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Abstract. The problem of finding sets of bounded cardinality maximiz-
ing dominated hypervolume is considered for explicitly parameterized
Pareto fronts of multi-objective optimization problems. A parameteriza-
tion of the Pareto front it often known (by construction) for synthetic
benchmark functions. For the widely used ZDT and DTLZ families of
benchmarks close-to-optimal sets have been obtained only for two objec-
tives, although the three-objective variants of the DTLZ problems are
frequently applied. Knowledge of the dominated hypervolume theoreti-
cally achievable with an approximation set of fixed cardinality facilitates
judgment of (differences in) optimization results and the choice of stop-
ping criteria, two important design decisions of empirical studies. The
present paper aims to close this gap. An efficient optimization strategy
is presented for two and three objectives. Optimized sets are provided
for standard benchmarks.

1 Introduction

Empirical benchmark studies play a major role for performance comparisons
of nature inspired (optimization) algorithms. For many benchmark problems in
widespread use the optimum is known analytically. This allows to compare algo-
rithms not only relative to each other but also in relation to the actual optimum.
This is a prerequisite, e.g., for the empirical investigation of convergence rates. It
is practically useful for the design of meaningful stopping criteria in benchmark
studies comparing the runtime of different (black-box) optimization algorithms
for reaching a predefined solution accuracy.

The situation in multi-objective optimization differs in various respects from
the single-objective case. The optimum is a set—the Pareto front—which can
be of uncountably infinite cardinality. In practice optimal subsets of a priori
bounded cardinality are of primary interest. There are multiple performance
indicators in common use, and the optimal set of course depends on the indicator.
In recent years the hypervolume indicator has advanced to the most widely
applied performance measure at least for up to three or four objectives. Hence
this study is focused on maximization of dominated hypervolume.

For the commonly used ZDT and DTLZ benchmark suites [13,7] sets with
close-to-optimal hypervolume coverage are known only for the simplest case of
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two objectives [1]. However, the DTLZ benchmarks are scalable to any number
of objectives, with a default of three objective functions [7].

The present study aims to close this gap. For this purpose an efficient gradient-
based hypervolume maximization algorithm based on an explicit parameteriza-
tion of the Pareto front is proposed. With this algorithm we compute optimized
fixed cardinality Pareto front approximations for bi-objective and tri-objective
benchmark problems.

2 Multi-objective Optimization

Consider a search space X and a set of m scalar objective functions f1, . . . , fm :
X → R, each of which (w.l.o.g.) is to be minimized. Instead of aggregating
the various goals encoded by the different functions into a single objective (e.g.
by means of a weighted combination), the goal of multi-objective optimization
(MOO) is to obtain the set of Pareto optimal (or non-dominated) points, which is
the set of Pareto optimal compromises. This set is often huge or even infinite and
we aim for a representative approximation set of a-priori bounded cardinality.

2.1 Dominance Order and Dominated Hypervolume

The objectives are collected in the vector-valued objective function f : X → R
m,

f(x) =
(
f1(x), . . . , fm(x)

)
. Let Y = {f(x) |x ∈ X} = f(X) ⊂ R

m denote the
image of the objective function (also called the attainable objective space). For
values y, y′ ∈ R

m we define the Pareto dominance relation

y � y′ ⇔ yk ≤ y′k for all k ∈ {1, . . . ,m} ,

y ≺ y′ ⇔ y � y′ and y 	= y′ .

This relation defines a partial order on Y , incomparable values y, y′ fulfilling
y 	� y′ and y′ 	� y remain. The relation is pulled back to the search space X by
the definition x � x′ iff f(x) � f(x′).

The Pareto front is defined as the set of values that are optimal w.r.t. Pareto
dominance, i.e., the set of non-dominated values

Y ∗ =
{
y ∈ Y

∣
∣
∣ 	 ∃ y′ ∈ Y : y′ ≺ y

}

and the Pareto set is X∗ = f−1(Y ∗).
For generic objectives fk without simultaneous critical points the Pareto front

is a manifold of dimension m− 1. As such its cardinality is uncountably infinite.
We are often interested in picking a “representative subset” or approximation set
of fixed cardinality n. The approximation quality of a set S = {y1, . . . , yn} can be
judged with different set quality indicators of which the dominated hypervolume

Hr(S) = Λ
({

y′ ∈ R
m | ∃y ∈ S s.t. y � y′ � r

})



Optimized Approximation Sets 571

(where Λ denotes the Lebesgue measure on R
m) is distinguished (up to weighting

of the Lebesgue measure) for its property of being compliant with Pareto dom-
inance [14,12]. The hypervolume indicator depends on a reference point r ∈ R

m

that needs to be set by the user. It defines an objective-wise cut-off for the
quality assessment.

One standard formalization of the goal of MOO is to produce a set {x1, . . . , xn}
ofn points so that the correspondingvalues yk = f(xk)maximize the hypervolume
indicator for given f , r, and n. It is easy to see that the elements of the set S∗ max-
imizing the hypervolumeHr(S) are Pareto optimal, i.e., S∗ = {y1, . . . , yn} ⊂ Y ∗.

The optimal set S∗ as well as the dominated hypervolume Hr(S
∗) depend

on X and f only via Y ∗. Since we are interested only in S∗ and Hr(S
∗) we

simplify the problem statement in the following by assuming that the set Y ∗

is known. This means that we will ignore a large part of the complexity of the
underlying MOO problem related to the black-box setting and the potentially
involved form of f . For practical purposes we may assume that a (surjective,
sometimes bijective) parameterization ϕ : U → Y ∗, U ⊂ R

m−1, is available. This
parameterization then replaces the (often much harder to optimize) objective
function.

2.2 Benchmark Problems and Existing Results

In this study we focus on well-established benchmark suits of problems with
continuous variables. The so-called ZDT functions [13] ZDT1, ZDT2, ZDT3,
ZDT4 and ZDT6 (ZDT5 is a discrete problem) are scalable to any search space
dimension X = R

d but come with only two objectives. The conceptually similar
DTLZ functions [7] DTLZ1, DTLZ2, DTLZ3, and DTLZ4 (the other members of
the family are rarely used) improve on this situation by being scalable to many
objectives, with the “recommended default” of three objectives.

For the ZDT and DTLZ families of problems the sets Y ∗ are known analyti-
cally. For m = 2 near optimal sets S of cardinalities 2, 3, 4, 5, 10, 20, 50, 100, 1000
for the reference point (11, 11) have been obtained, see [1]. The one-dimensional
fronts are visualized in figure 1 (a) to (f).

For m = 3 the DTLZ fronts become two-dimensional. They are depicted in
figure 1 (g) and (h). Fixed size sets with maximal hypervolume coverage are not
known. We provide such near optimal sets in section 5 and in the supplementary
material.

The problem of optimizing Hr(S) has been investigated theoretically, but
analysis is mostly restricted to two objectives [3,4,11]. Results include conditions
for the inclusion of extremal points in the optimal solution set, monotonicity of
Hr(S

∗) in n = |S∗|, optimal sets on linear fronts, and asymptotically optimal
distributions on smooth fronts in the limit n → ∞. Basic results have been
obtained for m = 3 objectives [2]; but even asymptotically optimal distributions
based on local shape (derivative) features are unknown.

Finally, the most relevant precursors for obtaining optimal sets of fixed cardi-
nality n in practice are algorithms for the fast computation of the hypervolume
and its derivatives [10,9,8].
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Fig. 1. Pareto fronts of the ZDT and DTLZ problems for m = 2 and m = 3

3 Hypervolume Calculation

The computation of the dominated hypervolume Hr(S) of n values S = {y1, . . . ,
yn} ⊂ Y ∗ is known to be NP-hard, and the time complexity of the best known
algorithms for this problem is exponential in m [5,6]. However, for few objectives
(m ≤ 3) it can be carried out in O(n log(n)) operations [10,9,8].

In the present paper we consider only subsets S ⊂ Y ∗. Thus any pair of
different points yi, yj ∈ S is strictly incomparable (i.e., it holds yi 	� yj and
yj 	� yi).

3.1 Gradient of Dominated Hypervolume

It is easy to see that the dominated hypervolume Hr(S) for S = {y1, . . . , yn}
considered as a function of yk is nearly everywhere differentiable. Efficient al-
gorithms for the computation of the hypervolume and its derivatives for m ≤ 4
objectives have been proposed in [8]. It is sufficient for the purpose of practical

optimization to consider the vector of derivatives ∂Hr(S)
∂yk

, k ∈ {1, . . . , n}, and
to ignore issues of the argument S being an unordered set of values (refer to
[8] for a more careful derivation). With yk = ϕ(uk) the chain rule gives rise to
∂Hr(S)
∂uk

= ∂Hr(S)
∂yk

∂yk

∂uk
with ∂yk

∂uk
= ϕ′(uk). Note that in our setting the gradient

does not aid in finding the Pareto front, since the front is already implicitly en-
coded in the parameterization ϕ. Instead it indicates how to improve the spread
(distribution for maximal hypervolume) of the set S (e.g., by means a gradient
ascent step).
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Fig. 2. Decomposition of the dominated hypervolume into disjoint cuboids

3.2 Decomposition into Cuboids

In this section we emphasize the possibility to represent the dominated hypervol-
ume explicitly as a disjoint1 union of simple volumes, in this case m-dimensional
axis-aligned cuboids (rectangles in two dimensions, cuboids in three dimensions).
We restrict the following consideration to m = 2 and m = 3. A crucial obser-
vation is that the cuboids are not only aligned to the coordinate axes but also
start and end at objective values that appear in the set S+ = S ∪ {r}. Each
rectangle can thus be represented as a 2m-tuple of values2 (y−1 , y

+
1 , . . . , y

−
m, y+m)

representing the cuboid
[
(y−1 )1, (y

+
1 )1

]× · · · × [
(y−m)m, (y+m)m

] ⊂ R
m.

For m = 2 the set S is sorted by one objective, which results in the reverse
order in the other objective. Then the hypervolume is computed by splitting the
dominated set into disjoint rectangles and summing their areas (see figure 2 (a)).
Thus the decomposition into exactly n rectangles is a cheap by-product of the
hypervolume computation: sorting the points requires O(n log(n)) operations,
while there are only n rectangles.

For m = 3 we adopt the sweep-based algorithm from [10]. Instead of comput-
ing the hypervolume on the fly the modified algorithm stores and reports a list
of n to 2n − 1 and hence Θ(n) cuboids. So again the collection of the cuboids
is a rather cheap by-product of the O(n log(n)) hypervolume computation. The
result is illustrated in figure 2 (b).

The decomposition into cuboids is not more costly than the computation of
the hypervolume itself, and for m ≤ 3 the number of cuboids is only linear in n.

1 For simplicity of presentation the cuboids’ boundaries may overlap. However, the
corresponding open cuboids (the topological interiors) are disjoint. This does not
impact the hypervolume computation.

2 For efficiency reasons, indices or pointers may be used in actual implementations.
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This proceeding has the advantage that subsequent tasks such as the computa-
tion of the hypervolume or its partial derivatives (possibly higher derivatives) [8],
dependence of hypervolume contributions on other points [9], etc. do not need
to be incorporated into the bookkeeping-heavy sweeping algorithm. Instead they
can be realized in a unified scheme, namely by first invoking the cuboid decom-
position algorithm and a subsequent loop over the list of cuboids.

4 Hypervolume Optimization

4.1 Gradient-Based Optimization

In the following we assume an algorithm that represents the dominated hyper-
volume as a disjoint union of m-dimensional axis aligned cuboids as discussed
in section 3. This allows for the trivial computation of Hr(S) as the sum of the
elementary volumes.

The coordinate wise lower and upper bounds of the cuboids are given by
coordinates of points from the set S+ = S ∪ {r}. This representation allows for

trivial differentiation of Hr(S) w.r.t. points in S, yielding n derivatives ∂Hr(S)
∂yk

(see also section 3.1). Thus, starting from any initial configuration S can be
iteratively refined with a gradient-based optimization procedure.

We propose simple gradient ascent steps uk ← uk+η ·∇uk
Hr(S) with learning

rate η > 0. If a step happens to decrease the hypervolume then backtracking
is applied: the previous set S is restored and the learning rate η is halved.
Otherwise the learning rate is optimistically increased (here by a factor of 1.05).
This heuristic is analog to success-based step-size control in elitist evolution
strategies.

4.2 Dealing with Multi-modality

Gradient ascent is an efficient technique for the localization of a local maximum.
It turns out that for m > 2 multi-modality of the hypervolume indicator is a
practically relevant issue. We address this problem with two simple yet effective
techniques: proper initialization and a multi-start strategy.

Uniform initialization of the parameters {u1, . . . , un} ⊂ U may lead to a
highly distorted distribution of the actual values {ϕ(u1), . . . , ϕ(un)} ⊂ Y ∗. Fur-
thermore, at least in the limit n→∞ the density of values should depend on the
slope of the front. For m = 2 objectives this was derived in [3]. Here we present
a heuristic (inexact yet practical) extension of these ideas to m = 3 objectives.
Importantly, we do not claim to solve the problem of asymptotically optimal
distributions but rather aim for a procedure generating suitable initial solutions
for gradient-based optimization.

For simplicity let us assume that the hypervolume contribution of a point
y = ϕ(u) consists of the volume of a cuboid with side lengths b1, b2, b3 and
volume V = b1 · b2 · b3. Furthermore assume that the point is not close to the
boundary of the front and that the front surface is regular at y. This implies that
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locally the front can be approximated by a hyperplane (here a plane), spanned
by the derivative vectors ∂ϕ

∂u1
and ∂ϕ

∂u2
. It’s orientation is characterized by the

normal vector w(u) = ∂ϕ
∂u1
× ∂ϕ

∂u2
, which can be obtained as the cross product of

the tangent vectors. The norm ‖w‖ measures the (local) volume growth of ϕ.
For large n the normal vector determines the local distribution of values y

which—in the optimum—locally have equal hypervolume contributions V ≈
const. At the same time it should hold w1b1 ≈ w2b2 ≈ w3b3 for the shape of the
cuboid. Putting these together we obtain that bi is proportional to 3

√
w1w2w3/wi.

The “area of the front” covered by the cuboid can be approximated by the area
of the triangle spanned by the cuboid vertices y + (b1, 0, 0), y + (0, b2, 0), and
y + (0, 0, b3). It is computed as A = 1

2 ·
√
b21b

2
2 + b21b

2
3 + b22b

2
3. Under the above

considerations the optimal density of parameters u is proportional to ‖w‖/A.
We sample an initial set of size n from the above density by means of rejection

sampling. For this purpose κ = 100 random points are drawn from the uniform
distribution on u ∈ U . The maximal value of ‖w‖/A over these points, multi-
plied by a safety margin of two, is kept as a tentative upper bound B on the
unnormalized density. Then parameters u are sampled uniformly and rejected
with probability min{1, 1− ‖w‖/(A · B)} until n samples are accepted.

Our multi-start procedure generates N independent initial sets of size n as
described above. Each initial set serves as a starting point for the gradient-based
optimization algorithm.

4.3 Implementation

We provide an efficient C++ implementation of the above described hypervolume
maximization algorithm with rejection sampling initialization and restart strat-
egy. The program can be downloaded from http://www.ini.rub.de/PEOPLE/

glasmtbl/code/opt-hv/.

5 Optimized Sets for the ZDT and DTLZ Problems

In this section we present the close to optimal sets obtained by our optimization
algorithm for the ZDT and DTLZ problems. In analogy to [1] we have conducted
all experiments for cardinalities n ∈ {2, 3, 4, 5, 10, 20, 50, 100, 1000}.

5.1 The Bi-objective Case

The ZDT and DTLZ problems have been optimized with specifically tailored algo-
rithms. The results are found on the website [1], which is a valuable resource when
experimenting with these benchmark problems. We stick to the original reference
point r = (11, 11). This test aims to validate our optimization algorithm.

We have run the gradient-based optimization procedure N = 100 times with
random initial configurations. The results are presented concisely in table 1.
Standard deviations across repetitions are extremely small (usually below 10−10).
The global optimum is obtained in each single run. Most of our results reproduce

http://www.ini.rub.de/PEOPLE/glasmtbl/code/opt-hv/
http://www.ini.rub.de/PEOPLE/glasmtbl/code/opt-hv/
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Table 1. Maximal dominated hypervolume covered by sets of cardinalities n ∈
{2, 3, 4, 5, 10, 20, 50, 100, 1000} for bi-objective problems with reference point (11, 11)

n ZDT1,4 ZDT2 ZDT3 ZDT6 DTLZ1 DTLZ2-4

2 120.0248764 120.0000000 128.0147714 117.2489467 120.7500000 120.0000000
3 120.3877279 120.1481481 128.4523400 117.3723140 120.8125000 120.0857864
4 120.4915975 120.2041588 128.5997409 117.4178988 120.8333333 120.1215851
5 120.5397291 120.2339071 128.6671568 117.4417417 120.8437500 120.1415358

10 120.6137609 120.2868199 128.7459431 117.4832459 120.8611111 120.1789660
20 120.6423963 120.3106986 128.7632012 117.5014399 120.8684211 120.1968576
50 120.6574465 120.3243978 128.7707848 117.5116580 120.8724490 120.2074851

100 120.6621372 120.3288807 128.7739496 117.5149559 120.8737374 120.2110337
1000 120.6662212 120.3328889 128.7774084 117.5178796 120.8748749 120.2142433

the optimized fronts obtained in [1]. For large values of n we observe slight im-
provements. For example, for problem DTLZ2 with n = 100 our gradient-based
procedure obtains a dominated hypervolume of 120.2110337 instead of the previ-
ously reported value of 120.210644. The improvement in itself may seem minor,
however, for n = 100 and n = 1000 our optimization procedure improves on
most of the existing numbers.

The ZDT3 problem is an exception. Here we observe improved values for
small n. This is because the left extreme point should not be fixed for the op-
timization, see also Theorem 2 in [3]. On the other hand our results for large
n are significantly worse than those reported at [1] since gradient-ascent cannot
deal well with the disconnected front of the ZDT3 problem and the resulting
discontinuous parameterization ϕ.

5.2 The Tri-objective Case

A major motivation for the present work is to obtain optimized fronts for the
DTLZ problems in their standard form, which is with three objectives. Re-
sults of our gradient-based optimizer are presented in table 2. The optimized
sets are available for download at http://www.ini.rub.de/PEOPLE/glasmtbl/
code/opt-hv/ in csv format, and as eps and png figures.

The variance in the results is significantly higher than in the bi-objective case.
This is because of the multi-modality of the problem. Hence we have increased
the number of runs to N = 10, 000. Running the procedure with even more
repetitions will most probably give slightly higher hypervolumes. However, most
reasonable optimization procedures may get stuck in local optima. Therefore not
only the global optimum is of interest but also the distribution of local optima.
The descriptive statistics in table 2 provide such data. This allows to judge the
performance of algorithm on an absolute scale w.r.t. a reference distribution,
e.g., by measuring how often a certain quantile of the empirical distribution of
local optima is reached.

http://www.ini.rub.de/PEOPLE/glasmtbl/code/opt-hv/
http://www.ini.rub.de/PEOPLE/glasmtbl/code/opt-hv/
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Table 2. Characteristics (mean, standard deviation, quantiles, and maximum) of the
empirical distributions of dominated hypervolume for the DTLZ1 front (upper half)
and the DTLZ2-4 front (lower half) with m = 3 objectives, reference point r = (2, 2, 2),
and cardinalities n ∈ {2, 3, 4, 5, 10, 20, 50, 100, 1000}

front n mean stddev 25% 50% 75% max

2 7.5281031 0.0094041 7.5312500 7.5312500 7.5312500 7.5312500
3 7.8750000 0.1102255 7.6445649 7.8750000 7.8750000 7.8750000
4 7.8946157 0.0526134 7.9062500 7.9062500 7.9062500 7.9120370
5 7.9222298 0.0212193 7.9238281 7.9242346 7.9259728 7.9260397

DTLZ1 10 7.9532612 0.0005410 7.9529850 7.9532053 7.9537283 7.9539787
20 7.9644361 0.0001552 7.9643638 7.9644671 7.9645441 7.9647401
50 7.9712554 0.0000490 7.9712280 7.9712615 7.9712901 7.9713876

100 7.9739706 0.0000267 7.9739557 7.9739739 7.9739892 7.9740466
1000 7.9776989 0.0000039 7.9776965 7.9776992 7.9777016 7.9777110

2 6.0000000 0.0000000 6.0000000 6.0000000 6.0000000 6.0000000
3 6.8272558 0.3365748 7.0000000 7.0000000 7.0000000 7.0000000
4 7.0694591 0.1090694 7.0857864 7.0857864 7.0857864 7.0857864

DTLZ2 5 7.1467484 0.0206817 7.1493061 7.1493061 7.1493061 7.1493061
DTLZ3 10 7.2809948 0.0049230 7.2780682 7.2795647 7.2860090 7.2874732
DTLZ4 20 7.3485703 0.0022931 7.3472972 7.3488734 7.3501758 7.3545152

50 7.3994118 0.0010188 7.3987853 7.3995002 7.4001307 7.4022754
100 7.4228644 0.0006244 7.4224787 7.4229145 7.4232955 7.4246456

1000 7.4597704 0.0001156 7.4596963 7.4597782 7.4598501 7.4601203

6 Conclusion

We have presented an efficient algorithm for the maximization of dominated hy-
pervolume of sets of fixed cardinality when a parametric form of the Pareto front
is know. Such sets are of practical relevance when comparing multi-objective op-
timizers on benchmark problems. While existing studies have been restricted
to relative comparisons we are now in the position to relate differences to an
absolute scale given by the best known hypervolume and by the empirical distri-
bution of local optima as identified by our multi-start procedure. This also allows
to report the performance of a single (e.g., novel) algorithm on an absolute scale
rather than relative to (arbitrarily chosen) competitors. Our gradient-based pro-
cedure is computationally efficient. This algorithm has been integrated into a
standalone software with easy-to-use command line interface.
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