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Abstract. In the context of Noisy Multi-Objective Optimization, deal-
ing with uncertainties requires the decision maker to define some pref-
erences about how to handle them, through some statistics (e.g., mean,
median) to be used to evaluate the qualities of the solutions, and define
the corresponding Pareto set. Approximating these statistics requires
repeated samplings of the population, drastically increasing the overall
computational cost. To tackle this issue, this paper proposes to directly
estimate the probability of each individual to be selected, using some
Hoeffding races to dynamically assign the estimation budget during the
selection step. The proposed racing approach is validated against static
budget approaches with NSGA-II on noisy versions of the ZDT bench-
mark functions.

Keywords: Multi-Objective Evolutionary Optimization, Hoeffding Races,
Uncertaintly Handling, Noisy Multiobjective Optimization.

1 Introduction

Uncertainty handling is an important aspect of optimization since it concerns
most, if not all, real-world applications. Optimizing uncertain objectives aims at
taking into account modeling inaccuracies, measurement errors from sensors, or
prediction errors, that will interfere with the beliefs of a decision maker about
the environment. Therefore, optimization under uncertainty must include some
mechanisms that ensure, one way or another, that the proposed solutions are
effective, according to the user’s point of view w.r.t. optimality. And whereas
several definitions of such effectiveness can occur in the simplest case of a single
objective, the complexity of optimizing multiple uncertain objectives increases
drastically with the number of objectives.

The general framework of this work is that of multi-objective optimization in
uncertain context. The degrees of freedom of the decision maker are the variables
of the optimization problem, defined on the decision space, and observables are
some responses of the system when setting these variables. However, the same set-
ting will result in different responses every time it is used, and the output of the
system thus defines a probability distribution, conditionally dependent on the de-
cision variables. The goal of the optimization process is then to find the values of
the decision variables that will optimize some statistics on this probability distri-
bution. The choice of these statistics depends on the user’s goal and preferences.
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The average or the median are common choices, though probably sometimes only
because of the lack of efficient methods to handle other statistics. For instance,
risk-adverse users will prefer to minimize the consequences of the worst outcomes,
while risk-affine users will maximize their possible “profit” even if it comes at high
risk, optimizing the value at risk for a given risk level.

Except when the type of noise is known –a totally unrealistic hypothesis– a
common way to compute the desired statistics is to sample the fitness of each
individual as many times as necessary to obtain a good estimation thereof, and
the amount of computation per individual is user-defined, uniformly over the
individuals and the generations. In the single-objective framework, an alternative
has been proposed, using the idea of races [6], minimizing the number of re-
evaluations while keeping a high confidence level on the results. But only limited
attempts have been made in the multi-objective framework (see Section 2).

The approach proposed in this paper, Racing Selection Probability (RSP), is
an attempt, in the multi-objective case, to dynamically decrease the number of
sampling of all individuals by applying the principles of Hoeffding races directly
on the estimation of the probability of being selected for an individual, using
bounds on the behavior of that probability to decide as early as possible when
to definitely select or discard an individual, for a given confidence level. Bounds
on any statistics can be used, and straightforwardly embedded in any unmodified
EMOA, thus allowing to handle any preference of the user. Furthermore, any
type of noise can be handled that way.

The paper is organized the following way. Section 2 briefly surveys state-of-
the-art methods for uncertainty handling in Evolutionary Multi-Objective Op-
timization. Section 3 introduces the Hoeffding’s inequality used in RSP. Section
4 presents experimental results on perturbed ZDT test functions (with different
types of noise) where RSP is compared to the two basic noise-handling methods,
the implicit and static averaging. More details and results are available in the
corresponding Technical Report1.

2 Uncertainty Handling in Multi-objective Evolutionary
Optimization

The context of this work is that of Multi-Objective Optimization with Un-
certainty. On the space of decision variables X , several conflicting objectives
f1, . . . , fk are defined (to be minimized, w.l.o.g.), and, as discussed above, the
outcome of any given setting of the decision variables is a probability distri-
bution f over the objective space F ⊂ R

k that depends on the values of the
variables and on some additional unknown external random variable ε, aka noise.
In particular [1], there is no “true” value of the objectives to which some ran-
dom noise is added. Formally [11,12], the Multi-Objective Noisy Optimization
Problem (MNOP) can be written as

min
x∈X

((f |x, ε) = (f1, . . . , fk|x, ε)) (1)

1 http://hal.inria.fr/hal-01002854/en

http://hal.inria.fr/hal-01002854/en
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where f is a random variable taking values in F , and each fi is a real-valued
random variable, a coordinate of f .

Even in the single objective case, the minimization of a random variable does
not make much sense. So the user must complete the problem definition by pro-
viding some preferences through some statistics over that random variable (e.g.,
minimizing the mean, the median, the 5% percentile, the variance with constraint
on the mean, . . . ). The situation is the same in the multi-objective case, except
that there doesn’t exist any total order on the samples of the random variable of
interest. In the deterministic case, Pareto dominance has proved useful, and the
notion of Pareto front is accepted as a way to describe interesting solutions of the
multi-objective problem at hand. In particular, several multi-objective optimiza-
tion algorithms have been proposed, among which Evolutionary Multi-Objective
Algorithms (EMOAs) (see e.g., [13]). And because uncertainty is ubiquitous in
real-world problems, MNOPs have also been well studied, though not always
with such a degree of generality.

2.1 Previous Work

A first approach is to port to multi-objective context the single-objective static
averaging techniques, that re-evaluate every individual N times at each genera-
tion (also called implicit averaging if N = 1).

Several works consider the specific case of additive noise of known type: the
random variable (f |x, ε) is of the form g(x)+ε for some function g(x) and some
partly known noise ε. Depending on the form of ε, approximation of the prob-
abilistic dominance (probability that an individual Pareto-dominates another
one) can sometimes be computed at low computational cost. In [10], the noise is
supposed bounded, and exact calculations are done for uniform noise; In [7], the
noise is assumed Gaussian with known variance (that can be computed off-line
from static samples). This work is extended in [5] to the case of unknown (and
non-uniform) variance. Later, [4] proposed another way to compute the prob-
ability with more general hypotheses, but going back to using a fixed number
of samples (15 in experiments). In any case, it is clear that the hypothesis of a
known type of noise is highly unrealistic in practice.

An approach that is specific to indicator-based algorithms is proposed in [1],
that does not make any hypothesis about the noise and uses the general model
of Equation 1: the indicator ε+ is approximated using averages (over 5 samples),
and is used within the environmental selection. However, the problem being
solved there is the minimization of the expectation of the indicator at hand
(w.r.t. some reference set), that cannot be adapted to the user’s preferences.

Several works propose different approaches to probabilistic dominance for the
general MNOP (equation 1). Pareto Dominance in Uncertain environments(PDU)
[11] uses the convex hull of a fixed number of samples (10 in the paper) to estimate
both the mean and its uncertainty. In [12], PDU evaluates the certainty of the mean
using quartiles on each dimension, and some races are run for each objective, from
[6], with confidence 0.0001 and maximum race length 15. This latter work however
assumes that the noise distribution is symmetrical, and Suzuki and collaborators
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propose anotherParetoDominance operator that does not need that hypothesis [2]
using a CPU-expensive SVM construct over the samples; [8] improves the method
using a non-parametric Mann-Whitney U-test. However, both works use a fixed
number of samples (resp. 30 and 20) to estimate the dominance operator.

In [9], six different resampling approaches are compared. All but one use some
absolute criteria that only depend on some statistics on the previous samples
and the individual at hand to decide on early stop of the resampling procedure
and derive an estimation of the mean of the sample with known confidence. That
mean is then used as the fitness in a standard EMOA. The last procedure (termed
OCBA) is the closest to RSP proposed here, in that it makes the minimal global
sampling allocation to estimate the confidence in a partition of the population
into a non-dominated and a dominated sets. However, the calculation of the
confidence assumes Gaussian noise on all objectives.

2.2 Discussion, and Rationale for RSP

Our goal is to design, within a given EMOA, an approach that will limit the
number of resampling while preserving some confidence on the resulting Pareto-
based selection, for a wide range of statistics describing the user’s preferences,
and without any requirement on the type of noise. Most of the works listed
above, however, use a fixed user-define resampling budget (except [9] and [12]).
Furthermore, either they derive estimations of the mean of a sample with some
confidence interval – and this does not allow to derive confidence bounds on
the comparison between those means (except in specific cases, e.g. Gaussian
distributions); or they do derive probabilistic Pareto dominance, with known
confidence, but omit the second component of Pareto-based selection, the diver-
sity preserving mechanism (the case of indicator estimation [1] is different, but
strictly limited to indicator-based EMOAs).

The idea of RSP borrows from [6], like [12] cited above, is using Hoeffding
races2 to decrease the number of resampling while nevertheless guaranteeing
some level of confidence on the statistic at hand. But contrary to the works above
(including [12]), Racing Selection Probability, as its name claims, will perform the
race on the probability of an individual to be selected by the selection mechanism
of the chosen EMOA.

3 Racing Selection Probability

Let us assume some selectionprocedure in an existingMOEA (e.g., non-dominated
sorting + crowding distance for NSGA-II [3]) that aims at selecting μ individuals
out of a population of size λ. The basic idea of RSP, inspired by [6], is to estimate,
for any individual i, with as few samples of fitnesses as possible thanks to Hoeffding
bounds, the probability pseli that i will be selected.

2 [6] also advocates Bernstein races when the range of values is not know – which is
not the case here. Hence Bernstein races will not be mentioned here.
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Hoeffding’s inequality states that, for any random variable X with range width
R, and for any confidence level 1− δ, the absolute difference between the expec-
tation and the empirical mean computed using t samples is upper-bounded by
R
√
log(2/δ)/2t.

Every time all λ individuals are resampled, the standard selection procedure
of the EMOA at hand is applied to the current sample, determining the selected
μ ones. This results in a new sample for probabilities pseli . For any δ, lower and
upper values for all pseli can be computed at confidence level 1 − δ, thanks to
Hoeffding’s bound applied to pseli . Any individual i whose lower bound for pseli is
larger than the upper bound of at least λ−μ other pselk is definitely selected and
leaves the race. Symmetrically, any individual i whose upper bound for pseli is
smaller than the lower bound of at least μ other pselk is definitely discarded and
leaves the race. Remain in the race the uncertain individuals, and only those are
resampled again at next iteration. The race ends when either μ individuals are
definitely selected, or λ−μ individuals are definitely discarded, or some maximum
number of resampling TMax have been done. In the latter case, selection is made
without Hoeffding guarantee. Nevertheless, the proposed procedure allows to
quickly select the most promising individuals with given confidence. Note that
each selection step can also be done on some statistic for each individual given
the past t samples. This will be illustrated in Section 4 where variants using the
average or the median will be used, instead of the most recent sample. These
variants will be termed RSPAVG and RSPMED respectively, the variant that
does not use any statistic being denoted by RSPI .

There are however some specificities to the multi-objective context. First, the
selection step usually involves the whole population, be it indicator based, or
using some diversity secondary criterion. Hence the individuals that have left
the race should nevertheless be taken into account for the next selection steps
- but without being themselves re-evaluated, of course. A bootstrap procedure
is used here, to mimic an ever growing sample without any resampling. Note
that bootstrap is also used to avoid resampling individuals that have not been
modified by the variation operators from one generation to the next.

Finally, it might be beneficial to detect early that some race will not end before
the maximum number of samples because of actual ties between individuals that
remain in the uncertain set. Here, when the sum of absolute pairwise differences
of the empirical mean of the pseli becomes lower than a given threshold called
Proximity Threshold, the race stops and the μ best individuals according to the
current selection policy are returned.

4 Experimental Results

4.1 Experimental Conditions

Five methods have been experimentally compared: the implicit averaging, and
two variants of the static sampling, whether the average or the median of the
samples is used for the selection (see Section 2.1); and 3 variants of RSP, whether
the last sample, the average or the median of the previous samples are used in the
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Table 1. Parameters for (top to bottom) benchmarks and noise; static sampling; RSP

ZDT Functions: {1,2,3,4,6} Number of runs: 25
Deterministic(DE): Dirac Delta Function Gaussian noise(GA): 0.25 ∗ N (0, I)
Cauchy Noise(CA): (0, 0.25) Gumbel noise(GU): (2, 2 ln(ln(2))

Population Size: 100 Nb Eval.: {100k,500k}
SBX Crossover: pc = 1.0, η = 20 Polynomial Mut.: pm = 1/|X |, η = 20

Confidence Level: {0.25, 0.95} Proximity Thres.: 0.5
Sampling Budget: {5, 10, 15, 20, 30, 50} Estimators: {None, AVeraGe, MEDian}

selection (see Section 3). All RSP variants have been implemented within NSGA-
II with standard SBX crossover and polynomial mutation. A common parameter
of static sampling and RSP is the Sampling Budget, that will denote the fixed
number of samples for each individual in the static case, and the maximum length
of the races in RSP. RSP also requires a Confidence Level and the Proximity
Threshold (see previous Section 3).

The testbench is based on the classical ZDT suite, used either as is (determin-
istic setting), or with known additional noise: Gaussian noise, that should favor
the average estimator compared to the median estimator, the empirical average
being the minimum-variance unbiased estimator of the expectation of a normal
distribution with unknown mean and variance; Cauchy noise, that has an infinite
mean, hence the mean estimator should be perturbed because of the outliers;
and Gumbel noise, an asymmetrical distribution with finite moments that is
used in extreme value theory to simulate rare events (its location parameter is
chosen in order to center the median).

The goal of the experiments is to study the impact of the two parameters
Sampling Budget and Confidence Level, and possibly their interaction, e.g., if the
required confidence level is too high, all races will reach the maximum budget,
and RSP amounts to static sampling. All parameter values (for the algorithms
and the noise models) that have been used for these experiments are listed in
Table 1). All runs were limited to 100k evaluations, except ZDT6 (500k), and 25
independent runs were run for each parameter setting. Due to space limitation,
results on ZDT2 are not shown, but are quite similar to those of ZDT4.

4.2 Results

The performances are compared using the difference hypervolume indicator w.r.t.
the real Pareto front, on the normalized objective space. The normalization is
done with respect to the Nadir point, computed from the union of the exact
Pareto front and every point generated by each algorithm for a given func-
tion and a given noise. Statistical significance is attested by p-values of the
Wilcoxon signed-rank test. Pisa performance assessment tools (http://www.
tik.ee.ethz.ch/sop/pisa) was used to compute the hypervolumes.

Each plot of the following figures summarizes the results obtained by all algo-
rithms on one function with one type of noise (or no noise at all): each plot dis-
plays several boxplots, each boxplot represents the statistics of the 25 hypervolume

http://www.tik.ee.ethz.ch/sop/pisa
http://www.tik.ee.ethz.ch/sop/pisa
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Fig. 1. Results for ZDT1 (4 top plots) and ZDT3 (4 bottom plots). See Section 4.2.

values at the end of each of the 25 runs for the corresponding setting. Each plot
is divided into six regions. First boxplot is that of the implicit averaging I. Next 2
regions give the results of the static sampling (resp.AV G andMED), and display
6 boxplots each, corresponding to the 6 Sampling Budget values of Table 1. Next 3
regions give the results for RSPI , RSPAVG and RSPMED resp. For each region,
there are 6 subregions (the 6 values of Sampling Budget) with two boxplots each,
one for each confidence level (25%, 95%).

4.3 Discussion

First of all, in the deterministic case, the results of implicit averaging assesses
that the total budget of 100k samples is sufficient for NSGA-II to find a good
approximation of the Pareto front. Furthermore, as expected, the performance
of static resampling using an estimator degrades with the Sampling Budget, as
more and more samples are wasted on the (sometimes useless) estimation of the
statistic. In the same situation, RSP is able to detect the low (!) uncertainty
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Fig. 2. Results for ZDT4 (4 top plots) and ZDT6 (4 bottom plots). See Section 4.2.

and to stop the race early, at least when using a Confidence Level of 25%. A
Confidence Level of 95% can sometimes, on the other hand, lead to a similar
degradation than in the static setting. The anomalies in that respect for RSP
on ZDT3 (discontinuous front) for small Sampling Budget (5 and 10) might
come from races that stop too early with all selected individuals in the same
component of the front.

On the noisy instances, implicit averaging does not perform very well com-
pared to the other uncertainty handling approaches. Surprisingly, even if the
medians are higher, the spread of the performances is not greater than the other
approaches, excepted for ZDT4-CA. It can be due to the fact that without any
uncertainty handling approach, the probability that every individual of the pop-
ulation is good or bad is small and so, at the population level, the performance
does not vary so much from one run to another.

Beside, implicit averaging is comparable to AVG in case of Cauchy noise, for
all functions but ZDT4: choosing by default the mean (a common choice) can



Racing Multi-objective Selection Probabilities 639

lead to poor results when the distribution of the noise is unknown. Using RSP
seems to mitigate this effect, probably because it uses the probability of survival
instead of the estimator of the mean.

Comparing, for each noisy function, the best configurations of RSP and static
sampling leads to the following considerations: the results are statistically equiv-
alent for all cases of noisy ZDT2 and ZDT4; RSP is significantly better (p-value
< 10−5) than static sampling in 5 cases (the 3 noisy ZDT6, and ZDT1 and 3 with
Cauchy noise), is slightly worse (p-value in [0.01, 0.1]) in 2 cases (both ZDT1 and
3 with Gaussian noise), and both approaches are equivalent (p-value > 0.1) on the
remaining 2 cases (both ZDT1 and 3 with Gumbel noise). On ZDT1 and 3 with
Gaussian noise, static sampling with averaging performs best: this is most proba-
bly related to the fact that AVG is based on the minimum-variance unbiased esti-
mator, while RSPAV G uses it indirectly to estimate the probability of survival.

Regarding the choice of estimator, racing seems to decrease the impact of the
average vs median issue. Indeed, when using static sampling, average performs
slightly better than median for Gaussian and Gumbel noises, whereas median is
consistently and significantly better when facing Cauchy noise. On the opposite,
all 3 variants of RSP perform in general similarly over all problems. In particular,
the no-estimator, RSPI , performs as good as both others on most problems. This
is good news, as it gives hope that the proposed racing approach might perform
well with a lot of estimators, allowing the user to actually choose his favorite
without having to care about the optimization algorithm in that respect.

5 Conclusion and Perspective

RSP is a general approach to uncertainty handling in existing EMOAs. It uses a
(μ, λ) Hoeffding race at a given confidence level, inspired by [6], though applied
directly on the selection probabilities of the individuals in the population. It
is agnostic w.r.t. the selection method, and hence can accomodate any user
preference that could be carried by the algorithm selection.

First experimental results within NSGA-II on noisy versions of ZDT bench-
marks, indicate that this path is worth following for future research: RSP per-
forms significantly better than implicit averaging or static sampling in many
situations, and never performs significantly worse. It is less sensitive to the Sam-
pling Budget parameter, especially for small (on zero) levels of noise, and sur-
prisingly almost insensitive to the choice of the estimator. On the other hand,
it is very sensitive to the Confidence Level of the races. However, these partial
conclusions should be sustained by deeper analyses and validated by more exper-
iments, with different levels of non-homogeneous noise, and other test functions
from real-world problems.

The main perspectives for further work are to couple RSP with other EMOAs
such as SPEA-2, IBEA and HYPE, in order to study the interaction between
racing and the indicator function. Also, RSP should also be compared to more
sophisticated uncertainty handling methods (see Section 2). It is also manda-
tory to test other estimators within RSP, as well as different noise models and
different noise intensities. On the more fundamental side, it should be possible
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to better understand the intricate relationship between estimating the selection
probability and directly estimating the objective values.

A longer term research track is to come up with some adaptive procedure
to dynamically tune the Sampling Budget and, maybe more importantly, the
Confidence Level. Indeed, it is clear from the present results that this latter
parameter has a strong effect on the performance of the algorithm and should
be fixed carefully. In the case where its optimal value varies over the decision
space, only adaptive tuning can perform well on most functions. To conclude, we
feel that the use of RSP in EMOA is a promising avenue for taking into account
the decision maker’s preferences and increasing the reliability and robustness of
the solutions in many real-world applications.
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