research will look
at extending the framework to cover additional design choices and investigate more
efficient uncertainty-handling strategies.
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