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Abstract. In this paper, we build upon the previous efforts to enhance
the search ability of MOEA/D (a multi-objective decomposition-based
algorithm), by investigating the idea of evolving the whole population
simultaneously. We thereby propose new alternative selection and re-
placement strategies that can be combined in different ways within a
generic and problem-independent framework. To assess the performance
of our strategies, we conduct a comprehensive experimental study on
bi-objective combinatorial optimization problems. More precisely, we
consider pMNK-landscapes and knapsack problems as a benchmark, and
experiment a wide range of parameter configurations for MOEA/D and
its variants. Our analysis reveals the effectiveness of our strategies and
their robustness to parameter settings. In particular, substantial im-
provements are obtained compared to the conventional MOEA /D.

1 Introduction

Evolutionary multi-objective optimization (EMO) algorithms [1, 2] have been
proved extremely effective in computing a high-quality approximation of the
Pareto set, i.e., the set of solutions providing the best compromises between the
multiple objectives of an optimization problem. In particular, decomposition-
based (or aggregation-based) algorithms are gaining in popularity as an increas-
ing number of studies is being devoted to their development [3-7]. Recently,
MOoEA/D [4] (Multi-Objective Evolutionary Algorithm based on Decomposition)
has attracted a lot of interest; which is due to its simplicity, approximation qual-
ity, and computational efficiency. In this paper, we seek for new alternative se-
lection mechanisms for MOEA /D at the aim of enhancing its search quality; and
we focus on bi-objective combinatorial problems as a case study.

Generally speaking, MOEA /D builds upon the idea of decomposing the initial
multi-objective optimization problem into several single-objective sub-problems
by means of scalarizing functions [8] configured with different weight vectors. The
most original part of MOEA/D is to define, for each sub-problem, a neighborhood
structure containing the set of the closest sub-problems. Then, MOEA /D iterates
over sub-problems and performs the three following basic steps: (i) select par-
ents among the neighbors of the current sub-problem, (ii) generate an offspring
by applying problem-specific operators, and (iii) replace neighbors’ solutions if
the generated offspring is better. We remark that mating selection (Step (i))
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is performed exclusively among neighbors. Assuming that nearby sub-problems
have similar solutions, the neighborhood size is critical for an accurate explo-
ration/exploitation balance. Moreover, the replacement mechanism (Step (iii))
can lead to a situation where several neighbors are replaced by the same off-
spring. This can imply a loss of diversity, and likely a loss in performance. These
issues have actually been addressed in [9], where two extra modifications have
been introduced when dealing with complicated continuous Pareto sets. The first
modification uses an extra probability parameter allowing parents to be selected
from the whole population. The second one uses an extra parameter to bound
the number of neighbors that can be replaced by a newly generated offspring.

In this paper, we propose new selection strategies to enhance the search ability
of MOEA/D for combinatorial problems. The idea behind our strategies stems
from the observation that if an offspring is allowed to replace a neighboring solu-
tion in MOEA /D, this solution is then ‘lost’ and it has no chance to get selected
for reproduction in subsequent iterations. To overcome this shortcoming, we in-
vestigate an alternative perspective in MOEA /D by optimizing all sub-problems
at once. Intuitively, every solution from the population has a more fair chance to
participate in the evolution process. This allows us to propose different strategies
that can be plugged in the basic version of MOEA /D. Our newly proposed strate-
gies do not distort the basic framework of MOEA/D, neither do they induce a
loss in generality nor do they introduce new extra parameters; while being fully
compatible with the previous modifications introduced so far. Moreover, they
are proven to exhibit substantial improvements in approximation quality when
compared with basic MOEA/D and its modifications. Our performance assess-
ment is in fact obtained as the byproduct of a thorough experimental analysis
on two bi-objective combinatorial optimization problems, namely, knapsack and
pMNK-landscapes, and by considering a broad range of configurations. In the
remainder, we first recall in Sec. 2 some basic definitions as well as a brief de-
scription of MOEA/D. In Sec. 3, we describe our algorithmic contribution in
designing new selection and replacement strategies for MOEA/D. In Sec. 4, we
present the settings of our experimental study. In Sec. 5, we state our main
experimental findings. Finally, we conclude the paper in Sec. 6.

2 Background

Definitions. A multi-objective optimization problem can be defined by an ob-
jective function vector f = (f1,..., fm) with m > 2, and a set X of feasible
solutions in the solution space. In the combinatorial case, X is a discrete set. Let
Z = f(X) C IR™ be the set of feasible outcome vectors in the objective space.
To each solution x € X is assigned an objective vector z € Z, on the basis of the
function vector f : X — Z with z = f(z). In a maximization context, a solution
z € X is dominated by a solution ' € X iff Vi € {1,...,m}, fi(x) < fi(z) and
Ji € {1,...,m} such that f;(z) < fi(z'). A solution z* € X is said to be Pareto
optimal (or non-dominated), if there does not exist any other solution z € X
such that x* is dominated by x. The set of all Pareto optimal solutions is the
Pareto set. Its mapping in the objective space is the Pareto front.
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Decomposition-Based EMO. Contrary to existing Pareto-based EMO algo-
rithms, like NSGA-11 or SPEA2, which explicitly use the Pareto dominance relation
in their selection mechanism, decomposition-based EMO algorithms [10] rather
seek a good-performing solution in multiple regions of the Pareto front by decom-
posing the original multi-objective problem into a number of scalarized single-
objective sub-problems, which can be solved independently as in Msops [7], or
in a dependent way as in MOEA/D [4]. Many different scalarizing functions have
been proposed in the literature [8]. Popular examples are the weighted sum (g**)
and the weighted Tchebycheff (g*¢) functions defined below:

m
ws _ L f. te — R PV O )
gV (z,\) = ;/\ filw g = max X |2; — fi(@)]|
where x belongs to the solution space, A = (A1, ..., Ay ) is a weighting coefficient
vector such that A; > 0 for all i, and 2* = (z7,...,2},) is a utopian point, i.e.,

Vi, Va, zf > fi(z). g (resp. g**) is to be minimized (resp. maximized).

MOEA/D in a Nutshell. Let g be a scalarizing function and let (A}, ..., \¥)
be a set of p uniformly distributed weighting coefficient vectors, corresponding
to p sub-problems to be optimized. For each sub-problem i € {1,..., u}, the goal
is to approximate the solution = with the best scalarizing function value g(z, \?).
For that purpose, MOEA /D maintains a population P = (p!,...,p"), each indi-
vidual corresponding to a good-quality solution for one sub-problem. For each
sub-problem i € {1,...,u}, a set of neighbors B(7) is defined with the T closest
weighting coefficient vectors. To evolve the population, subproblems are opti-
mized iteratively. At a given iteration corresponding to one sub-problem i, two
solutions are selected at random from B(7), and an offspring solution z is created
by means of variation operators (mutation and crossover). A problem-specific re-
pair or improvement heuristic is potentially applied on solution x to produce z’.
Then, for every sub-problem j € B(i), if 2’ improves over j’s current solution
p/ then 2’ replaces it. The algorithm continues looping over sub-problems, op-
timizing them one after the other, until a stopping condition is satisfied. We
shall also consider the two modifications introduced in [9] to enhance MOEA /D
in the context of continuous complicated Pareto sets. The first one allows to
select a parent from the whole population with a small probability parameter
(1 = §). More precisely, when dealing with a sub-problem i, its neighborhood is
set to B(i) with probability d, and to the whole population P with probability
(1 —¢). The second one limits by a parameter nr the number of times that an
offspring 7/, created when dealing with a sub-problem 4, can replace solutions in
the neighborhood of i.

3 Rethinking Selection and Replacement in MOEA /D

As mentioned in the introduction, MOEA /D could suffer from a lack of diversity
due to the locality of its selection and replacement mechanism. We argue that this
can also be caused by the fact that in MOEA /D (and its modified variants), sub-
problems are optimized iteratively. In fact, since parents are selected randomly
from the neighborhood of the sub-problem being processed, it might happen that
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a solution with the potential of producing a good offspring, gets never selected
for reproduction. Additionally, because a neighbor’s solution might be replaced
as soon as a better offspring is found, this solution gets actually no chance to
survive in the population. To increase the chance for a solution to survive in the
population, we investigate the idea of evolving the whole population simultane-
ously by optimizing all subproblems in one shot and not iteratively. This idea is
depicted in Algorithm 1 and discussed more thoroughly in the following.

Algorithm 1. Our proposed framework MOEAD-xy (x,y € {s,c})

Input: {\',..., A\*}: weight vectors w.r.t sub-problems; g: a scalarizing function; B(4): the
neighbors of sub-problem i € {1,...,u}; P={p',...,p"}: the initial population.

1 while StopPING CONDITION do
2 for i € {1,...,u} do
3 if rand(0,1) < 6 then B; + B(i) ; /* Neighborhood Setting */
4 else B; < P if x = s then /* Selfish mating selection */
5 k <+ i
6 else if x = c then /* Collective mating selection */
7 k < rand(B;);

{ < rand(B;); while £ = k do £ + rand(B;)

9 if rand(0,1) < cr then /* Variation operators */
10 o «— crossove'r(pk,pe); o' + mutation(oi’);

11 else o' «+ mutation(p®) if o’ is infeasible then repair(o®)

12 forie {1,...,u} doc; <0

13 for i € {1,...,u} do /* Environmental replacement */
14 if y = s then /* Selfish replacement */
15 p' «— ot

16 if g(p’, \") better than g(pi’,)\i) then p' « p’

17 else if y = c then /* Collective replacement */
18 shuffle(B;);

19 for j € B; do

20 p' — o’

21 if ¢c; < mr then

22 if g(p’, \") better than g(pi’,)\i) then p' « p'; cjcj+1

Algorithm 1 is mainly divided in two stages (lines 2 to 11 and lines 12 to 22).
Contrary to MOEA /D where a single offspring is generated at each iteration, our
framework is basically a (u + p)-EA where the first stage consists in generat-
ing p offsprings and the second stage consists in updating the whole population
for the next round. The first stage corresponds to mating selection where one
new offspring is created for every subproblem. Specifically, we consider two al-
ternatives: (i) either the solution of the current subproblem is always selected
to be a parent and hence included for variation (x = s), or (ii) parents are
picked randomly from neighbors in the usual way MOEA/D proceeds (x = c).
Moreover, every offspring is tagged with the identifier of the subproblem where
it has been created. Thus, we can identify the subproblem that originated the
creation of a given offspring. Only when all subproblems are treated and all p
new offspring solutions are created, the second stage of replacement occurs. In
this stage, the subproblems are processed iteratively and we again consider two
alternatives: (i) either the solution of a subproblem is compared to the offspring
created at this subproblem (y = s), or (ii) the solution of the current subprob-
lem is compared to the offsprings created in neighboring subproblems (y = c).
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In both cases, the solution of the current subproblem gets replaced if the con-
sidered offspring shows an improvement.

Algorithm 1 is fully compatible with the baseline ideas of MOEA/D; in par-
ticular, with the variants in [9], i.e., parameters § and nr. Due to lack of space,
we omit describing all the standard aspects that are shared with MOEA/D, e.g.,
weights initialization, neighborhoods, update of the reference point, archiving.

To summarize, Algorithm 1 differs from MOEA/D by essentially the fact that
w offsprings for all subproblems are created at each iteration. Moreover, since
two alternatives are designed for mating selection and replacement, four different
variants are possible: MOEAD-xy with x,y € {s,c} —s (resp. c) refers to a Selfish
(resp. Collective) strategy where a subproblem privileges its own solution (resp.
its neighbors’ solutions). It is worth to notice that some parameter combinations
may not have any impact on some algorithm variants, e.g., nr does not have an
impact on MOEAD-ss and MOEAD-cs, neither § on MOEAD-ss when c¢r = 0.

4 Experimental Setup

We analyze our approach on bi-objective pMNK-landscapes and knapsack prob-
lems, with a broad range of instances with different structures and sizes.

pMNK-Landscapes. The family of pMNK-landscapes constitutes a problem-
independent model used for constructing multi-objective multi-modal landscapes
with objective correlation [11]. A bi-objective pMNK-landscape aims at maxi-
mizing an objective function vector f : {0,1}" — [0,1]?. Solutions are binary
strings of size n. The parameter k defines the number of variables that influence
a particular position from the bit-string (the epistatic interactions). By increas-
ing the number of variable interactions k from 0 to (n — 1), landscapes can be
gradually tuned from smooth to rugged. The objective correlation parameter p
defines the degree of conflict between the objectives. The positive (resp. nega-
tive) data correlation allows to decrease (resp. increases) the degree of conflict
between the objective function values. This has an impact on the cardinality
of the Pareto front [11]. We investigate six random pMNK-landscapes for each
parameter combination given in Table 1.

Knapsack. The knapsack problem is one of the most studied NP-hard problem.
Given a collection of n items and a set of 2 knapsacks, the 0 — 1 bi-objective
bi-dimensional knapsack problem seeks a subset of items subject to capacity
constraint based on a weight function vector w : {0,1}" — N?, while maximizing
a profit function vector p : {0,1}" — N2. More formally, it can be stated as:
max Y0 picay ;o st Y5 wigexy <c i€ {1,2}
z; €{0,1} je{l,...,n}

where p;; € N is the profit of item j on knapsack 7, w;; € N is the weight of item j
on knapsack 7, and ¢; € N is the capacity of knapsack i. We consider the standard
instances proposed in [12], with random uncorrelated profit and weight integer
values from [10,100], and where capacity is set to half of the total weight of a
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Table 1. Parameter setting

pMNK-landscapes Knapsack
m =2, n=128 m =2
p € {-0.7,0.0,0.7}, K € {4,8} n = 250 n = 500 n = 750
pop size “w 64, 128, 256 150 200 250
neighborhood size T 4, 8, 16, 32 10, 20, 30
max. number of replacements nr 1, 2, 3, 4, oo 2,4, 8, 10, co
neighborhood probability 5 0.9, 1.0
crossover rate cr 0.0, 0.9, 1.0
scalarizing function g weighted sum (g**), weighted Tchebycheff (g*¢)
stopping condition 10% evaluation function calls 10% repair procedure calls

knapsack. Thirty different random problem instances are investigated for each
parameter combination given in Table 1. Moreover, we use the same advanced
weighted repairing procedure to handle constraints as in MOEA /D [4].

Parameter Setting. Table 1 shows the parameter settings investigated in
our study. We consider the effect of the population size (i), the neighborhood
size (T'), the maximum number of neighboring solutions replaced (nr), the prob-
ability to select a parent outside of a neighborhood (1 — 4), the scalarizing func-
tion (g), and the crossover probability (cr). The stopping condition is set to 10°
evaluation (resp. repair) calls for pMNK-landscapes (resp. knapsack). Standard
MOEA/D [4, 9] is considered, together with our four variants. We use a bit-flip
mutation (where each bit is independently flipped with a rate 1/n) and one-point
crossover. The crossover probability parameter (cr) allows us to appreciate the
impact of the variation operator, from a pure randomized local search algorithm
(cr = 0.0) to a conventional genetic algorithm (¢r = 1.0). The initial population
is generated randomly. An unbounded archive of all non-dominated solutions is
maintained with all the approaches. All algorithms have been executed under
comparable conditions and share the same base components. Overall, we tested
15918 different configurations, each one executed 30 times. Due to space limita-
tions, we only highlight a subset of settings allowing us to state our findings.

5 Experimental Analysis

Algorithm Comparison. We follow the performance assessment protocol pro-
posed by [13] using the hypervolume difference and multiplicative epsilon indica-
tors [14]. The hypervolume difference indicator (Ij;) gives the difference between
the portion of the objective space that is dominated by the Pareto set approxima-
tion and some reference set. The reference point is set to the worst value obtained
over all approximations, and the reference set is the best-found approximation
over all tested configurations. The epsilon indicator (IX) gives the minimum
multiplicative factor by which the approximation found by an algorithm has to
be translated in the objective space to weakly dominate the reference set.

Due to space limitations, we shall not focus on eliciting the best configu-
rations; but give an overview of the differences between algorithms and their
robustness to parameters. A non-exhaustive set of results is shown in Tables 2
and 3. First, notice the strong impact of the scalarizing function (¢** or g*¢) on
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performance and its dependency on the considered problem. Overall, MOEAD-sc
and MOEAD-cc are highly competitive and exhibit the most appealing behaviors.
For knapsack, these two variants perform similarly to MOEA/D. This can be ex-
plained by the relative strength of the repair function, and also by the shape of
the Pareto front for knapsack problems, which is relatively easy to approximate.
For pMNK-landscapes with different structures, substantial improvements are
reported, independently of the parameter setting. Actually, MOEAD-ss is also
found to be competitive, but only when the crossover is activated. This is be-
cause MOEAD-ss degenerates to a multiple independent search in this case; and
thus it is more likely trapped into independent local optima. At the opposite,
MOEAD-sc and MOEAD-cc are able to adequately use information from neigh-
bors, even when only a mutation operator is considered.

The previous discussion is in general valid when conducting an “anytime”
analysis as is illustrated in Fig. 1 rendering the convergence of competing algo-
rithms. We see that all algorithms are able to make improvements, with MOEAD-
sc and MOEAD-cc being consistently better than MOEA /D. These results confirm
that shaking many solutions at once can serve the approximation quality till the
early stages of the search process. We also remark that MOEAD-sc and MOEAD-
cc are more systematically improving upon MOEAD-ss for test instances having
conflicting objectives; whereas MOEAD-ss is able to outperform its competitors
as the objective correlation gets higher. Notice in fact that our strategies induce
different intensification/diversification trade-offs both at the local level of every
single-objective scalarized subproblem; but also at a more global level when con-
sidering the whole approximation set. When a selfish (resp. collective) mating
selection is considered, the probability that a solution in the population gets
selected for reproduction is 1 (resp. 1 — (1 — 1/T)T). Roughly speaking, this
means that all our strategies imply diversified offsprings since no solution in the
current population gets replaced before exploring its potential. At the replace-
ment stage, if a collective strategy is adopted, then the single-objective search
at every subproblem is intensified since the probability that a locally improving
solution can be found is higher. But this might increase the number of copies
in the current approximation set. When a selfish replacement is considered, it is
more likely that the number of copies is minimized; but at the price of delaying
the advance of the population towards the front. For correlated objectives, and
since the front is not too large, it is sufficient that only few solutions are able
to approach the front in order to get good overall performance. Thus, a selfish
replacement can be accurate. This is not the case for anti-correlated objectives
where both the local improvements at every subproblem and the global spread
of solutions is crucial. This explains the relative performance of our strategies
depending on the characteristic of the tackled problem.

Impact of Parameters. From Tables 2 and 3, we can already extract some
interesting observations on the impact of parameters, e.g., notice the differences
between ¢ and g*¢. Further observations from our data are sketched in Fig. 2,
where only MOEA /D, MOEAD-sc and MOEAD-cc are highlighted. First (Fig. 2
left), we confirm the positive impact of small values of parameter nr [9] on
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Table 2. Representative subset of configurations w.r.t Ij; and IX and pMNK-
landscapes (1 = 128, T = 8, § = 1.0) at termination. For each row, the numbers
indicates how many algorithms (over the other 15 configurations given in columns)
outperforms the configuration under consideration with a statistical confidence level of
0.05 (the lower, the better).

g g
Q /Q ,Q /a ,o Q /Q ,Q /a ,o
< 9 9 < 9 <
*\0@?\ *\0@? \Qg *\0@? \Qg *\0@?\ *\0@? \Qg *\0@? \Qg
~ ~ < ~ < ~ ~ < ~ <

nr oo 2 - oo 2 — o 2 oo 2 — oo 2 — oo 2

cr p K Iy
0.7 4 2 2 8 0 o 5 0 0 4 5 0 6 2 7 5 6
0.7 8 3 1 7 0 o 6 1 0 11 7 6 9 6 9 9 8
004 2 1 0 0 o 2 0O 0 2 o0 0 0 o 0 0 2
008 6 0 0 0o 1 6 o o 8 7 3 8 9 12 6 0
0.7 4 14 10 0 2 2 2 2 1 1 2 0 2 2 2 2 1
078 2 2 0 2 1 2 2 2 2 1 0 5 2 1 2 1

1.0 x
0.7 4 8 8 1 0 o 1 0 0 0 5 0 5 0 8 2 3
078 5 5 0 0 o 5 5 0 7 6 0 9 5 7 7 5
00 4 2 1 0 0 o 1 0O 0 0 O 1 1 1 1 o 1
008 4 0 0 0o 1 3 0O 0 9 9 6 9 9 10 77
07 4 15 4 0 2 2 2 2 0 2 2 0 2 2 2 3 0
078 1 1 0 2 0 1 1 2 2 1 1 6 2 1 4 2

-
0.7 4 0 4 5 0 O 4 0 0 6 5 13 5 5 12 6 6
0.7 8 1 1 15 1 0 6 0O 0 9 6 6 6 6 10 6 8
004 3 O 5 0 0 0 0O 0 3 0O 11 0 o0 0 0 o
008 0 O 5 0 O 4 0O 0 6 8 6 8 5 6 6 5
074 9 1 9 1 0 1 1 0 3 1 2 0 o 0 0 o
078 0 1 0 4 0 1 11 2 1 0 1 1 1 4 4

0.0 Ix
0.7 4 6 8 10 11 1 1 1 6 2 0 4 5 10 2 4
0.7 8 3 5 5 11 5 1 1 8 5 0 7 5 10 5 9
004 3 1 13 0 0 1 o o 1 1 1 0 o 1 1 1
008 0 O 8 0 o 0 0O 0o 8 8 6 8 8 8 8 8
074 6 O 4 0 o 1 0O 0 3 2 3 0 o 0 0 o
078 0 1 0 3 0 1 0O 0 2 o0 0 2 2 0 10 6

Table 3. Relative performance of a representative subset of configurations for knap-
sack (T' =20, § = 0.9). Metrics similar to those in Table 2 are reported.

g g
Q & s £ Q Q’é') Qf’o 5 > 5 s
\Qg\ *\O&Q \QQ)TQ \QQ)TQ \QQ)TQ *\0@?\ \Qg *\0@? *\0@? *\0@?
< ~ < < < ~ < ~ ~ ~
nr oo 2 — co 2 - co 2 oo 2 — oo 2 — oo 2
cr N Iy
250 8 8 7 8 8 8 8 8 0O o 0 0 0 0 0 0
500 8 8 8 8 8 13 8 8 0O o 0 0 0 0 0 0
750 8 8 8 8 8 14 8 8 0O o 0 0 0 0 0 0
0.9 X
250 0 O 0 0 0 4 0 0 0O o 0 0 0 0 0 0
500 8 8 7 7 7 11 7 7 0 5 0 0 4 1 4 5
750 4 3 6 4 3 7 3 2 5 0 0 5 7 7 0 8
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Fig.1. Convergence plots w.r.t. hypervolume difference and pMNK-landscapes.
Columns are respectively for p € {—0.7,0.0,0.7}. Rows are respectively for K € {4, 8}.
Results are for p =128, T =8, § = 1.0, cr = 1.0, nr = 0 and g¢*°.
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Fig. 2. Impact of parameters. The two subfigures in the left (resp. middle, right) show
the impact of nr (resp. T, u combined with §) as shown in the vertical axis for every
algorithm. The boxplots are w.r.t. the indicator depicted at the horizontal axis. Results
are for a pMNK-landscape with p = —0.7 and K = 4. Whenever not explicit: p = 128,
T =8, cr=1.0,6=1.0, nr=2and g*.

the performance of MOEA/D for combinatorial problems. However, it was not
always clear what is the best value to choose independently of the other pa-
rameters, e.g., the recommended value of 2 is in fact accurate, but not always
optimal. Also, the impact of parameter nr on our strategies is rather mitigated.
Although we found that it could often bring improvements, the impact was not
pronounced compared to the case of MOEA/D. For neighborhood size T' (Fig. 2
middle), we found that, contrary to knapsack, small values of T are interestingly
more accurate for pMNK-landscapes. We attribute this to the influence of the
crossover operator which, combined with the repair mechanism, does enable to
find high-quality solutions for knapsack. However, for pMNK-landscapes, it is
more likely that the crossover diversifies the search too much when considering
parents in a relatively large neighborhood. Finally (Fig. 2 right), parameter ¢
used for neighborhood selection is confirmed to have a positive impact on the
performance. However, we find that another parameter has even more effect;
namely the population size p and especially for anti-correlated instances. We
attribute this to the fact that, when the Pareto front gets larger, it is beneficial
to increase the population size in order to distribute the population efficiently.
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Fig. 3. Solution diversity. The y-axis gives the number of different solutions in the
population (in log-scale). Results are for a pMNK-landscape with p € {—0.7,0.0,0.7}
and K =8 (u=128, T =8, cr =10, § = 1.0, nr = 2 and ¢*°).

Diversity Issues. We conclude our analysis by illustrating in Fig. 3 the size of
the Pareto set approximation extracted at different iterations from the popula-
tion (without the archive) for MOEA /D and MOEAD-sc. In fact, we were able to
observe that our strategy tends to maintain more spread solutions and to dis-
tribute them efficiently over the weight vectors, independently of the population
size . We argue that this is a key feature of why our variants are able to exhibit
better performance over MOEA /D. Of course, this is not the only ingredient for
optimal anytime performance; but it contributes much in finding a high-quality
approximation, especially for conflicting objectives.

6 Conclusions and Perspectives

We introduced a framework incorporating four strategies to deal with selection
and replacement in MOEA/D. Our experimental results show that substantial
improvements can be obtained. Moreover, our study opens new possibilities for
improving the design of decomposition-based algorithms in several perspectives.
Firstly, one can wonder whether more general (1 + A)-EA can be embedded
in our framework. Secondly, we think that our framework opens the road to
high-quality local search-based MOEA /D variants for combinatorial optimization
problems, e.g., plugging several (1 + A)-EAs within each subproblem. Finally,
our strategies are inherently distributed in the sense that each sub-problem is
optimized concurrently in parallel. In this respect, an interesting research issue
would be to investigate the effective parallelization of our strategies.
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