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Abstract. Multi-objective quadratic assignment problems (mQAPs) are NP-hard
problems that optimally allocate facilities to locations using a distance matrix and
several flow matrices. mQAPs are often used to compare the performance of the
multi-objective meta-heuristics. We generate large mQAP instances by combin-
ing small size mQAP with known local optimum. We call these instances com-
posite mQAPs, and we show that the cost function of these mQAPs is additively
decomposable. We give mild conditions for which a composite mQAP instance
has known optimum solution. We generate composite mQAP instances using a set
of uniform distributions that obey these conditions. Using numerical experiments
we show that composite mQAPs are difficult for multi-objective meta-heuristics.

1 Introduction

The Quadratic assignment problem (QAP) models many real-world problems like the
computer-aided design in the electronics industry, scheduling, vehicle routing, etc. In-
tuitively, QAPs can be described as the (optimal) assignment of a number of facilities
to a number of locations. In general, QAP instances are NP hard problems, and QAP in-
stances are often included in the benchmarks for testing meta-heuristics [1, 2]. Special
cases of QAPs solvable in polynomial time are easy to solve [3]. Meta-heuristic search
algorithms based on local search are especially useful for large size QAPs, where ex-
act solutions are difficult to obtain. Furthermore, measuring the performance of meta-
heuristics is best done when the optimum solution for the test problem is known.

Generating large size QAPs with known local optimum solutions that are difficult
and interesting for exact and stochastic algorithms is a current challenge in the field
[4, 5]. The algorithms that generate large and hard single objective QAP instances with
known optima [6] are rather elaborated and difficult to generate. Drezner et al [4] pro-
pose QAP instances that are difficult to solve with heuristics but easy for exact solvers
because of the large amount of 0’s in the flow matrix.

Recently, Drugan [5] proposes a single objective QAP instance generator with addi-
tively decomposable cost function and known local optimum. Problems with additively
decomposable cost functions are considered useful test benchmark for meta-heuristic
algorithms that explore the structure of the search space. These QAP instances are dif-
ficult for both exact methods, like branch and bound, and for meta-heuristics.

Multi-objective Quadratic Assignment Problems [7] are an extension of QAP
with more than two flow matrices. Let us consider N facilities, the N × N distance
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matrix A = (aij), where aij is the distance between location i and location j. Consider
an mQAP with m flow matrices B = (B1, . . . , Bm), where m ≤ 2 and Bo = (boij) and
boij represents the k-th flow matrix from facility i to facility j. The goal is to minimise
the cost function in all objectives o

co(π) =
N∑

i=1

N∑

j=1

aij · boπiπj
(1)

where 1 ≤ o ≤ m and π is a permutation of N facilities and πi is the i-th element of π.
It takes quadratic time to evaluate each of these functions. We consider an mQAP as a
tuple (A,B1, . . . , Bm, s) where s, if known, is the optimum solution.

The Main Contribution. We design a multi-objective QAP instance generator that cre-
ates meaningful, i.e. large and difficult to solve, benchmark instances for multi-objective
meta-heuristics [2,8]. Our solution introduced in Section 2 is to aggregate several flow
and distance matrices with computable optimum solutions, into a larger mQAP such
that the optimum of the resulting mQAP is known, called composite mQAPs. These
mQAPs have additively decomposable cost functions that are the sum of component
mQAP’s cost functions plus an extra term corresponding to the cost of the region out-
side these component mQAPs.

In Section 3, we give mild conditions, e.g. upper and lower bounds for the values in
the mQAPs matrices such that the composite mQAP instance has the identity permu-
tation as the global optimum solution. However, to verify the global optimum solution
we compute a large number of cost functions equivalent with the number of permuta-
tions of the component mQAP instances into the permutation of the composite mQAP
instance.

In order to simplify the procedure of generating composite mQAPs with known
global optima, we consider uniform distributions which are also used to generate other
mQAPs from the literature [2, 7]. In Section 4, the conditions on the upper and lower
bounds are easily verifiable, and explicit numerical values are proposed.

Numerical experiments from Section 5 show that the composite mQAPs are difficult
to solve with multi-objective meta-heuristic instances [8] when compared with the
other mQAPs from literature [7]. We show that the global optimum is difficult to attain
and thus composite mQAPs are difficult to solve. Section 6 concludes the paper.

2 Composite Multi-objective QAP Instances Generator

In this section, we design an algorithm that generates composite mQAP instances from
small size component mQAP instances with computable optimum solution. The values
in the composite mQAP not assigned yet are also selected to have known optimum
value. Thus, there are three optimisation problems in composite mQAPs: i) optimising
the component mQAPs, ii) optimising the region outside these components, and iii) a
global optimisation problem for the entire mQAP. The pseudo-code for this algorithm
is given in Algorithm 1.

The algorithm generate composite mQAP has as input d component mQAP in-
stances, (Ak, B

1
k, . . . , B

m
k , I), ∀k ≤ d, with identity permutation I as optimum so-

lution, where ∀i ∈ {1, . . . , N}, Ii = i. In order to calculate the optimum solution of



Multi-objective QAPs with a Known Optimum Solution 561

Algorithm 1. generate composite mQAP
Require: d component mQAP instances {(A1, B

1
1 , . . . , B

m
1 , I), . . . , (Ad, B

1
d, . . . , B

m
d , I)}

Require: the distributions in the outside region RA, RB1 , . . ., RBm : the low values distribu-
tions LA, LB1 , . . ., LBm , and the high values distributionsHA,HB1 , . . .,HBm

/* I. Aggregate mQAP instances/*
Initialise A, B1, B2, . . ., Bm with 0s everywhere
for all k = 1 to d do

for all i, j = 1 to nk do
t← i+

∑k
r=1 nr; p← j +

∑k
r=1 nr;

atp ← atp + akij ; b1tp ← b1tp + b1kij ; . . .; bmtp ← bmtp + bmkij ;
end for

end for
/* II. Generate the set of elements in A, B1, . . ., Bm not assigned yet /*
for all α% elements aij ∈ RA, b1ij ∈ RB1 , . . ., bmij ∈ RBm do

Generate aij ∝ HA, and update the sorted listRA ←RA ∪ aij

Generate bot ∝ LBo , and update the sorted listRBo ←RBo ∪ bot , for all o ≤ m
t← t+ 1

end for
for all (1− α)% elements aij ∈ RA, b1ij ∈ RB1 , . . ., bmij ∈ RBm do

Generate aij ∝ LA, and update the sorted listRA ←RA ∪ aij

Generate bot ∝ HBo , and update the sorted listRBo ←RBo ∪ bot , for all 1 ≤ o ≤ m
t← t+ 1

end for
for all r = 1 to |RA| do

r ← rank of aij inRA

boij ← bot with rank |RA| − r inRBo , for all o ≤ m
end for
return (A,B1, . . . , Bm)

component mQAPs, we could, for example, exhaustively enumerate all possible permu-
tations. A straightforward method to transform a component mQAP with an optimum
solution s into an mQAP instance with the identity permutation as optimum solution is
to rename the facilities.

2.1 Aggregate Component mQAP Instances

For simplicity, we consider that each facility from the composite mQAP corresponds
to exactly one facility from a single component mQAP, and, vice-versa, each facil-
ity from a component mQAP corresponds to exactly one facility from the composite
mQAP. We consider that nk are the number of facilities of the k-th component mQAP,
(Ak, B

1
k, . . . , B

m
k , I). We call the reunion of all component mQAPs the component re-

gion. Note that the number of facilities N for the newly generated composite mQAP is
the sum of the number of facilities of the component mQAP, N =

∑d
k=1 nk.

For each pair of facilities in the k-th component mQAP (i, j) ∈ Ak, there is assigned
a pair of facilities in the composite mQAP (t, p) ∈ A, where t ← i +

∑k
r=1 nr and
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p← j+
∑k

r=1 nr. We update the values atp ∈ A and botp ∈ Bo with the corresponding
values in akij ∈ Ak and bokij ∈ Bo

k, ∀o ≤ m.

2.2 Filling up the Composite mQAP Instances

Next, we assign the positions in A and B not assigned yet. LetRA andRBo be ordered
sets containing all unassigned values from A, and Bo, respectively. We call these sets,
the outside region of the corresponding matrices. The elements in the outside region are
generated using the rearrangement inequality [9] 1 such that their cost function has the
identity permutation as the optimum solution. Informally, the largest values in the o-th
flow matrix Bo correspond to the lowest values in the distance matrix A, and the lowest
values in Bo correspond to the largest values in A.

The low values distributions LA and LBo generate the lowest values of A and Bo,
respectively. The high values distributionsHA andHBo generate the highest values of
A and Bo. We generate α% unassigned values in A from HA and (1 − α)% from LA.
Because of the rearrangement inequality, α% values in each of the flow matrices Bo are
generated from LBo and (1− α)% are generated fromHBo .

In Algorithm 1, let r be the rank of aij inRA. If aij is generated fromHA, then each
value boij is generated from LBo such that the rank of boij inRBo is |RA|− r. Similarly,
if aij is generated from LA, then boij is generated fromHBo such that the rank of boij in
RBo is |RA| − r. Thus, the elements b1ij , . . ., bmij have the same ranking in the outside
regions of the corresponding flow matrices, B1, . . ., Bm.

3 Designing Composite mQAPs with Known Optimum Solution

Cela [3] showed that single QAP instances where all the elements obey the rearrange-
ment inequality are easy. This means that if the component mQAPs are degenerated,
n1 = . . . = nd = 1, then the composite mQAP also becomes ”easy”. Thus, we con-
sider the component mQAPs to be the ”difficult” region, and the outside region to be the
”easy” region of a composite mQAP. By design, the component mQAPs and the outside
region are optimised by the identity permutation. The composite mQAP, in general, is
not optimised by the identity permutation.

In this section, we give mild conditions under which the composite mQAP instances
have the identity permutation as the optimum solution. We consider that all the elements
in the outside region are either smaller or larger than all the elements in the component
mQAPs. Accordingly to the rearrangement inequality, if elements are exchanged be-
tween the component mQAPs and the outside region, then the cost of the composite
mQAP instance increases.

Additively Decomposable Cost Functions for the Composite mQAPs. In the fol-
lowing, we show that the composite mQAP instances have additively decomposable
cost functions with a residual term representing the cost of the outside region.

1 Let n variables be generated with any two distributions {x1, . . . , xn} and {y1, . . . , yn} for
which x1 ≤ . . . ≤ xn and y1 ≥ . . . ≥ yn. The rearrangement inequality states that

∑n
i=1 xi ·

yi ≤
∑n

i=1 xi · yπi , for all permutations π.
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Consider the set Π(N) of all permutations of N facilities in the flow matrices. In
the permutation group theory, permutations are often written in the cyclic form. If π
is a permutation of facilities, we can write it as π = (π1, . . . , πd), where πk is the
k-th cycle containing a set of facilities that can be swapped with each other. These
cycles are disjoint subsets. We consider d cycles, each cycle contains the facilities of
exactly one component mQAP. If there are nk facilities in the k-th component mQAP,
the corresponding cycle is a nk-cycle. The cost function of the k-th cycle is

cok(π) =
∑

i,j,πi,πj

akij · bokπiπj
(2)

where k ∈ {1, . . . , d}, d is the number of component QAPs and akij is an element of
the k-th component QAP. Similarly, bokπiπj

is an element of the k-th component QAP.
By design, the optimal cost for each cycle in each objective is cok(I)← minπ c

o
k(π).

The cost function of π is now

co(π) =
N∑

i=1

N∑

j=1

aij · boπiπj
=

d∑

k=1

cok(π) +Ro(π) (3)

where Ro(π) is a residue defined as the cost in the outside region for the flow matrix o

Ro(π) =
∑

aij∈RA, boπiπj
∈RBo

aij · boπiπj
(4)

Swapping facilities in a cycle results in swapping elements in the component mQAP
and in the outside region. Swapping facilities between cycles results in swapping ele-
ments between the component mQAPs and the outside region.

3.1 Setting Up Bounds for the Generating Distributions

LetmA andmBo be the smallest element in the component distance matricesAk ,mA ←
mink≤d{akij}, and the component flow matrices Bo

k, ∀o, mBo ← mink≤d{bokij}, re-
spectively. Similarly, MA ← maxk≤d{aij} and MBo ← maxk≤d{bokij}. Let �A and
LA be the lowest and the highest bound for the distribution LA, and let �Bo and LBo be
the lowest and the highest bound for LBo . Let hA and HA be the lowest and the highest
bound forHA and let hBo and HBo be the lowest and the highest bound forHBo .

The next proposition sets conditions on the bounds for the composite mQAP with
the identity permutation as the optimum solution.

Proposition 1. Let be {(Ak, B1
k, . . . , B

m
k , I) | k = 1, . . . , d} a set of equal sized

mQAP instances with the optimum solution the identity permutation. Algorithm 1 gen-
erates a composite mQAP from these component mQAPs. Let following equations hold

�A < LA < mA < MA < hA < HA (5)

�Bo < LBo < mBo < MBo < hBo < HBo (6)
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min{mA,mBo}·(min{hA, hBo}+min{�A, �Bo}) > MA ·MBo +min{hA ·LBo , LA ·hBo}
(7)

d∑

k=1

(cok(I)− cok(π)) +
∑

aij∈RA, boπiπj
∈RBo

aij · (boij − boπiπj
) < 0 (8)

where π any permutation and for all objectives o ≤ m. Then, the composite mQAP
(A,B1, . . . , Bm, I) has the identity permutation as the optimum solution.

Proof. The proof follows directly from the proof of Proposition 1 from [5]. Intuitively,
the set Π(N) of all possible permutations is split in three subsets: i) exchange facilities
within a cycle, ii) cycle that completely switch their facilities with other cycles, and
iii) the general case where facilities are switched at random between cycles. The proof
considers the difference between the identity permutation and another permutation for
all these three cases. �

In Proposition 1, for Inequality 5 and 6, the rearrangement inequality holds. From
Inequality 7 and the rearrangement inequality, we have that a permutation where facili-
ties are swapped between the outside and the component region has a higher cost than
a permutation where solutions are swapped in the composite or in the outside region.
The condition in Inequality 7 can be fulfilled by setting the bounds for the distributions
HA andHBo high enough.

Inequality 8 states that if swapping elements in the outside region generates more
variance than swapping elements in the component mQAPs, then the identity permuta-
tion is the global minimum for the subset of permutations where cycles are completely
swapped. To decide if the generated composite mQAP has the identity permutation as
optimum solution, we need d! evaluations of Inequality 8 corresponding to all combi-
nations of the component mQAPs on the diagonal of the composite mQAP.

4 A Practical Composite mQAP Instance Generator

In this section, we generate composite mQAP instances to fulfil the conditions from
Proposition 1. The current mQAP instance generators [2, 7] use uniform distributions
to generate mQAPs. Thus, we also use uniform distributions to generate composite
mQAPs. Note that even though component mQAPs and the elements in the outside
region are generated by uniform random distributions, the values of the corresponding
composite mQAP instances are not generated by a uniform random distribution.

An uniform random distribution D generates all the component mQAPs. Let L and
H be the uniform independent distributions generating the outside region of the distance
matrix A and the flow matrices B.

We study the relationship between the inequalities from Proposition 1 on the bounds
for the uniform distributions. Let the two terms from Inequality 8 be denoted as the
variance of the composite region and of the outside region

ΔC =

d∑

k=1

ck(I) − ck(π), Δo
O = Ro(I)−Ro(π)
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We explicitly compute the values of ΔC and Δo
O . If Δo

O + ΔC is non-negative, the
identity permutation is the global optimum solution.

Consider that there are L − � + 1 values in L, � = s0, s1, . . . , sL−� = L, and
H − h + 1 uniformly generated values in H, (h = t0), t1, . . . , (tH−h = H). Let’s
assume that L− � = H − h. With a perfect random generator, in any row and column
of mQAPs’ matrices values of L and ofH are equally represented.

The Variance in the Outside Region. Assuming that all the values of the distributions
L andH are uniformly distributed, the cost of the outside region has the approximative
value of

Ro(I) =
∑

aij∈RA

aij · boij ≈
|RA|

H − h+ 1
·
(

L−�∑

i=0

si · tH−h−i

)
(9)

When α = 0.5, the elements in the flow and distance matrices are equally generated
from low and high distributions. The swapped elements are randomly distributed in the
corresponding matrices and, thus, the cost of the outside region in each objective o is
upper bounded by

Ro(π) ≤ |RA|
L− �+H − h+ 2

·
⎛

⎝
L−�∑

i=0

si +

H−h∑

j=0

tj

⎞

⎠
2

For a permutation π, let assume that (1 − p) · |RA| percent of the outside region is
optimised and the remaining p · |RA| percent of the outside region is uniform randomly
positioned in the matrix. Then the cost of the outside region in each objective o is

Ro(π) ≈ (1− p) · |RA|
L− �+ 1

·
(

L−�∑

i=0

si · tL−�−i

)
+

p · |RA| ·
(∑L−�

i=0 si +
∑H−h

j=0 tj

)2

L− �+H − h+ 2

Given a certain value for p, the variance is the outside region is

Δo
O ≈

p · |RA|
L− �+ 1

·
(

L−�∑

i=0

si · tL−�−i

)
−

p · |RA| ·
(∑L−�

i=0 si +
∑H−h

j=0 tj

)2

L− �+H − h+ 2
(10)

The variance in the component mQAPs. The minimum cost of all d component
mQAPs is approximatively equal because all the values are generated from the same
uniform distribution. This cost could be increased by the imperfection of the random
generator, and the limited size of the component mQAP. Consider that there are M −
m + 1 values in D, such that (m = v0), v1 . . . , (vM−m = M). Let N2 − |RA| =
d ·n · (n− 1) be the total number of elements in the component mQAPs. Following the
same line of reasoning, the maximum variance is

ΔC <

d∑

k=1

ck(I)− N2 − |RA|
(M −m+ 1)2

(
M−m∑

i=0

vi

)2

(11)
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The elements of the component matrices are uniform randomly generated and posi-
tioned. Thus, when the component mQAPs are optimised and N →∞, we have

d∑

k=1

ck(I) ≈ N2 − |RA|
(M −m+ 1)2

(
M−m∑

i=0

vi

)2

(12)

and ΔC → 0.
The Variance in the Composite mQAPs. Note that if N → ∞, then ΔC is ap-

proaching 0, and ΔO has a negative value, ΔO < 0, and the identity permutation is the
optimal solution. This concludes our reasoning.

4.1 An Example

We choose the bounds for the composite mQAPs to be the same with the bounds for
the uniform randomly generated mQAPs from [2,7] with the purpose of comparing the
mQAP instances. These bounds are also set to cover a large number of values between
1 and 99, the same bounds as the randomly generated mQAP instances. Let’s consider
the following numerical values: i) m = 21 and M = 40, ii) h = 80 and H = 99,
and iii) � = 1 and L = 20. Thus L − � = H − h = 20. Let n = 8 be the number of
facilities in component mQAPs, where d ≥ 2. Further, si = i and ti = i + 80, where
i ∈ {1, . . . , 20}.

If d = 2, 3, . . ., then |RA| = 128, 384, 768, . . .. Using Equation 9, the cost of the
outside region is Ro(I) = |RA| · 1·99+...+20·80

20 = |RA| · 906.5. From Equation 10, we
have that Δo

O ≈ p · |RA| · 906.5− p · |RA| · 6703.2 ≈ −p · |RA| · 5807.7. Note that the
second term it is negative and dominates Δo

O . From N2 − |RA| = 112, 168, 224, . . .

and Equation 11, we have that ΔC <
∑d

k=1 c
k(I) − (N2 − |RA|) · 29241. From

Equation 12, we have that ΔC → 0, and thus the identity permutation is the optimum
solution for all the composite mQAPs with these uniform distributions. Note that the
condition from Inequality 7 was relaxed for this numerical example.

5 Difficulty of mQAP Instances

Our goal is to generate instances that are difficult to solve with local search. We propose
to use as difficulty measures for mQAPs: i) the covariance coefficients of the elements
in two different flow matrices, and ii) the correlation between the cost functions of two
objectives.

Dominance [7] is a measure of the amplitude of the variance for the flow matrix and
distance matrix. Note that there are m+1 dominance values: m flow dominance values
and one distance dominance value. We denote the distance and flow dominances with
da = σa

μa
% and dk =

σ
bk

μ
bk
%, where μa and σa is the mean and the standard deviation for

the matrix a. A matrix with low epistasis has the dominance close to the lower bound,
0. The dominance’s upper bound is 100.

We propose to measure the amplitude of the sample covariance between two flow
matrices, bk and br. The dominance of the flow matrices bk and br is defined as dkr =

1√
μ
bk

·μbr
·
√∑

n
i,j=1(b

k
ij−μ

bk
)·(brij−μbr )

n2 %.
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Table 1. Analytical and empirical properties of 9 bi-objective QAP instances

type N n Dominance Ruggedness Asymptotic behav Empirical behav
mQAPs da db1 db2 d12 φb1 φ12 Best Know Invers Gap % opt mean Gap

Knowless’
25 60 64 63 18 96 92 646561 672236 3.8
50 59 61 58 13 98 98 5264742 5333790 1.2
75 60 59 60 13 99 98 12285680 12476382 1.5

Composite

25
1

94 99 95 97 95 95 183427 1381042 87 100 183427 87
50 92 97 93 94 98 97 737069 6010180 87 7 1965328 67
75 91 96 91 94 99 99 1923900 13417974 88 0 4766598 64
25

5
83 93 83 88 95 95 189465 1352778 86 100 189465 86

50 85 95 85 90 96 96 745782 5560362 87 12 1707298 69
75 83 92 83 87 98 98 3317244 12324804 73 0 4768865 61
20

10
83 97 90 93 98 98 244998 536258 54 100 244998 54

50 84 93 84 89 98 97 742401 4807446 85 1 1790843 63
80 82 92 83 87 98 98 3870974 14129836 73 0 5351231 62

Ruggedness [10] is a normalisation of the autocorrelation coefficient for the cost
function ck when a (m)QAP is explored with local search. By definition, the auto-

correlation coefficient for the k objective is εck =
2·(IE[(ck)2]−μ2

ck
)

IE[(ck(π)−ck(π′))2] , where μck is the

average of ck and π and π′ are any two permutations. The ruggedness coefficient for
the k-th objective is φbk = 100− 400

n−2 · (εbk − n
4 ). A ruggedness coefficient close to 0

indicates a flat landscape, whereas a large φk, close to 100, indicates a steep landscape
with lots of local optima.

We propose to measure the correlation between the cost functions of two objectives,

ck and cr, εkr =
IE[ck(π)−μ

ck
]

σ
ck

· IE[cr(π)−μcr ]
σcr

. The ruggedness of the objectives k and r

is defined as φkr = 100− 400
n−2 · (εkr − n

4 ).
A difficult (m)QAP instance has both large dominance and ruggedness.
Asymptotic Behaviour of mQAPs calculates the difference between the optimum

value (or a known feasible solution) and the value of the solution generated with the
inverse permutation of that solution. Here, we consider the inverse of the optimum (or, if
optimum is unknown, the best known solution) an approximation of the worst solution
of an instance of composite mQAP. Thus, for mQAPs with the optimum solution I,
we assume that the reverse of the identity permutation, I−1, is an approximation of
the worst solution for that instance. The gap is inverse solution−best known solution

inverse solution ∗
100%, where the best known solution is the best solution returned by an algorithm
and inverse solution is the inverse solution for the best known so far.

Numerical Examples. Let consider the numerical example from Section 4. In Table 1
we compare the difficulty of several bi-objective QAP instances from [7] and the
composite bi-objective QAPs. We consider the correlation between the flow matrices
ρ = 0.75, and N = {25, 50, 75}. The asymptotic and empirical behaviour is shown
only for the first objective. To compute the empirical behaviour of bQAPs we run iter-
ated Pareto LS [8] for 50 times each run for 106 position swaps in a permutation. The
composite bQAPs are most difficult tested instances because they have the largest dom-
inance values, ruggedness coefficients and gaps. The small composite bQAPs, N = 25,
have a lower ruggedness than the large composite bQAPs, N = 75. The dominance val-
ues and the gap decrease with the size increase of the component bQAPs because there
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is less variance in the values of the component matrices. Note that the empirical gap is
much smaller than the asymptotic gap. To conclude, the analytical (difficulty measures)
and empirical properties of the composite bQAPs outperform the same properties of the
uniformly randomly generated bQAPs.

6 Conclusion

We propose a multi-objective quadratic assignment instance generator that aggregates
several small multi-objective QAP instances into a larger mQAP instance. Both the
component mQAP instances and the cost of the elements outside these components
have, by design, the identity permutation as the optimal solution. We give mild condi-
tions under which the resulting composite mQAP instances have identity permutation
as the optimum solution. We propose difficulty measures to compare the proposed com-
posite mQAPs with other mQAPs from literature. We conclude that composite bQAP
instances are more difficult than the uniform random bQAPs, and in addition, they have
a known optimum solution.
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