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Abstract. It has been reported for multi-objective knapsack problems that the 
recombination of similar parents often improves the performance of evolutio-
nary multi-objective optimization (EMO) algorithms. Recently performance 
improvement was also reported by exchanging only a small number of genes 
between two parents (i.e., crossover with a very small gene exchange probabili-
ty) without choosing similar parents. In this paper, we examine these perfor-
mance improvement schemes through computational experiments where 
NSGA-II is applied to 500-item knapsack problems with 2-10 objectives.  
We measure the parent-parent distance and the parent-offspring distance in 
computational experiments. Clear performance improvement is observed when 
the parent-offspring distance is small. To further examine this observation, we 
implement a distance-based crossover operator where the parent-offspring  
distance is specified as a user-defined parameter. Performance of NSGA-II is ex-
amined for various parameter values. Experimental results show that an appropri-
ate parameter value (parent-offspring distance) is surprisingly small. It is also 
shown that a very small parameter value is beneficial for diversity maintenance.  

Keywords: Mating schemes, evolutionary multiobjective optimization (EMO), 
many-objective optimization, knapsack problems, NSGA-II. 

1 Introduction 

Evolutionary multi-objective optimization (EMO) has been an active research area in 
the field of evolutionary computation in the last two decades. A number of multi-
objective continuous optimization problems have been proposed as test problems in 
the EMO community. Whereas continuous problems have been mainly used to eva-
luate the performance of EMO algorithms, combinatorial test problems such as multi-
objective knapsack problems in Zitzler and Thiele [17] have also been used (e.g., see 
Jaszkiewicz [9], Sato et al. [13], and Zhang and Li [16]). 

For multi-objective knapsack problems, it has been reported in some studies [3], 
[6], [13] that the recombination of similar parents improves the performance of EMO 
algorithms such as SMS-EMOA [1] and NSGA-II [2]. MOEA/D [16] has an inherent 
mechanism of recombining similar parents, which is local selection of parents based 
on a neighborhood structure of solutions. It has been reported in [4] that the removal 
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of local selection deteriorates the performance of MOEA/D on multi-objective knap-
sack problems. Reported results in those studies suggest the existence of a negative 
effect of recombining totally different parents on the performance of EMO algorithms. 
Recently Sato et al. [14] demonstrated that the performance of EMO algorithms was 
improved by exchanging only a small number of genes between two parents (i.e., using 
a very small gene exchange probability) instead of choosing similar parents.  

In this paper, we examine the above-mentioned two schemes for performance im-
provement of EMO algorithms through computational experiments on 500-item knap-
sack problems with 2-10 objectives. NSGA-II [2] is used to examine the effect of 
each scheme. That is, NSGA-II is applied to each test problem under three settings of 
crossover: Standard uniform crossover, uniform crossover of similar parents, and 
modified uniform crossover with a very small gene exchange probability. In computa-
tional experiments, we measure the parent-parent distance and the parent-offspring 
distance. Good results are obtained when the parent-offspring distance is small. 

To further examine this observation, we implement a distance-based crossover op-
erator where the generated offspring always has a pre-specified distance from its 
closer parent. That is, the parent-offspring distance is specified as a user-defined pa-
rameter. Performance of NSGA-II is measured for various parameter values to ex-
amine the relation between the parent-offspring distance and its performance. As 
performance measures, we calculate the hypervolume of solutions obtained from each 
run of NSGA-II using two reference points. One is far from and the other is close to 
the Pareto front. The two reference points are used to examine the effect of the parent-
offspring distance on the diversification and convergence properties of NSGA-II. 

The rest of this paper is organized as follows. In Section 2, we briefly explain our 
test problems (i.e., 500-item knapsack problems with 2-10 objectives). In Section 3, 
we explain the above-mentioned two performance improvement schemes. In Section 
4, we report our experimental results where the performance of NSGA-II with each 
scheme is evaluated. In Section 5, we discuss our experimental results using a dis-
tance-based crossover operator. Finally we conclude this paper in Section 6. 

2 Multi-Objective and Many-Objective Knapsack Problems 

Multi-objective knapsack problems with 2-4 objectives and 250, 500 and 750 items 
were used in Zitzler and Thiele [17]. Their two-objective n-item problem is written as  

Maximize ,))(),(()( 21 xxxf ff=  (1) 
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In Zitzler and Thiele [17], the profit pij and the weight wij of item j with respect to 
knapsack i were specified as random integers in the interval [10, 100]. The capacity ci 
of knapsack i was specified as 50% of the total weight of n items for knapsack i. 
Since the number of objectives and the number of items can be arbitrarily specified, 
multi-objective knapsack problems have been used as many-objective test problems 
(e.g., [4], [7], [14]). They have also been used as large-scale multi-objective test prob-
lems with up to 10000 items [5]. 

In this paper, we use multi-objective 500-item knapsack problems with 2-10 objec-
tives. Those test problems are generated from the two-objective n-item problem in 
(1)-(4) by specifying n as n = 500 and creating additional objectives as follows: 

=
=

n

j
jiji xpf

1
)(x ,  10.,..,4,3=i , (5) 

where the profit pij of item j with respect to knapsack i is specified as a random integ-
er in the interval [10, 100] in the same manner as in [17]. We denote the k-objective 
500-item knapsack problem as the k-500 problem. In this paper, we use five test prob-
lems with k = 2, 4, 6, 8, 10 (i.e., 2-500, 4-500, 6-500, 8-500, 10-500 problems).  

The constraint conditions in (2) and (3) are always used in our test problems inde-
pendent of the number of objectives. This means that all of our test problems have the 
same set of feasible solutions. As a result, the same greedy repair method in [17] is 
used for constraint handling in all test problems in our computational experiments. 

3 Two Performance Improvement Schemes 

A similarity-based mating scheme was proposed and incorporated into NSGA-II to 
recombine similar parents in Ishibuchi et al. [6]. In its simplest version, first one par-
ent is selected in the same manner as in NSGA-II (i.e., binary tournament selection 
with replacement based on non-dominated sorting and crowding distance). Next β 
candidates are selected by iterating the same parent selection mechanism as NSGA-II 
β  times. Then the closest candidate to the first parent is selected from the β candidates 
using the Euclidean distance in the objective space. The selected candidate is used as 
the mate of the first parent. The standard uniform crossover operator is applied to the 
selected pair of similar parents. In the mating scheme, β is a user-defined parameter to 
specify the strength of the selection pressure toward similar parent selection. The 
larger value of β means the stronger selection pressure toward similar parent selection 
(i.e., stronger tendency to choose similar parents). When β =1, the mating scheme 
does not change the parent selection mechanism of NSGA-II at all.  

Sato et al. [14] proposed an idea of exchanging only a small number of genes be-
tween two parents instead of selecting similar parents. They implemented the idea for 
uniform crossover by using a very small gene exchange probability, which was de-
noted by αu in [14]. In the standard uniform crossover, genes of two parents are ex-
changed at each locus with the probability 0.5. In [14], good results were obtained for 
multi-objective knapsack problems when αu was very small (e.g., 0.01). 
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4 Experimental Results 

Three settings of crossover in NSGA-II are examined: Standard uniform crossover, 
uniform crossover of similar parents, and modified uniform crossover with a small 
gene exchange probability. One of the two children of crossover is randomly selected 
and handled as an offspring in NSGA-II in our computational experiments. The fol-
lowing parameter values are examined in the performance improvement schemes:  

The number of candidates: β = 1, 5, 10, 20, 30, 40, 50. 
Gene exchange probability: αu = 0.01, 0.02, 0.03, 0.04, 0.05, 0.10, 0.15, 0.20. 

NSGA-II with each parameter value is applied to each test problem 100 times. The 
hypervolume of the obtained solutions is calculated using a fast calculation method 
[15] for each of the 100 runs for two reference points. One is (0, 0, ..., 0) which is far 
from the Pareto front, and the other is (15000, 15000, ..., 15000) which is close to the 
Pareto front. Computational experiments are performed under the following settings: 

Population: 100 binary strings of length 500 with random initialization, 
Termination condition: Evaluation of 400,000 solutions, 
Crossover probability: 0.8 (One of the three versions of uniform crossover), 
Mutation probability: 1/500 (Bit-flip mutation). 

The calculated hypervolume value for each run with each parameter specification 
of β and αu is normalized using the average result by NSGA-II with the standard 
uniform crossover for each reference point. It should be noted that the standard uni-
form crossover corresponds to the setting of β = 1 and αu = 0.5. In computational 
experiments, we also calculate the Hamming distance between two parents and be-
tween an offspring and its closer parent. The parent-offspring distance is measured 
after mutation only when crossover is used. Experimental results are summarized in 
Fig. 1 and Fig. 2 for each performance improvement scheme. 

From Fig. 1 (a), we can see that the average normalized hypervolume value for the 
reference point (0, 0, ..., 0) is improved for all test problems by similar parent recom-
bination from the baseline value 100 by the standard uniform crossover with β = 1 
(the baseline value 100 is also obtained from the setting of αu = 0.5). In Fig. 2 (a), 
larger performance improvement is achieved for the 6-500, 8-500 and 10-500 prob-
lems by small gene exchange probabilities than similar parent recombination in Fig. 1 
(a). However, better results are obtained for the 2-500 and 4-500 problems by similar 
parent recombination in Fig. 1 (a) than small gene exchange probabilities in Fig. 2 (a).  

When the hypervolume for the reference point (15000, 15000, ..., 15000) is used as 
a performance measure in Fig. 1 (b) and Fig. 2 (b), we can observe both positive and 
negative effects of the performance improvement schemes. In Fig. 1 (b), the average 
normalized hypervolume value is improved by similar parent recombination for the 2-
500 and 4-500 problems. However, the performance is degraded by similar parent 
recombination for the 6-500, 8-500 and 10-500 problems. In Fig. 2 (b), the use of too 
small gene exchange probabilities (e.g., αu = 0.01) severely degrades the performance 
for the 6-500, 8-500 and 10-500 problems. However, when αu is specified between 
0.1 and 0.2, the use of small gene exchange probabilities improves the performance 
for those test problems.  
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 Fig. 1. Similar Parent Recombination          Fig. 2. Small gene exchange probability 
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Fig. 1 (c) and Fig. 2 (c) show the average Hamming distance of two parents while 
the distance in Fig. 1 (d) and Fig. 2 (d) is measured between an offspring and its clos-
er parent. In Fig. 1 (c), the average Hamming distance between two parents is de-
creased by increasing the value of β. That is, the similarity of two parents is increased 
by increasing the value of β. As a result, the parent-offspring distance is decreased by 
increasing the value of β in Fig. 1 (d). We can also see from Fig. 1 (c) and Fig. 1 (d) 
that both the parent-parent distance and the parent-offspring distance are increased by 
increasing the number of objectives.  

In Fig. 2 (c), the parent-parent distance is not small. This is because no selection 
mechanism of similar parents is used in Fig. 2. Thus, the average parent-parent dis-
tance in Fig. 2 (c) can be considered as being similar to the average distance between 
two solutions in a population over all generations (whereas they are not exactly the 
same). Fig. 2 (c) shows that the average parent-parent distance is increased by very 
small gene exchange probabilities for all test problems. This observation suggests that 
the performance improvement in Fig. 2 (a) is achieved by the increase in the diversity 
of solutions. At the same time, the diversity improvement severely degrades the con-
vergence property, which leads to severe performance deterioration in Fig. 2 (b) by 
very small gene exchange probabilities for the 6-500, 8-500 and 10-500 problems. 

In Fig. 1 (d) and Fig. 2 (d), the parent-offspring distance is decreased by increasing 
the parameter value of β (i.e., increasing the number of candidates for the second 
parents) and decreasing the parameter value of αu (i.e., decreasing the gene exchange 
probability), respectively. From Fig. 1 (a) and Fig. 1 (d), we can see that good results 
are obtained in Fig. 1 (a) when the parent-offspring distance is small in Fig. 1 (d). The 
same observation is also obtained from Fig. 2 (a) and Fig. 2 (d).    

5 Further Discussions Using Distance-Based Crossover 

In this section, we further discuss the relation between the parent-offspring distance 
and the performance of NSGA-II. First we explain binary crossover using the concept 
of geometric crossover, which has been proposed by Moraglio and Poli [10]-[12]. 
Standard binary crossover (e.g., uniform, one-point, and two-point crossover) is geo-
metric crossover in the sense that the sum of the Hamming distances between an 
offspring and its two parents is always equal to the Hamming distance between the 
two parents [8], [10]-[12]. That is, the following relation always holds for an 
offspring C generated by standard binary crossover from its two parents P1 and P2:  

H(C, P1) + H(C, P2) = H(P1, P2), (6) 

where H(A, B) shows the Hamming distance between binary strings A and B. This 
relation always holds for all standard binary crossover operators [8], [10]-[12]. 

When the similar parent recombination scheme is incorporated into NSGA-II, two 
parents with a small Hamming distance are recombined as shown in Fig. 1 (c). That 
is, the right-hand side (i.e., H(P1, P2) ) of (6) is decreased by increasing the value of β 
in the similar parent recombination scheme. As a result, the two terms in the left-hand 
side of (6) are decreased as shown in Fig. 1 (d). 

When the small gene exchange probability scheme is used, the right-hand side  
of (6) is not decreased as shown in Fig. 2 (c). However, one of the two terms in the 
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left-hand side of (6) is decreased as shown in Fig. 2 (d). That is, min{H(C, P1), H(C, 
P2)} becomes very small when the gene exchange probability αu is very small. 

Geometric crossover with the similar parent recombination scheme is illustrated in 
Fig. 3 (a) using two parents P1, P2 and its offspring C. In Fig. 3 (a), the horizontal and 
vertical axes show the Hamming distances from Parent P1 and Parent P2, respectively. 
The short three arrows show the possible moves by mutation of a single gene of C. In 
Fig. 3 (a), H(C, P1) + H(C, P2) = H(P1, P2) holds since H(C, P1) = 2, H(C, P2) = 2 and 
H(P1, P2) = 4. Similar parent recombination means that H(P1, P2) is small in Fig. 3 (a). 

Fig. 3 (b) illustrates geometric crossover with a small gene exchange probability. 
Since no mechanism for similar parent recombination is used, two parents have a 
larger Hamming distance in Fig. 3 (b) than Fig. 3 (a): H(P1, P2) = 10 in Fig, 3 (b). 
However, due to a small gene exchange probability, the generated offspring C is close 
to P1 or P2 as shown in Fig. 3 (b). In our computational experiments, one of the two 
offspring is randomly selected for further use in NSGA-II.  

In uniform crossover with a very small gene exchange probability αu, the expected 
value of min{H(C, P1), H(C, P2)} can be approximated by αu H(P1, P2). For example, 
when αu = 0.2 and H(P1, P2) = 10, the expected value of min{H(C, P1), H(C, P2)} is 2. 
This means that the parent-offspring distance depends on the parent-parent distance, 
which depends on the number of objectives and the value of αu as shown in Fig. 2 (c). 
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          (a) Similar parent recombination           (b) Small gene exchange probability 

Fig. 3. Illustration of the two performance improvement schemes 

In order to examine the relation between the parent-offspring distance and the per-
formance of NSGA-II in a more straightforward manner, we implement the following 
distance-based crossover operator, which is incorporated into NSGA-II: 

Distance-Based Crossover Operator: 
1. The parent-offspring distance is specified as a user-defined parameter. This para-

meter is denoted by D.  
2. Two parents P1 and P2 are selected in the same manner as in NSGA-II. 
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3. If H(P1, P2) < 2D, we cannot generate an offspring C such that min{H(C, P1),  
H(C, P2)} = D by geometric crossover (since H(C, P1) + H(C, P2) < 2D). In this 
case, we use standard uniform crossover for P1 and P2. Otherwise (i.e., H(P1, P2) 
≥  2D), D loci are randomly selected from H(P1, P2) loci with different bit values 
in P1 and P2. Each of those loci is selected uniformly with the same probability. 
The genes (i.e., different bit values) in the selected D loci are exchanged between 
P1 and P2. Since the D genes are exchanged, min{H(C, P1), H(C, P2)} = D holds. 

4. One of the generated two offspring is randomly selected for further use in NSGA-II 
(i.e., mutation is applied to the selected offspring in NSGA-II). 

In the same manner as in Section 4, we apply NSGA-II with the distance-based 
crossover to our test problems. We examine the following parameter specifications: D 
= 1, 2, 3, 4, 5, 10, 15, 20. Experimental results are summarized in Fig. 4. 

In Fig. 4 (a), the best results with respect to the hypervolume for the reference 
point (0, 0, ..., 0) are obtained when the parent-offspring distance is specified as 1 or 
2. That is, the best results are obtained when different genes in one or two loci are 
exchanged between two parents. However, the distance-based crossover operator with 
such a parameter specification severely degrades the hypervolume for the reference 
point (15000, 15000, ..., 15000) in Fig. 4 (b). The hypervolume for this reference 
point for the 8-500 and 10-500 problems are clearly improved when the parent-
offspring distance is specified as 10 or 15 in Fig. 4 (b). From Fig. 4 (c), we can see 
that 10 and 15 are much smaller than the average parent-parent distance.  
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Fig. 4. Distance-based crossover with the parent-offspring distance D 
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One may notice that the average parent-offspring distance in Fig. 4 (d) for the 2-
500 problem is much smaller than D when D is large. This is because the standard 
uniform crossover is used when H(P1, P2) < 2D (i.e., see Fig. 4 (c) for H(P1, P2)).  

Experimental results in Section 4 and Section 5 are summarized in Table 1 and Ta-
ble 2 where the best average result by each scheme for each test problem is shown 
together with the standard deviation and the best parameter value in parentheses. The 
best result over the three schemes is highlighted by bold for each test problem. From 
Table 1 and Table 2, we can see that the similar parent recombination does not work 
well on the 6-500, 8-500 and 10-500 problems whereas it works well on the 2-500 
and 4-500 problems. This is because a pair of similar parents is not actually selected 
(since all solutions in a population are not similar to each other in many-objective 
optimization). For example, in Fig. 1 (c), the average parent-parent distance is larger 
than 10 even when the most similar parent is selected from 50 candidates (i.e., β = 50) 
for the 10-500 problem. We can also see that the best specification of the parent-
offspring distance D is surprisingly small in the last column of Table 1.  

 
Table 1. Experimental results for the normalized average hypervolume for the reference point 
(0, 0, ..., 0). The best result by each scheme is shown for each test problem.   

Problem Similar Parent (SD) (β) Probability (SD) (αu) Distance-Based (SD) (D) 

2-500 102.3 (0.4) (20) 100.9 (0.4) (0.03) 101.6 (0.5) (1) 
4-500 106.4 (0.9) (20) 104.8 (0.8) (0.02) 106.4 (0.8) (2) 
6-500 108.5 (1.0) (20) 109.6 (1.0)  (0.02) 112.1 (1.1) (2) 
8-500 108.4 (1.5) (20) 113.4 (1.3) (0.02) 116.1 (1.2) (2) 

10-500 108.2 (2.1) (20) 116.7 (1.6) (0.02) 119.7 (1.8) (2) 
 
Table 2. Experimental results for the normalized average hypervolume for the reference point 
(15000, 15000, ..., 15000). The best result by each scheme is shown for each test problem.   

Problem Similar Parent (SD) (β) Probability (SD) (αu) Distance-Based (SD) (D) 
2-500 107.4 (1.2) (20) 102.8 (1.4) (0.03) 104.7 (1.5) (1) 
4-500 112.9 (4.7) (10) 102.2 (5.1) (0.05) 106.1 (4.9) (3) 
6-500 103.0 (14.9) (5) 107.2 (14.3) (0.10) 109.6 (12.5) (5) 
8-500 99.5 (31.6) (5) 116.1 (21.9) (0.10) 115.7 (24.8) (15) 

10-500 109.9 (50.9) (5) 124.3 (34.1) (0.15) 122.6 (36.6) (15) 

6 Conclusions 

In this paper, we examined the existing two schemes (i.e., the recombination of simi-
lar parents and the exchange of only a small number of genes) for improving the  
performance of EMO algorithm on multi-objective knapsack problems. For further 
discussing their effects, we also implemented a distance-based crossover where the 
distance from an offspring to its closer parent was specified in uniform crossover as a 
user-defined parameter. The performance of NSGA-II with each scheme was eva-
luated using the hypervolume values for two reference points. One is far from and  
the other is close to the Pareto front. For the reference point far from the Pareto  
front, good results were obtained for all test problems with 2-10 objectives when the 
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parent-offspring distance was very small (i.e., their Hamming distance was 1 for the 
2-500 problem and 2 for the other problems). In this case, the diversity of solutions 
was very large. However, the convergence of solutions was severely deteriorated for 
many-objective problems. For the reference point close to the Pareto front, good re-
sults were obtained for many-objective knapsack problems with 8 and 10 objective 
when the parent-offspring distance was about 10-15. 
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